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Abstract. The sheaf of differential operators on log-schemes is defined and studied.
Then logarithmic differential operators on compactified Jacobian of singular curves
are studied. In particular, logarithmic heat equation for theta functions is produced
geometrically.

Introduction

Let C → S be a proper flat family of stable curves, smooth over S0 = S r ∆.
One can associate a flat family f : SUC(r, d) → S0 of moduli spaces SUCs(r, d)
of semistable vector bundles of rank r and degree d with fixed determinant over
the curves Cs, and also a line bundle Θ on SUC(r.d) such that its restriction to
each fibre is the line bundle on SUCs(r, d) defined by the theta divisors. It is now
well known that for any positive integer k the direct image E0 := f∗Θk is a vector
bundle on S0 and have a flat projective connection, which is in fact given by the heat
operator on Θk. Our motivation is to understand geometrically the behaviours of
the operator when the curves degenerate to singular curves (See also [Hi], p. 350).
More precisely, we can formulate the question as following

Problem. For the family US0 → S0 of moduli spaces of semistable vector bundles
and the relative theta line bundle ΘS0 , find the ‘correct’ degeneration (US , ΘS) of
moduli spaces and theta line bundles (in other words, the ‘correct’ algeo-geometric
analogy of spaces of conformal blocks on singular curves) such that the direct image
of Θk

S is a vector bundle on S with a flat logarithmic projective connection.

When the curves degenerate to singular curves, the moduli spaces usally de-
generate to some singular varieties. The existence of a (projective) heat operator
requires in general some geometric properties for the variety. In this sense, it has
independent interests to figure out some global geometric properties that the de-
generation of moduli spaces may have. Then it becomes clear for the degeneration
of moduli spaces that we should work at least in log-geometry.

We first consider the problem in a general situation (forgeting moduli spaces).
Let f : X → S be a flat family of (reduced) normal crossing varieties of dimension
d, and X, S smooth. Assume that ∆ ⊂ S is a normal crossing divisor and Y :=
f−1(∆) ⊂ X is also a normal crossing divisor such that f : X r Y → S r ∆ is

smooth and (X, logY )
f−→ (S, log∆) is log smooth. Let L be a line bundle on X.

Then we defined the logarithmic analogies (see Definition 2.2 and Definition 2.3)
of (projective) heat operators of [GJ] and figured out the sufficient conditions (see
Theorem 2.1) of existence of a projective logarithmic heat operator on L over S,
which, similar to [GJ], gave a logarithmic projective connection on f∗L. In this step,
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we need a correct logarithmic analogy of sheaf of differential operators and have
to work in logarithmic algebraic geometry. We defined the sheaf of logarithmic
differential operators on a log scheme, which works well for the log schemes we
concern in this paper (see Proposition 2.1). These materials may be well known to
experts but I am not able to find a reference satisfying our requirements. Then we
checked the conditions in Theorem 2.1 for the rank one case, namely, we proved
that a family of moduli spaces of torsion free sheaves of rank one over nodal curves
satisfies the conditions in Theorem 2.1, thus there exists a projective logarithmic
heat operator on the relative theta line bundle Θk (see Theorem 3.1).

We developed the necessary technique tools, especially the sheaf of differential
operators in Section 1. Then, in Section 2, we figured out the sufficient conditions of
existence of a projective logarithmic heat operator (thus the conditions of existence
of the required projective logarithmic connection) in the general situation, and we
also gave some descriptions of the conditions. Finally, in Section 3, we verified the
conditions figured out in §2 for a family of generalized Jacobians (moduli spaces
of torsion free sheaves of rank one), and thus showed the existence of projective
logarithmic heat operator in this case.

Acknowledgements: This work was done during my stay at FB 6 Mathematik of
Universität Essen. I would like to express my hearty thanks to Prof. H. Esnault
and Prof. E. Viehweg for their hospitality and encouragements. I was benefited
from the stimulating discussions with them, