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Abstract

Grillet established conditions on a partially ordered set under which each maximal an-
tichain meets each maximal chain. Chvátal made a conjecture in terms of graphs that
strengthens Grillet’s theorem. The purpose of this paper is to prove this conjecture.
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1 Introduction

Grillet [6] proved that in every partially ordered set containing no quadruple (a, b, c, d) such that

a < b, c < d, b covers c,

and the remaining three pairs of elements are incomparable,

each maximal antichain meets each maximal chain. (As usual, we say that b covers c if c < b

and c < x ≤ b implies x = b. Throughout this paper, the adjective maximal is always meant

with respect to set-inclusion rather than size.) Berge [1] pointed out that Grillet’s theorem can

be stated in terms of graphs rather than partially ordered sets: if a comparability graph has the

property that every (induced) P4 is contained in an (induced) A (see Fig.1), then each maximal

stable set meets each maximal clique. (The vertices of a comparability graph are the elements

of a partially ordered set, with two vertices adjacent if and only if they are comparable: see

[4], [5].) Then he went on to make a conjecture and suggest a problem that strengthen this

statement; both the conjecture and the problem were solved in the negative [7]. Chvátal [2, 7]

proposed the following conjecture as a variation on Berge’s problem.

Conjecture Let G be a graph with no induced subgraph isomorphic to F or F̄ (the complement

graph of F ). Then each maximal stable set meets each maximal clique in G if and only if each

P4 extends into an A in G.
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Figure 1. P4, A, F , and F̄

Clearly, if a graph G enjoys the property that each maximal stable set meets each maximal

clique, then every P4 extends into an A in G. However, the converse need not hold in general:

both F and F̄ are counterexamples. Chvátal’s conjecture asserts that actually F and F̄ are the

only obstructions to the above property.
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Gallai [3] characterized comparability graphs in terms of 19 forbidden induced subgraphs.

Since both F and F̄ are included in this list, Chvátal’s conjecture generalizes Grillet’s theorem.

Two theorems in the spirit of Berge’s problem that are weaker than Chvátal’s conjecture

but stronger than Grillet’s theorem were proved in [7]. The purpose of this paper is to prove

Chvátal’s conjecture.

Theorem Let G be a graph with no induced subgraph isomorphic to F or F̄ . Then each max-

imal stable set meets each maximal clique in G if and only if each P4 extends into an A in G.

Outline of the proof. The “only if” part is trivial. To prove the “if” part, we assume that

G is a counterexample with the smallest number of vertices. In section 2, we prove that if a

maximal stable set S is disjoint from a maximal clique C, then the configuration between S and

C can be fully described. Based on this observation, we can further show that G contains a

subgraph Σ as depicted in Figure 2; this intermediate structure plays an important role in our

proof. In section 3, we show that there exist some vertices outside Σ which have certain nice

adjacency properties. In section 4, we exhibit an F or F̄ in G by using the vertices obtained in

section 3, and thus we reach a contradiction.

2 Structural Description

Throughout this paper, we let G stand for a counterexample with the smallest number of vertices.

For each vertex v of G, let N(v) denote the set of all the neighbors of v in G and let U(v) denote

the set of all the vertices outside N(v)∪ {v}. For each vertex subset X of G, let G[X] stand for

the subgraph of G induced by X. We also use {abc;x, y, z} to denote an F or F̄ with the vertex

set {a, b, c, x, y, z}, in which x, y, z are pairwise nonadjacent and abc is a triangle.

Lemma 1 Let v be a vertex of G. Then the following two statements hold.

(i) Each P4 in G[N(v)] extends into an A in G[N(v)];

(ii) Each P4 in G[U(v)] extends into an A in G[U(v)].

Proof. (i) Let abcd be an arbitrary P4 in G[N(v)] and let w be the fifth vertex of an A

that contains abcd. Then w ∈ N(v), for otherwise {bcv; a, d, w} would induce an F̄ in G, a

contradiction.

(ii) Let abcd be an arbitrary P4 in G[U(v)] and let w be the fifth vertex of an A that contains

abcd. Then w ∈ U(v), for otherwise {bcw; a, d, v} would induce an F in G, a contradiction. 2
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Lemma 2 Let S be a maximal stable set and let C be a maximal clique of G. If S and C share

no vertex, then either the following case 1 or case 2 occurs:

Case 1. S can be partitioned into S1, S2 and C can be partitioned into C1, C2 such that

• none of S1, S2, C1, C2 is empty;

• each vertex in Si is adjacent to each vertex in Ci in G for i = 1, 2;

• no vertex in Si is adjacent to any vertex in Ci+1 in G for i = 1, 2, where the subscript is

taken modulo 2.

Case 2. S can be partitioned into S1, S2, S3, S4, and C can be partitioned into C1, C2, C3, C4

such that

• neither Si nor Ci is empty for i = 1, 2, 3, 4;

• each vertex in Si is adjacent to each vertex in Ci ∪Ci+1 in G for i = 1, 2, 3, 4, where the

subscript is taken modulo 4;

• no vertex in Si is adjacent to any vertex in Ci+2 ∪ Ci+3 in G for i = 1, 2, 3, 4, where the

subscript is taken modulo 4.

Proof. Let us make some simple observations first.

(2.1) For any x ∈ S, there exists y ∈ S − {x} such that C ⊆ N(x) ∪N(y).

To justify (2.1), note that by Lemma 1(ii) and the minimality of G, each maximal stable

set in G[U(x)] meets each maximal clique in G[U(x)]. Since S − {x} is a maximal stable set in

G[U(x)] and C −N(x) is a clique in G[U(x)], there must exist a y ∈ S − {x} which is adjacent

to all the vertices in C −N(x). So (2.1) holds.

(2.2) Let x, y be any two vertices in S with C ⊆ N(x) ∪N(y). Then C ∩N(x) ∩N(y) = ∅.
To justify (2.2), assume to the contrary that a is a vertex in C ∩N(x)∩N(y). Let us turn to

consider Ḡ. Since each P4 extends into an A in G and since both P4 and A are self-complement,

it is easy to see that each P4 in Ḡ extends into an A in Ḡ. So (2.1) is valid with respect to Ḡ

with S in place of C, C in place of S, and a in place of x. Hence there exists b ∈ C − {a} such

that each vertex in S is adjacent to at least one of a and b in Ḡ. However, if b ∈ C ∩N(x) then

x is adjacent to neither of a and b in Ḡ; if b ∈ C ∩N(y) then y is adjacent to neither of a and b

in Ḡ. So we reach a contradiction in either case.

(2.3) There exist no vertices x, y in S such that N(x) ∩ C is a proper subset of N(y) ∩ C.

To prove (2.3), assume to the contrary that N(x) ∩ C is a proper subset of N(y) ∩ C.

According to (2.1), there exists z ∈ S−{x} such that C ⊆ N(x)∪N(z). Thus C ⊆ N(y)∪N(z)

and C ∩N(y) ∩N(z) 6= ∅, the existence of the pair y, z contradicts (2.2).
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(2.4) For any a ∈ C, there exists b ∈ C − {a} such that S ⊆ N(a) ∪ N(b) and that

S ∩N(a) ∩N(b) = ∅.
To justify (2.4), applying (2.1) to Ḡ with C in place of S and with S in place of C, we see

that for any a ∈ C, there exists b ∈ C − {a} such that S ⊆ U(a) ∪ U(b). For this pair a, b, it

can be seen from (2.2) with respect to Ḡ that S ∩ U(a) ∩ U(b) = ∅. Hence each vertex in S is

nonadjacent to precisely one of a and b in G, which implies that each vertex in S is adjacent to

precisely one of a and b in G, so (2.4) follows.

Throughout the remainder of the proof of this lemma, let us reserve x, y for two vertices

in S and a, b for two vertices in C such that each vertex in S is adjacent to precisely one of a

and b, and each vertex in C is adjacent to precisely one of x and y. Note that the existence

of x, y, a, b is guaranteed by (2.1), (2.2) and (2.4). Rename the vertices if necessary, we may

assume that a ∈ N(x)∩C and b ∈ N(y)∩C. For convenience, set X = N(x)∩C, Y = N(y)∩C,

A = N(a) ∩ S, and B = N(b) ∩ S. Since x ∈ A, y ∈ B, a ∈ X, and b ∈ Y , we have

(2.5) None of A,B, X, Y is empty.

(2.6) Let u, v be any two vertices in A. Then either N(u) ∩ Y ⊆ N(v) ∩ Y or N(v) ∩ Y ⊆
N(u) ∩ Y .

To justify (2.6), assume to the contrary that p is a vertex in ((N(u)−N(v)) ∩ Y and q is a

vertex in ((N(v)−N(u)) ∩ Y . Then {apq; u, v, y} induces an F̄ in G, a contradiction.

Similarly, we have the following statement.

(2.7) Let u, v be any two vertices in B. Then either N(u) ∩X ⊆ N(v) ∩X or N(v) ∩X ⊆
N(u) ∩X.

Let U = ∪p∈B N(p) ∩X and let V = ∪p∈A N(p) ∩ Y . Then (2.6) and (2.7) guarantee the

existence of a vertex u ∈ B and a vertex v ∈ A such that U = N(u)∩X and V = N(v)∩ Y ; let

us reserve u, v for these two vertices throughout the remainder of the proof of this lemma.

(2.8) We have X − U 6= ∅ and Y − V 6= ∅.
Suppose to the contrary that X − U = ∅, then N(x) ∩ C is a proper subset of N(u) ∩ C,

contradicting (2.3). Similarly, we obtain Y − V 6= ∅.
(2.9) Each vertex in A is adjacent to each vertex in X − U ; each vertex in B is adjacent to

each vertex in Y − V .

We only consider the case for A, as the case for B is a mirror image. Suppose to the contrary

that a vertex p in A is not adjacent to some vertex w in X − U . Let q be a vertex in S − {p}
such that C ⊆ N(p) ∪N(q) (q exists by (2.1)). Then q ∈ B as b is adjacent to no vertex in A.
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Hence w is adjacent to neither of p and q (recall the definition of U), a contradiction.

(2.10) We have N(v) ∩ U = ∅ and N(u) ∩ V = ∅.
For otherwise, it follows from (2.9) and the definitions of u and v that C ⊆ N(u)∪N(v) and

C ∩N(u) ∩N(v) 6= ∅, the existence of the pair u, v contradicts (2.2).

(2.11) For any vertex p in S, either N(p) ∩ U = ∅ or N(p) ∩ V = ∅.
By virtue of (2.10), we may assume that p 6= u, v. Suppose to the contrary that p is adjacent

to both q in U and r in V . Symmetry allows us to assume p ∈ A. Thus {qrb; p, u, y} would

induce an F̄ in G, a contradiction.

(2.12) For any vertex p in S, if N(p)∩U = ∅ then V ⊆ N(p); if N(p)∩V = ∅ then U ⊆ N(p).

We only consider the case p ∈ A, as the case p ∈ B is a mirror image. If N(p) ∩ U = ∅ then

V ⊆ N(p), for otherwise N(p)∩C would be a proper subset of N(v)∩C according to (2.9) and

the definition of v, contradicting (2.3); if N(p) ∩ V = ∅ then U ⊆ N(p), for otherwise N(p) ∩C

would be a proper subset of N(x) ∩ C, contradicting (2.3).

(2.13) If one of U and V is empty, then the other is also empty.

Suppose the contrary: without loss of generality, we may assume U = ∅ however V 6= ∅.
Then by (2.7) and the definition of V , N(x)∩C is a proper subset of N(v)∩C, a contradiction.

Now (2.13) allows us to distinguish between two cases.

Case 1. U = V = ∅. Set S1 = A, S2 = B, C1 = X, and C2 = Y . The selection of a, b, x, y

implies that S1, S2 form a partition of S, and C1, C2 form a partition of C. By (2.5), none of

S1, S2, C1, C2 is empty; from (2.9), it can be seen that each vertex in Si is adjacent to each

vertex in Ci in G for i = 1, 2; from the definitions of U and V , it can be deduced that no vertex

in Si is adjacent to any vertex in Ci+1 in G for i = 1, 2, where the subscript is taken modulo 2.

Hence the present case coincides with Case 1 as described in our lemma.

Case 2. U 6= ∅ 6= V . Set C1 = X − U , C2 = U , C3 = Y − V , C4 = V , and set S1 = {p ∈ A :

U ⊆ N(p)}, S2 = {p ∈ B : U ⊆ N(p)}, S3 = {p ∈ B : V ⊆ N(p)}, S4 = {p ∈ A : V ⊆ N(p)}.
Clearly, C1, C2, C3, C4 form a partition of C. In view of (2.11) and (2.12), we see that S1, S2,

S3, S4 form a partition of S. From (2.8), it follows that Ci is nonempty for i = 1, 2, 3, 4. Since

x ∈ S1, u ∈ S2, y ∈ S3, v ∈ S4, none of S1, S2, S3, S4 is empty. From (2.9), (2.11), (2.12) and the

definition of Si, we conclude that each vertex in Si is adjacent to each vertex in Ci ∪Ci+1 in G,

and that no vertex in Si is adjacent to any vertex in Ci+2 ∪ Ci+3 in G for i = 1, 2, 3, 4, where

the subscript is taken modulo 4. Hence the present case coincides with Case 2 as described in

our lemma.

This completes the proof of Lemma 2. 2
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Corollary 1 There exist a maximal stable set S and a maximal clique C in G such that S and

C are vertex disjoint and that the configuration between S and C is as described in Case 2 of

Lemma 2.

Proof. Since G is a counterexample, there exist a maximal stable set S and a maximal clique

C in G such that S and C are vertex disjoint. If the configuration between S and C is as

described in Case 2 of Lemma 2, then we are done; so we assume that the configuration is as

described in Case 1. Let si be a vertex in Si (as in the statement of Case 1) and let ci be a

vertex in Ci for i = 1, 2. Then, by hypothesis, the path s1c1c2s2 is contained in an A. Let w

be the fifth vertex of this A and let K be an arbitrary maximal clique that contains {c1, c2, w}.
Then S and K are vertex disjoint since no vertex in S is adjacent to both c1 and c2. In view of

the structure of {s1, c1, c2, s2; w}, we can see that the configuration between S and K is not as

described in Case 1 of Lemma 2. Hence, by Lemma 2, Case 2 must occur. 2

Lemma 3 Suppose S is a maximal stable set in G, {S1, S2, S3, S4} is a partition of S, and

{c1, c2, c3, c4} is a clique with four vertices outside S such that

• none of S1, S2, S3, S4 is empty;

• each vertex in Si is adjacent to both ci and ci+1 for i = 1, 2, 3, 4, where the subscript is

taken modulo 4;

• no vertex in Si is adjacent to ci+2 or ci+3 in G for i = 1, 2, 3, 4, where the subscript is

taken modulo 4.

Let si be a vertex in Si for i = 1, 2, 3, 4, let {s1, c1, c3, s3; x} be an arbitrary A that contains the

path s1c1c3s3, and let {s4, c1, c3, s2; y} be an arbitrary A that contains the path s4c1c3s2. Then

the following statements hold:

• x is adjacent to all the vertices in S2 ∪ S4 and adjacent to no vertex in S1 ∪ S3 ∪ {c2, c4};
• y is adjacent to all the vertices in S1 ∪ S3 and adjacent to no vertex in S2 ∪ S4 ∪ {c2, c4}.
• x and y are adjacent.

Proof. Let us first prove that x is adjacent to all the vertices in S2 ∪ S4.

Suppose to the contrary that x is nonadjacent to some vertex z in S2∪S4; symmetry allows us

to assume that z ∈ S2. Then x is adjacent to c2 for otherwise {c1c2c3; s1, x, z} would induce an

F̄ in G, a contradiction. Let C be an arbitrary maximal clique in G that contains {c1, c2, c3, x}.
Then S and C are vertex disjoint since, by assumption, no vertex in S is adjacent to all three

of c1, c2, c3. Furthermore, it can be seen from the structure between S1 ∪S2 ∪S3 and {c1, c2, c3}
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that the configuration between S and C is not as described in Case 1 of Lemma 2. Hence, by

Lemma 2, Case 2 must occur; let S′1, S′2, S′3, S′4 be the partition of S and let C1, C2, C3, C4 be

the partition of C as described there. It is a routine matter to check that N(x) ∩ S, N(ci) ∩ S

for i = 1, 2, 3, are all distinct (note the existence of z). So each Cj contains precisely one vertex

from {c1, c2, c3, x} for j = 1, 2, 3, 4. Hence, it follows from the configuration between S and C

that each vertex in S is adjacent to precisely two vertices in {c1, c2, c3, x}, however s3 is adjacent

to no vertex in {c1, c2, x}, a contradiction.

Similarly, we can prove that y is adjacent to all the vertices in S1 ∪ S3.

Since x is adjacent to each vertex in S2 ∪S4, xs2 and xs4 are two edges in G. It follows that

x and y are adjacent, for otherwise {c1c3x; s2, s4, y} would induce an F̄ in G, a contradiction.

The preceding statement implies that {c1, c3, x, y} is a clique in G. Let C be any maximal

clique that contains {c1, c3, x, y}. Then S and C are vertex disjoint since, by assumption,

no vertex in S is adjacent to both c1 and c3. By virtue of vertices s1, s2, s3, s4, we can see

that N(c1) ∩ S, N(c3) ∩ S, N(x) ∩ S, and N(y) ∩ S are all distinct. Hence, by Lemma 2, the

configuration between S and C is not as described in Case 1. So Case 2 must occur. Furthermore,

let C1, C2, C3, C4 be the partition as described in Case 2. Then each Ci contains precisely one

vertex in {c1, c3, x, y}, and therefore each vertex in S is adjacent to precisely two vertices in

{c1, c3, x, y} (as in the statement of Case 2), which implies that x is adjacent to no vertex in

S1 ∪ S3, and y is adjacent to no vertex in S2 ∪ S4.

Let us now prove that there is no edge between {x, y} and {c2, c4} in G.

Suppose to the contrary that x is adjacent to c2 or c4. Then symmetry allows us to assume

that c2x is an edge of G. It follows that {c2c3x; s1, s3, s4} induces an F in G, a contradiction.

Suppose to the contrary that y is adjacent to c2 or c4. Then symmetry allows us to assume

that c2y is an edge of G. It follows that {c2c3y; s1, s2, s3} induces an F̄ in G, a contradiction.

This completes the proof of Lemma 3. 2

Since G is a counterexample, Corollary 1 guarantees the existence of a maximal stable set S

and a maximal clique C in G such that S and C are disjoint and that the configuration between

S and C is as described in Case 2 of Lemma 2. Renaming the partition S1, S2, S3, S4 of S given

in Case 2, we can find four vertices v1, v2, v3, v4 in C such that

(II.1) v1 is adjacent to each vertex in S1 ∪ S2 and adjacent to no vertex in S3 ∪ S4;

(II.2) v2 is adjacent to each vertex in S3 ∪ S4 and adjacent to no vertex in S1 ∪ S2;

(II.3) v3 is adjacent to each vertex in S1 ∪ S3 and adjacent to no vertex in S2 ∪ S4;
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(II.4) v4 is adjacent to each vertex in S2 ∪ S4 and adjacent to no vertex in S1 ∪ S3.

For convenience, we reserve a vertex si in Si for i = 1, 2, 3, 4 hereafter. Since s1v3v4s4 is a

P4, by hypothesis it extends into an A in G; let v5 be the fifth vertex of this A. Clearly v5 is

outside S ∪ {v1, v2, v3, v4}. By Lemma 3, we have

(II.5) v5 is adjacent to each vertex in S2 ∪S3 and adjacent to no vertex in S1 ∪S4 ∪{v1, v2}.
Since s2v4v3s3 is a P4 in G[N(v5)], by Lemma 1 it extends into an A in G[N(v5)]; let v6 be

the the fifth vertex of this A. Clearly v6 is outside S ∪ {v1, v2, v3, v4, v5}. By Lemma 3, we have

(II.6) v6 is adjacent to each vertex in S1 ∪S4 and adjacent to no vertex in S2 ∪S3 ∪{v1, v2}.
The reader may refer to Figure 2 for the adjacency between S and {v1, v2, . . . , v6}.

We aim to prove that G contains a subgraph as depicted in Figure 2. For this purpose, let

us inductively construct a sequence {vi}, i = 1, 2, . . ., starting with v1, v2, . . ., v6. We intend

to show that the sequence contains 12 consecutive vertices which, together with S, generate a

subgraph of G as desired.

(II.7) The construction of vi for i ≥ 7 goes as follows, here NS(v) = N(v) ∩ S.

• If i is odd, then {{s1, s2, s3, s4} −NS(vi−6)} ∪ {vi−1, vi−2} induces a P4 in G, and vi

is the fifth vertex of an arbitrary A that contains this P4;

• If i is even, then {{s1, s2, s3, s4} −NS(vi−6)} ∪ {vi−2, vi−3} induces a P4 in G, and vi

is the fifth vertex of an arbitrary A that contains this P4.

To show the validity of the above construction, we need to justify that {{s1, s2, s3, s4} −
NS(vi−6)}∪{vi−1, vi−2} induces a P4 in G if i is odd, and {{s1, s2, s3, s4}−NS(vi−6)}∪{vi−2, vi−3}
induces a P4 in G if i is even. Let us first consider the cases i = 7, 8, . . ., 12.

From the structure between S and {v1, v2, . . . , v6} (recall (II.1)-(II.6)), we see that {{s1, s2, s3,

s4} −NS(v1)} ∪ {v6, v5} induces a P4, s3v5v6s4, in G, and {{s1, s2, s3, s4} −NS(v2)} ∪ {v6, v5}
induces a P4, s1v6v5s2, in G. Since every P4 extends into an A in G, v7 and v8 exist. By virtue

of Lemma 3 (with {v3, v4, v5, v6} in place of {c1, c2, c3, c4}), we get

(II.8) • v7 is adjacent to all the vertices in S1 ∪ S2 and adjacent to no vertex in S3 ∪ S4∪
{v3, v4}, implying NS(v7) = NS(v1) (recall (II.1));

• v8 is adjacent to all the vertices in S3 ∪ S4 and adjacent to no vertex in S1 ∪ S2∪
{v3, v4}, implying NS(v8) = NS(v2) (recall (II.2));

• v7 and v8 are adjacent.
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In view of (II.8), we see that {{s1, s2, s3, s4} −NS(v3)} ∪ {v8, v7} induces a P4, s2v7v8s4, in

G, and {{s1, s2, s3, s4} − NS(v4)} ∪ {v8, v7} induces a P4, s1v7v8s3, in G. Thus v9 and v10 are

well defined. Using Lemma 3, we have

(II.9) • NS(v9) = NS(v3) and NS(v10) = NS(v4);

• There is no edge between {v9, v10} and {v5, v6};
• v9 and v10 are adjacent.

Based on (II.9), we see that {{s1, s2, s3, s4}−NS(v5)} ∪ {v10, v9} induces a P4, s1v9v10s4, in

G, and {{s1, s2, s3, s4}−NS(v6)}∪{v10, v9} induces a P4, s2v10v9s3, in G. Thus v11 and v12 are

well defined. By Lemma 3, we obtain

(II.10) • NS(v11) = NS(v5) and NS(v12) = NS(v6);

• There is no edge between {v11, v12} and {v7, v8};
• v11 and v12 are adjacent.

From (II.8)-(II.10), it can be seen that the subgraph of G induced by S ∪ {v1, v2, . . . , v6} is

isomorphic to the subgraph induced by S ∪ {v7, v8, . . . , v12}, with the isomorphism f(vi) = vi+6

for 1 ≤ i ≤ 6. Since we have established the validity of (II.7) for i ≤ 12, the validity for general

i follows from periodicity.

Lemma 4 The sequence {vi} constructed in (II.7) enjoys the following properties:

(i) NS(vi) = NS(vj) whenever i− j ≡ 0 (mod 6);

(ii) {v2i−1, v2i, v2i+1, v2i+2} induces a clique in G for any i ≥ 1;

(iii) There is no edge between {v2i−1, v2i} and {v2i+3, v2i+4} in G for any i ≥ 1;

(iv) vi and vi+6 are nonadjacent in G for any i ≥ 1;

(v) vi and vj are distinct vertices in G whenever 0 < |i− j| < 12;

(vi) For any v /∈ S and i ≥ 1, if NS(v2i−1) ⊆ NS(v) and NS(v2i) ∩NS(v) 6= ∅, or if NS(v2i)

⊆ NS(v) and NS(v2i−1) ∩NS(v) 6= ∅, then v is nonadjacent to v2i−1 or v2i;

(vii) For any v /∈ S and i ≥ 1, if NS(v) 6= NS(vj) holds for each j with 2i− 1 ≤ j ≤ 2i + 2,

then none of {v, v2i−1, . . . , v2i+2} − {vj} induces a clique in G, for any j with

2i− 1 ≤ j ≤ 2i + 2.

Proof. (i) It follows from (II.8)-(II.10) that NS(vi) = NS(vi−6) for each i with 7 ≤ i ≤ 12.

This periodicity together with (II.7) imply that NS(vi) = NS(vi−6) for each i ≥ 7, and so (i) is

proved.
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(ii) From (II.8)-(II.10) and the construction of the sequence {vi}, we conclude that {v2i−1, v2i,

v2i+1, v2i+2} induces a clique in G for each i with 1 ≤ i ≤ 5. Suppose (ii) holds for i ≤ k. Let us

proceed to the case i = k + 1. Since {v2k−1, v2k, v2k+1, v2k+2} is a clique, in view of statement

(i), (II.7) and Lemma 3, we see that v2k+3 is adjacent to v2k+4. Thus {v2k+1, v2k+2, v2k+3, v2k+4}
induces a clique in G, completing the proof of (ii).

(iii) From (II.5), (II.6) and (II.8)-(II.10), it can be seen that there is no edge between

{v2i−1, v2i} and {v2i+3, v2i+4} in G for any 1 ≤ i ≤ 4. Suppose (iii) holds for i ≤ k. Let

us proceed to the case i = k + 1. Since {v2k+1, v2k+2, v2k+3, v2k+4} is a clique (by (ii)), in view

of statement (i), (II.7) and Lemma 3, we see that there is no edge between {v2k+5, v2k+6} and

{v2k+1, v2k+2}. So (iii) holds.

(iv) Assume the contrary: vivi+6 is an edge of G for some i. Consider the subgraph induced

by {vi+4vi+5vi+6; vi, {s1, s2, s3, s4}−NS(vi)} if i is odd and by {vi+3vi+4vi+6; vi, {s1, s2, s3, s4}−
NS(vi)} if i is even. In either case, by statements (i)-(iii), the subgraph is isomorphic to an F

(we only need to check the case i ≤ 6), a contradiction.

(v) Suppose to the contrary that vi = vj for some i and j with 0 < j − i ≤ 12. Then by

statement (i) and (II.1)-(II.6), we have j = i + 6. From statements (ii) and (iii), it follows that

vi+6 is adjacent to vi+4, while vi is nonadjacent to vi+4, contradicting the assumption vi = vi+6.

(vi) By (II.1)-(II.6) and statement (i), we have NS(v2i−1) ∩ NS(v2i) = ∅, which, combined

with the hypothesis, implies that v /∈ {v2i−1, v2i}. Suppose to the contrary that {v2i−1, v2i, v} is a

clique of G. Then the configuration between S and any maximal clique containing {v, v2i−1, v2i}
is as described in Case 2 of Lemma 2; let S′1, S′2, S′3, S′4 be the corresponding partition of S.

Then each of v, v2i−1 and v2i is adjacent to precisely two of these sets, which implies that there

exist two of S′1, S′2, S′3, S′4 whose union is NS(v2i−1), and the union of remaining two is NS(v2i).

Now from the hypothesis, it can be seen that v has neighbors in at least three of S′1, S′2, S′3, S′4,

contradicting Lemma 2.

(vii) Suppose the contrary: {v, v2i−1, . . . , v2i+2}−{vj} is a clique for some j with 2i−1 ≤ j ≤
2i+2. Let K be a maximal clique containing {v, v2i−1, . . . , v2i+2}−{vj}. Since each vertex in S

is adjacent to at most two of {v2i−1, v2i, v2i+1, v2i+2}, S and K are disjoint. Note that NS(vk), for

2i− 1 ≤ k ≤ 2i+2, are distinct, so the configuration between S and K is as described in Case 2

of Lemma 2, which forces NS(v) = NS(vk) for some k with 2i−1 ≤ k ≤ 2i+2, a contradiction. 2

Recall that we construct the sequence {vi} in order to obtain a subgraph of G as depicted

in Figure 2. To this end, let us further impose some restrictions on {vi}.

12



(II.11) The construction of vi for i ≥ 7 goes as follows.

• If i is odd, then vi is selected so that

(a) {{s1, s2, s3, s4} −NS(vi−6)} ∪ {vi, vi−1, vi−2} induces an A in G, and

(b) subject to (a), vi is taken from {v1, v2, . . . , vi−1} whenever possible;

• If i is even, then vi is selected so that

(a) {{s1, s2, s3, s4} −NS(vi−6)} ∪ {vi, vi−2, vi−3} induces an A in G, and

(b) subject to (a), vi is taken from {v1, v2, . . . , vi−1} whenever possible.

Note that since Lemma 4 holds for any sequence constructed in (II.7), it remains valid for a

sequence {vi} output by (II.11).

Lemma 5 Every sequence {vi} constructed in (II.11) contains a set of 12 consecutive vertices

P = {vk, vk+1, . . . , vk+11}, such that the subgraph induced by S ∪ P in G, denoted by Σ′, can be

obtained from Σ (depicted in Figure 2) by possibly adding some edges from Q = {v2iv2i+5 : 1 ≤
i ≤ 6}, where the subscripts are taken modulo 12.

Remark. We shall show in the next section that v2 and v7 are nonadjacent in G. Similarly,

we can prove that no element of Q is an edge of G. Thus Σ′ is nothing but Σ itself. However,

we do not need this result in our proof.

Proof. Let us make some observations about sequence {vi}. We propose to prove that

(5.1) There exist some i and j with 1 ≤ i 6= j ≤ 18 such that vi = vj .

To verify (5.1), suppose the contrary: v1, v2, . . ., v18 are distinct. Let E stand for the edge

set of G. Consider v17, we have

(5.2) v17v8 ∈ E, v17v9 /∈ E, and v17v10 /∈ E.

Assume that v17v9 ∈ E. By Lemma 4(i), {s2v17, s3v17, s3v14} ⊆ E, and v14 is adjacent to

neither s1 nor s2; by Lemma 4(iii), v14 is adjacent to neither v9 nor v17. Thus {v17s3v9; s2, v14, s1}
induces an F in G, a contradiction. Next, assume that v17v8 /∈ E. By Lemma 4(i), v17 is adjacent

to neither s1 nor s4, and v17s3 ∈ E. So {s3v8v9; v17, s4, s1} is an F in G, a contradiction. Finally,

assume that v17v10 ∈ E. By Lemma 4(i), v17 is adjacent to both s2 and s3 but not to s4, and

v13 is adjacent to s2 but not to s3 or s4; by Lemma 4(iii), v13v10 /∈ E and v13v17 /∈ E. Thus

{v17s2v10; s3, v13, s4} induces an F in G, a contradiction.
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Figure 2. The Graph Σ

(5.3) v17 is adjacent to each of v3, v4, v6 and v7.

In view of (5.2), v17v8 ∈ E. By Lemma 4(i), v17 is adjacent to both s2 and s3 and nonadjacent

to s4; by Lemma 4(iii), v3v8 /∈ E. Since {v17s3v8; s2, v3, s4} does not induce an F in G, we have

v17v3 ∈ E. Next, since {v3s1v6; v17, v9, s4} is not isomorphic to an F , by (5.2) and Lemma 4, we

obtain v17v6 ∈ E. Then, since {v6v7v8; v10, v17, s1} is not an F̄ in G, by (5.2) and Lemma 4, we

get v17v7 ∈ E. Finally, since {v17s2v7; s3, v4, s1} 6= F , we have v17v4 ∈ E.

Now let us turn to consider v13.

(5.4) v13 is adjacent to each of v2, v3 and v4, but not adjacent to v5.

Since {v17s2v4; s3, v13, s4} 6= F , Lemma 4 and (5.3) imply that v13v4 ∈ E. Notice that

{v13s2v5; s1, v10, s3} 6= F , so we have v13v5 /∈ E. From {s2v4v5; v3, v7, v13} 6= F̄ , it follows that

v13v3 ∈ E. Since {v2v3v4; v13, s4, s3} 6= F̄ , we get v13v2 ∈ E.

Next let us derive some adjacency properties concerning v11.
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(5.5) v11v2 ∈ E and v11v3 /∈ E.

Using {v11v3s3; s2, s1, v8} 6= F , we get v11v3 /∈ E. Since {v13v2v3; v11, s4, v5} 6= F , by virtue

of Lemma 4 and (5.4), we have v11v2 ∈ E.

Now we are ready to complete the proof of (5.1).

Observe that v12v2 /∈ E; otherwise, since {{s1, s2, s3, s4} − NS(v8)} ∪ {v2, v12, v11} induces

an A in G, by (II.11), v2 is a candidate for v14, and thus v14 is identical with some vertex

vi with 1 ≤ i ≤ 13, contradicting our assumption that v1, v2, . . ., v18 are distinct. Since

{v10v11v12; v8, v2, s1} 6= F , we see that v10 is adjacent to v2, which, together with Lemma 4,

implies that {v10v2s4; s2, s3, v6} induces an F in G, a contradiction. So (5.1) is established.

Now (5.1) and Lemma 4(i) and (v) guarantee the existence of some subscript i, 1 ≤ i ≤ 6,

such that vi = vi+12. Without loss of generality, we may assume i = 1 or 2. (To see this, we

may resort to the following plain trick: in case i = 3 or 4, rename original S1 as S2, S2 as S3,

S3 as S1, keep S4 unchanged, and rename the original vt as vt−2 for t ≥ 3. The case when i = 5

or 6 can be handled likewise.) Now let us proceed to establish the following stronger result.

(5.6) There exists an odd subscript k, 1 ≤ k ≤ 6, such that vk = vk+12 and vk+1 = vk+13.

Assume the contrary: no such k exists. Let us distinguish between two cases according to

the value of i.

Case 5.1. i = 1, that is v13 = v1. By assumption, we have v14 6= v2.

(5.7) v14 is adjacent to v4.

Assume v14v4 /∈ E. In view of Lemma 4 and the hypothesis v13 = v1, no element in

{v1v6, v1v10, v4v10, v6v10, v10v14, s2v6, s2v14} is an edge of G. Since {v1v4s2; v14, v6, v10} 6= F , v14

is adjacent to v6. Next, since {v5v6v8; s2, v14, v9} is not isomorphic to an F , Lemma 4 implies

that v14v5 ∈ E. Thus by Lemma 4, {s3v11v14; v1, v5, v9} induces an F̄ in G, a contradiction.

(5.8) v14 is nonadjacent to v3.

Suppose the contrary, then v14 is adjacent to both v3 and v4 (by (5.7)). Since each of

{{s1, s2, s3, s4}−NS(v9)}∪{v3, v14, v1} and {{s1, s2, s3, s4}−NS(v10)}∪{v4, v14, v1} induces an

A in G. According to (II.11), v15 = v3 and v16 = v4. So (5.6) holds for k = 3, contradicting our

assumption.

Based on (5.7), (5.8), Lemma 4 and the fact {v1v3v4; v5, v14, s1} 6= F̄ , we get v14v5 ∈ E.

Since {s3v5v8; v6, v9, v14} is not isomorphic to an F̄ , v14 is adjacent to v6. From the fact

{v3v4v6; v14, s1, v2} 6= F̄ , it follows that v14v2 ∈ E. Hence {v5v6v14; s2, s1, v2} induces an F

in G, a contradiction.
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Case 5.2. i = 2, that is v14 = v2. By assumption, we have v13 6= v1.

(5.9) v13 is adjacent to v4

Suppose to the contrary that v13v4 /∈ E. Since {s2v4v5; v13, s4, s3} 6= F , we have v13v5 ∈ E.

Now from Lemma 4, we can see that {s2v5v13; v10, s3, s1} induces an F in G, a contradiction.

(5.10) v13 is nonadjacent to v3.

Otherwise, imitating the proof of (5.8), we obtain v15 = v3 and v16 = v4, contradicting our

assumption.

Now (5.9), (5.10) and Lemma 4, together with the fact {v2v3v4; v6, v13, s3} 6= F̄ , imply that

v13v6 ∈ E. Since {v13s2v5; s1, v10, s3} 6= F , v13v5 /∈ E. It follows that {v5v6v7; s3, v13, v10}
induces an F in G, a contradiction. So the proof of (5.6) is complete.

From (5.6) and Lemma 4, our lemma follows. 2

3 Further Preparation

Let Σ′ be the graph specified in Lemma 5. Recall that Σ′ can be obtained from Σ depicted in

Figure 2 by adding possibly some edges from Q = {v2iv2i+5 : 1 ≤ i ≤ 6}. For convenience, the

reader may use Σ in place of Σ′ in our proof, except when adjacency concerning the set Q is

involved. Thus we need not refer to Lemma 4 again and again.

Lemma 6 There exists a vertex α outside Σ′ such that

(i) α is adjacent to each vertex in S1 ∪ S2 ∪ S3 ∪ {v2i−1 : 1 ≤ i ≤ 6}, and

(ii) α is adjacent to no vertex in {v2i : 1 ≤ i ≤ 6}.

Proof. Since v6v3v1v12 is a P4 in G, by hypothesis it is contained in an A; let α be the fifth

vertex of this A. We aim to prove that α satisfies both (i) and (ii). To this end, note that clearly

α is outside Σ′. Moreover, α is adjacent to each vertex in S1, for otherwise let s1 be a vertex in

S1 with αs1 /∈ E. Then {s1v1v3; α, v6, v12} would induce an F̄ in G, a contradiction.

The proof is by contradiction. Assume the contrary: α is not as desired. Since {s1v7v9;α, s2,

s3} 6= F for any s2 ∈ S2 and s3 ∈ S3, one of the following four cases must occur:

• Case 6.1. α is adjacent to each vertex in S2;

• Case 6.2. α is adjacent to each vertex in S3;

• Case 6.3. α is adjacent to v7;

• Case 6.4. α is adjacent to v9.
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We shall reach a contradiction in each case.

Case 6.1. α is adjacent to each vertex in S2. Observe that in this case α is adjacent to v7 or

v10 for otherwise {s2v7v10;α, v6, v12} would be an F , a contradiction. Let us distinguish between

two subcases.

Subcase 6.1.a) α is adjacent to v7. Since {v7v9v10; α, s3, s4} 6= F for any s3 ∈ S3 and s4 ∈ S4,

we have four possibilities to consider:

(6.1.1) α is adjacent to each vertex in S3;

(6.1.2) α is adjacent to each vertex in S4;

(6.1.3) α is adjacent to v9;

(6.1.4) α is adjacent to v10.

Now let us analyse them one by one.

(6.1.1) α is adjacent to each vertex in S3. By Lemma 4(vi), α is adjacent to none of v2, v4, and

v8 in G, and so α is adjacent to v9 since {s3v8v9;α, v6, v12} 6= F . Now Lemma 4(vi) ensures that

α is nonadjacent to v10. It follows that α is adjacent to v11 since {s2v7v10; v8, v11, α} 6= F̄ , and α

is adjacent to v5 since {s3v5v8; α, v4, v10} 6= F . Since α is the fifth vertex of an A that contains

v6v3v1v12, we conclude that α is adjacent to each vertex in S1 ∪ S2 ∪ S3 ∪ {v2i−1 : 1 ≤ i ≤ 6},
but to no vertex in {v2i : 1 ≤ i ≤ 6}, contradicting our assumption that α is not as desired.

So we may assume that α is nonadjacent to some vertex s3 ∈ S3.

(6.1.2) α is adjacent to each vertex in S4. By Lemma 4(vi), α is adjacent to neither v4 nor

v8. Thus α is adjacent to v10 since {v7v8v10; α, s3, v12} 6= F . It follows that {s2v10α; v4, v8, s1}
induces an F in G, a contradiction.

So we may assume that α is nonadjacent to some vertex s4 ∈ S4.

(6.1.3) α is adjacent to v9. Note that α is adjacent to v8 or v10 since {v7v8v10; α, s3, v12} 6=
F . Consider the subgraph of G induced by {αv8v9; s2, v6, v12} in the former case and by

{αv9v10; v1, s3, s4} in the latter. We have an F in either case, a contradiction.

So we may assume that α is nonadjacent to v9.

(6.1.4) α is adjacent to v10. We have {s1v9v12; α, s3, s4} = F as α is adjacent to none of s3,

s4 and v9, a contradiction.

Subcase 6.1.b) α is adjacent to v10. Clearly we may assume that αv7 is not an edge of G in

this subcase.

Observe that α is nonadjacent to some vertex s3 ∈ S3, for otherwise α is adjacent to each ver-

tex in S1∪S2∪S3. Hence, by Lemma 4(vi), α is nonadjacent to v4, and thus {αs2v10; s3, v4, v12}
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induces an F in G, a contradiction. The above observation together with the fact {v7v9v10; v6, s3,

α} 6= F , for any s3 ∈ S3, yield that α is adjacent to v9. Since {α, v9, v10} is a clique, by Lemma

4(vi), α is nonadjacent to some vertex s4 ∈ S4. We can thus deduce that {αv9v10; v1, s3, s4} is

isomorphic to an F , a contradiction.

So we can assume α is nonadjacent to some vertex s2 ∈ S2 hereafter.

Case 6.2. α is adjacent to each vertex in S3. In view of the existence of s2, we conclude that

{αv1s1; s3, s2, v6} induces an F , a contradiction.

So we can assume α is nonadjacent to some vertex s3 ∈ S3 hereafter.

Case 6.3. α is adjacent to v7. Note that in this case α is adjacent to v8 or v10, for other-

wise {v7v8v10; α, s3, v12} would be an F in G, a contradiction. Let us distinguish between two

subcases.

Subcase 6.3.a) α is adjacent to v8. Since {αv8v10; s1, s3, s2} 6= F , we deduce that α is

nonadjacent to v10. Next, since {v7v8v10; s4, s2, α} 6= F̄ for any s4 ∈ S4, we conclude that

α is adjacent to each vertex in S4. Thus NS(α) 6= NS(vi) for any i with 1 ≤ i ≤ 4 and

hence, by Lemma 4(vii), {α, v1, v3, v4} is not a clique, so α is nonadjacent to v4. It follows that

{αs4v8; s1, v4, s3} is an F , a contradiction.

Subcase 6.3.b) α is adjacent to v10. Clearly we may assume that αv8 is not an edge of G.

Since {v2v3s3; v12, α, v8} 6= F , we see that α is adjacent to v2. Since {αv1v3; v9, s2, v6} 6= F , we

conclude that α is nonadjacent to v9. Hence α is adjacent to each vertex s4 ∈ S4 for otherwise

{v2s4v12; α, v6, v9} would be an F in G. Therefore {s4v8v10; v9, α, v6} induces an F̄ in G, a

contradiction.

Case 6.4. α is adjacent to v9. Since α is nonadjacent to s2, {αv1v3; v9, s2, v6} induces an F

in G, a contradiction.

This completes the proof of Lemma 6. 2

Lemma 7 There exists a vertex β outside Σ′ ∪ {α} such that

(i) β is adjacent to each vertex in S1 ∪ S2 ∪ S4 ∪ {v1, v4, v6, v7, v10, v12}, and

(ii) β is adjacent to no vertex in {v2, v3, v5, v8, v9, v11, α}.
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Proof. Let β be the fifth vertex of an A that contains v5v4v1v11. Then it can be shown by

case analysis that β is as desired. However, we have a quick proof of the present lemma.

Rename the vertices of Σ′ so that

• the original v1 becomes v11, original v2 becomes v12, v7 becomes v5, v8 becomes v6;

• each of the remaining original vi becomes v13−i, and that

• the original Sj becomes Sj+1, where 1 ≤ j ≤ 4 and the subscript is taken modulo 4.

Then all the statements except the one concerning the adjacency between α and β can be

deduced from Lemma 6. From {s1αβ; s2, v12, v3} 6= F̄ , it follows that α and β are nonadjacent,

completing the proof. 2

Lemma 8 Vertex v2 is nonadjacent to v7 in G.

Proof. Suppose the contrary: v2v7 is an edge of G, we aim to reach a contradiction. Let η

be the fifth vertex of an A that contains v9v7v2v1. It is easy to see that η 6∈ Σ′ ∪ {α, β}. Since

{v7v9v10; η, s3, s4} 6= F for any s3 ∈ S3 and s4 ∈ S4, one of the following three cases must occur:

• Case 8.1. η is adjacent to each vertex in S3;

• Case 8.2. η is adjacent to each vertex in S4;

• Case 8.3. η is adjacent to v10.

Let us deal with these cases separately.

Case 8.1. η is adjacent to each vertex in S3.

Since {s3v2v3; v1, v5, η} 6= F̄ , η is adjacent to v5 or to v3. Let us distinguish between two

subcases.

Subcase 8.1.a) η is adjacent to v5.

We claim that η is nonadjacent to v6. To justify this, assume the contrary, then by Lemma

4(vii), η is nonadjacent to some s1 ∈ S1 since {v5, v6, v7, η} induces a clique in G. Since

{s1v6v7; η, v9, v3} 6= F̄ , η is adjacent to v3. Note that {η, v3, v5, v6} is a clique and NS(η) 6=
NS(vi) for any i ∈ {3, 4, 6}, by virtue of Lemma 4(vii), we have NS(η) = NS(v5) = S2 ∪ S3. It

follows that NS(η) 6= NS(vi) for any i with 1 ≤ i ≤ 4. By Lemma 4(vii), {η, v2, v3, v4} is not a

clique, and so η is nonadjacent to v4. Hence we have {ηs2v7; s3, v4, s1} = F , a contradiction and

thus the claim is justified. Since {s3v5v8; v6, v9, η} 6= F̄ , we see that η is adjacent to v8. Next,

observe that η is nonadjacent to some s2 ∈ S2; otherwise, since {ηs3v2; s2, v9, s4} 6= F for any

s4 ∈ S4, η is adjacent to each vertex in S4. Thus η is adjacent to each vertex in S2 ∪ S3 ∪ S4,

while {η, v7, v8} is a clique, contradicting Lemma 4(vi). Since {ηs3v5; s4, v9, s2} 6= F for any
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s4 ∈ S4, η is adjacent to no vertex in S4. Since {v6v7v8; η, s4, s1} 6= F̄ for any s1 ∈ S1, η

is adjacent to each vertex in S1; since {ηs3v8; s1, v11, s4} 6= F , η is adjacent to v11; and since

{ηs1v7; s3, v12, s2} 6= F , η is adjacent to v12. Thus {η, v2, v11, v12} is a clique and NS(η) 6= NS(vi)

for any i ∈ {11, 12, 1, 2}, contradicting Lemma 4(vii).

Subcase 8.1.b) η is adjacent to v3, but nonadjacent to v5. Notice that η is adjacent to no

vertex in S4 since {ηs3v3; s4, v9, v1} 6= F for any s4 ∈ S4. Thus η is adjacent to no vertex in

S1 since {ηs3v2; s1, v5, s4} 6= F for any s1 ∈ S1 and s4 ∈ S4. Next, note that η is adjacent

to v11 since {v1v2v3; η, s1, v11} = F̄ , where s1 ∈ S1. We claim that η is nonadjacent to v8, for

otherwise, η is adjacent to v6 since {v6v7v8; η, s4, s1} 6= F̄ . Then η is adjacent to each vertex

in S2 since {ηv6v7; s3, s4, s2} 6= F for any s2 ∈ S2. But then we get {ηs3v2; s2, v9, s4} = F , a

contradiction and thus our claim is proved. Since {s3v9v11; v12, η, v8} 6= F̄ , η is adjacent to v12.

Thus η is adjacent to each vertex in S2 since {v1v11v12; η, s1, s2} 6= F̄ for any s2 ∈ S2. It follows

that {ηs3v2; s2, v9, s4} induces an F in G, where s2 ∈ S2 and s4 ∈ S4, a contradiction.

So we may assume that η is nonadjacent to some vertex s3 ∈ S3.

Case 8.2. η is adjacent to each vertex in S4.

Since {v2s4v12; v10, v1, η} 6= F̄ , where s4 ∈ S4, we see that η is adjacent to v10 or to v12. Let

us distinguish between two subcases.

Subcase 8.2.a) η is adjacent to v10.

In this subcase, η is adjacent to each vertex in S1 or to v11 since {v7v9v10; v11, η, s1} 6= F̄ for

any s1 ∈ S1.

(8.2.1) η is adjacent to each vertex in S1. We claim that η is nonadjacent to some vertex

s2 ∈ S2, for otherwise by Lemma 4(vi) with respect to {v7, v8}, we can see that η is nonadjacent

to v8. Note that η is nonadjacent to v5 since {ηs2v5; s4, v1, s3} 6= F , so η is adjacent to v4

since {s2v5v7; v8, η, v4} 6= F̄ . Since η is adjacent to each vertex in S1 ∪ S2 ∪ S4, by Lemma

4(vi), η is nonadjacent to v3. Since {v4v6s4; v8, η, v3} 6= F̄ , η is adjacent to v6. But then

{s1v3v6; v5, η, v1} = F̄ , a contradiction. So the claim is justified. From {ηs1v7; s4, v3, s2} 6= F ,

it follows that η is adjacent to v3.

Since η is adjacent to each vertex in S1 ∪ S4, we have NS(η) 6= NS(vi) for any i with

1 ≤ i ≤ 4 or with 7 ≤ i ≤ 10. Thus, by Lemma 4(vii), η is adjacent to neither v8 nor v4.

Thus η is adjacent to v12 since {s1v7v9; v8, v12, η} 6= F̄ . It follows that η is adjacent to v11 since

{v1v11v12; v4, s3, η} 6= F . In summary, we have
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• η is adjacent to each vertex in {s1, s4, v3, v10, v11, v12}, and

• η is adjacent to no vertex in {s2, s3, v1, v4, v8}.
Now let α and β be as specified in Lemma 6 and Lemma 7, respectively. Recall that α is

nonadjacent to β. Since {v11αη; s1, v10, s3} 6= F̄ and {s4ηβ; v8, v3, s2} 6= F , we conclude that

neither of αη and βη is an edge of G. Thus {v1v11v12; η, β, α} = F̄ , a contradiction.

So we may assume that η is nonadjacent to some vertex s1 ∈ S1.

(8.2.2) η is adjacent to v11. We claim that η is nonadjacent to v6, otherwise, since η is

adjacent to neither of s1 and s3, we have NS(η) 6= NS(vi) for any i with 5 ≤ i ≤ 8. It follows

from Lemma 4(vii) that η is adjacent to neither v5 nor v8. Thus {v8v9v10; v5, s1, η} induces

an F in G, a contradiction and thus our claim is verified. Since {s4v8v10; v9, η, v6} 6= F̄ , η is

adjacent to v8. Note that {η, v7, v8, v10} is a clique and NS(η) 6= NS(vi) for any i with 7 ≤ i ≤ 9,

by Lemma 4(vii), we have NS(η) = NS(v10) = S2 ∪ S4. Hence NS(η) 6= NS(vi) for any i ∈
{11, 12, 1, 2}. Once again, by Lemma 4(vii), η is nonadjacent to v12. Thus {ηs4v8; s2, v12, s3} =

F , a contradiction.

Subcase 8.2.b) η is adjacent to v12.

In view of Subcase 8.2.a), we may assume that η is nonadjacent to v10. Since {v9v10v12; s3, s2, η}
6= F for any s2 ∈ S2, η is adjacent to each vertex in S2. So η is adjacent to each vertex in S2∪S4

and thus NS(η) 6= NS(vi) for any i ∈ {11, 12, 1, 2}. By Lemma 4(vii), η is nonadjacent to v11.

Since {ηs2v7; s4, v11, s1} 6= F for any s1 ∈ S1, η is adjacent to each vertex in S1. It follows that

{ηs4v2; s1, v10, s3} = F , a contradiction.

So we may assume that η is nonadjacent to some vertex s4 ∈ S4.

Case 8.3. η is adjacent to v10.

Since {v7v9v10; v11, η, s1} 6= F̄ for any s1 ∈ S1, η is adjacent to each vertex in S1, or to v11.

We distinguish between two subcases.

Subcase 8.3.a) η is adjacent to each vertex in S1.

We claim that η is nonadjacent to v8; otherwise, since {η, v7, v8, v10} is a clique, by Lemma

4(vii), NS(η) = NS(vi) for some i with 7 ≤ i ≤ 10. Since η is adjacent to neither of s3 and

s4, NS(η) = NS(v7) = S1 ∪ S2. From {s2v10v11; v9, v1, η} 6= F̄ and {v8v9v10; v12, η, s3} 6= F̄ ,

we deduce that η is adjacent to both of v11 and v12. Thus {η, v10, v11, v12} is a clique and

NS(η) 6= NS(vi) for any i with 9 ≤ i ≤ 12, contradicting Lemma 4(vii) and so the claim is

proved. Since {s1v7v9; v8, v12, η} 6= F̄ , η is adjacent to v12. Note that NS(η) 6= NS(vi) for any i
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with 9 ≤ i ≤ 12 as η is adjacent to none of s3 and s4, by Lemma 4(vii) η is nonadjacent to v11,

and so {v7v8v9; η, s4, v11} = F , a contradiction.

Subcase 8.3.b) η is adjacent to v11 but nonadjacent to some vertex s1 ∈ S1.

Since {s3v2v11; η, v9, v3} 6= F̄ , η is adjacent to v3. Note that NS(η) 6= NS(vi) for any i with

1 ≤ i ≤ 4 as η is adjacent to none of s1, s3 and s4. By Lemma 4(vii), η is nonadjacent to v4.

It follows that η is adjacent to v5 as {v2, v3, v4; v5, s4, η} 6= F̄ , and then η is adjacent to v6 as

{v5, v6, v7; s1, η, v4} 6= F̄ . Therefore, {η, v5, v6, v7} is clique and NS(η) 6= NS(vi) for any i with

5 ≤ i ≤ 8, contradicting Lemma 4(vii).

The proof of Lemma 8 is complete. 2

4 Proof of The Theorem

Let s4 be a vertex in S4. From Lemmas 7 and 8 we deduce that v2s4βv7 is a P4, so by hypothesis

it is contained in an A; let π be the fifth vertex of this A. It is easy to see that π 6∈ Σ′∪S∪{α, β}.
Since {s4v8v10;π, s3, s2} 6= F for any s2 ∈ S2 and s3 ∈ S3, one of the following four cases must

occur:

• Case 1. π is adjacent to each vertex in S2;

• Case 2. π is adjacent to each vertex in S3;

• Case 3. π is adjacent to v8;

• Case 4. π is adjacent to v10.

We shall reach a contradiction in each case.

Case 1. π is adjacent to each vertex in S2.

Since {s2v11v1; π, s3, s1} 6= F for any s1 ∈ S1 and s3 ∈ S3, we can distinguish among the

following four subcases:

• Subcase 1.a) π is adjacent to each vertex in S1;

• Subcase 1.b) π is adjacent to each vertex in S3;

• Subcase 1.c) π is adjacent to v11;

• Subcase 1.d) π is adjacent to v1.

Let us handle these subcases separately.

Subcase 1.a) π is adjacent to each vertex in S1.

Since {s1v9v12; π, v8, v2} 6= F where s1 ∈ S1, we see that π is adjacent to v8, or to v9, or to

v12.
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(1) π is adjacent to v8. Note that π is adjacent to each vertex in S3, or to v4 since

{πs4v8; s1, v4, s3} 6= F for any s3 ∈ S3.

If π is adjacent to each vertex in S3, then π is adjacent to each vertex in S1∪S2∪S3, and by

Lemma 4(vi), π is nonadjacent to at least one of v2i−1 and v2i for any i with 1 ≤ i ≤ 6;

this observation will be used repeatedly in this paragraph. We claim that π is nonadja-

cent to v3, for otherwise, according to the above observation π is nonadjacent to v4. So

π is adjacent to v11 for {s3v2v3; v4, π, v11} 6= F̄ ; again, by the observation, π is nonadja-

cent to v12. Thus {πs2v11; v8, v4, v12} = F , a contradiction. So the claim is justified. Since

{s3v8v5; v7, v3, π} 6= F̄ , π is adjacent to v5; once again by the observation, π is nonadjacent to

v6. Thus {v3v5s3; π, v2, v6} = F̄ , a contradiction.

Suppose π is adjacent to v4 but nonadjacent to some vertex s3 ∈ S3. Note that π is

nonadjacent to v3 for {πs1v3; s4, v7, s3} 6= F . Thus π is adjacent to v12 for {v2v4s4;π, v12, v3} 6=
F̄ . But then {v12s4π; v8, s1, v2} = F̄ , a contradiction.

So we may assume that π is nonadjacent to v8.

(2) π is adjacent to v9. Since {πs1v9; s2, v3, v8} 6= F , π is adjacent to v3. So π is adjacent

to each vertex in S3 since {πs1v3; s4, v7, s3} 6= F for any s3 ∈ S3. Hence π is adjacent to

each vertex in S1 ∪ S2 ∪ S3, and Lemma 4(vi) ensures that π is nonadjacent to v10. Since

{s1v7v9; v10, π, v6} 6= F̄ , π is adjacent to v6, and thus, by Lemma 4(vi), π is nonadjacent to v5.

Hence {s4v6v8; v5, v10, π} = F̄ , a contradiction.

So we may assume that π is nonadjacent to v9.

(3) π is adjacent to v12. Since {v12s1v9; v7, v11, π} 6= F̄ , π is adjacent to v11. Note that π is

adjacent to each vertex in S1 ∪S2 ∪{v11, v12}; by Lemma 4(vi), π is nonadjacent to some vertex

s3 ∈ S3. Thus {πs2v11; s4, v7, s3} = F , a contradiction.

So we may assume that π is nonadjacent to some vertex s1 ∈ S1.

Subcase 1.b) π is adjacent to each vertex in S3.

Since {πs4v6; s2, v2, s1} 6= F , π is nonadjacent to v6. We claim that π is adjacent to v12;

otherwise, since {s3v2v3; π, v12, v6} 6= F , π is adjacent to v3. Notice that {πs3v3; s4, v11, s1} 6= F ,

so π is adjacent to v11. Thus, by Lemma 7, we get {s2βπ; s4, v11, v7} = F̄ , a contradiction. So

our claim is justified. Since π is adjacent to each vertex in S2 ∪ S3 ∪ {s4}, Lemma 4(vi) implies

that π is nonadjacent to v11. So π is adjacent to v4 since {v12v2s4; v4, π, v11} 6= F̄ . It follows

that π is adjacent to each vertex s′4 ∈ S4 since {πs2v4; s3, v7, s
′
4} 6= F . Hence, by Lemma

4(vi) with respect to {v3, v4}, π is nonadjacent to v3 since π is adjacent to each vertex in
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S2 ∪ S3 ∪ S4. Thus π is adjacent to v8 since {s4v4v6; v3, v8, π} 6= F̄ , and so π is adjacent to v5

since {s3v8v5; v7, v3, π} 6= F̄ . It follows that {s3v3v5; v6, π, v2} = F̄ , a contradiction.

So we may assume that π is nonadjacent to some s3 ∈ S3.

Subcase 1.c) π is adjacent to v11.

Since π is nonadjacent to s3, we have {πs2v11; s4, v7, s3} = F , a contradiction.

So we may assume that π is nonadjacent to v11.

Subcase 1.d) π is adjacent to v1. Since {πs2v1; s4, v5, s1} 6= F , π is adjacent to v5. Since

{πs4v6; s2, v2, s1} 6= F , π is nonadjacent to v6. So π is adjacent to v10 since {s2v5v7; v6, v10, π} 6=
F̄ . It follows that π is adjacent to v8 since {v7v8v10; s1, s3, π} 6= F , and thus π is adjacent to v12

since {πs4v8; s2, v12, s3} 6= F . Since {s4v12v2; v11, v4, π} 6= F̄ , π is adjacent to v4, and thus we

have {πv5v8; s3, v10, v4} = F̄ , a contradiction.

So we may assume hereafter that π is nonadjacent to some s2 ∈ S2.

Case 2. π is adjacent to each vertex in S3.

Since {s3v3v5; π, s1, s2} 6= F for any s1 ∈ S1, we can distinguish among the following three

subcases:

• Subcase 2.a) π is adjacent to each vertex in S1;

• Subcase 2.b) π is adjacent to v3;

• Subcase 2.c) π is adjacent to v5.

Let us deal with them separately.

Subcase 2.a) π is adjacent to each vertex in S1.

Since {s3v5π; v2, s2, s1} 6= F , π is nonadjacent to v5. Observe that π is nonadjacent to v11,

for otherwise, π is adjacent to v8 since {s3v11π; v8, s2, s1} 6= F . Thus {s4v8π; v2, v5, s1} = F , a

contradiction. Since {s1v7v9; π, v5, v11} 6= F , π is adjacent to v9. Since {s1v9π; v3, v11, s4} 6= F ,

π is adjacent to v3. Since π is adjacent to each vertex in S1∪S3∪{s4}, NS(π) 6= NS(vi) for any i

with 1 ≤ i ≤ 4. By Lemma 4(vii), π is nonadjacent to v4, and then we have {s3v3v2; v4, v11, π} =

F̄ , a contradiction.

So we may assume that π is nonadjacent to some s1 ∈ S1.

Subcase 2.b) π is adjacent to v3.

Observe that π is nonadjacent to v4, for otherwise, π is adjacent to v12 since {s4v4π; v12, s2, s3} 6=
F , and by Lemma 7 we have {v4πβ; v12, s2, v3} = F̄ , a contradiction. We claim that π is
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adjacent to v8; otherwise, since {s3v3v5; v4, v8, π} 6= F̄ , π is adjacent to v5. It follows that

{v3v4v5; s2, π, v2} = F̄ , a contradiction. So the claim is proved. Note that {s4v8v6; v7, v4, π} 6= F̄ ,

so π is adjacent to v6. Since NS(π) 6= NS(vi) for any i with 3 ≤ i ≤ 6 and π is adjacent

to both v3 and v6, by Lemma 4(vii), π is adjacent to neither of v4 and v5. Thus we get

{s4v4v6; v5, π, v2} = F̄ , a contradiction.

So we may assume that π is nonadjacent to v3.

Subcase 2.c) π is adjacent to v5.

Since {s3v5π; v9, s2, s4} 6= F , π is adjacent to v9, and thus we have {s3v9π; v3, v7, s4} = F , a

contradiction.

So we assume hereafter that π is nonadjacent to some vertex s3 ∈ S3.

Case 3. π is adjacent to v8.

Since {s4v8v6; v7, v4, π} 6= F̄ , π is adjacent to v4 or to v6. We distinguish between two

subcases accordingly.

Subcase 3.a) π is adjacent to v4.

We claim that π is nonadjacent to v3; otherwise, since NS(π) 6= NS(vi) for any i with

1 ≤ i ≤ 4, Lemma 4(vii) ensures that π is nonadjacent to v1. Since {v1v3v4; π, s2, s1} 6=
F̄ for any s1 ∈ S1, π is adjacent to each vertex in S1, and thus {πs1v3; s4, v7, s3} = F , a

contradiction. So the claim is justified. In view of {v3v4v6; s3, π, v7} 6= F , we see that π is

adjacent to v6, and thus π is adjacent to each vertex in S1 as {v3v4v6; π, s1, v2} 6= F̄ for any s1 ∈
S1. Since {s4v2v4; v3, π, v12} 6= F̄ , π is adjacent to v12. It follows that {v12s4π; v8, s1, v2} = F̄ ,

a contradiction.

Subcase 3.b) π is adjacent to v6, but nonadjacent to v4.

Since {s4v4v6; v5, π, v2} 6= F̄ , π is adjacent to v5. Note that {π, v5, v6, v8} induces a clique in

G and that NS(π) 6= NS(vi) for any i ∈ {5, 7, 8}. By Lemma 4(vii), we have NS(π) = NS(v6) =

S1 ∪ S4. Thus {s4v8π; v4, s3, s1} = F , a contradiction.

So we may assume hereafter that π is nonadjacent to v8.

Case 4. π is adjacent to v10.

Since {s4v10π; v2, s2, s1} 6= F for any s1 ∈ S1, π is adjacent to no vertex in S1. Observe that

π is nonadjacent to v9; otherwise, since NS(π) 6= NS(vi) for any i with 9 ≤ i ≤ 12, by Lemma
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4(vii), π is adjacent to none of v11 and v12. Thus {v9v10v11; s2, s3, π} = F̄ , a contradiction.

Since {s4v10v8; v9, v6, π} 6= F̄ , π is adjacent to v6. It follows that π is nonadjacent to v4,

for otherwise, π is adjacent to v5 as {v4v5v6; v8, π, s2} 6= F̄ . So {π, v4, v5, v6} is a clique and

NS(π) 6= NS(vi) for any i with 3 ≤ i ≤ 6, contradicting Lemma 4 (vii). Hence π is adjacent

to v5 since {s4v4v6; v5, π, v2} 6= F̄ . Since NS(π) 6= NS(vi) for any i with 3 ≤ i ≤ 6, by Lemma

4(vii) π is nonadjacent to v3. Hence {v3v5v6;π, s1, s3} induces an F̄ in G, a contradiction.

This completes the proof of our theorem. 2
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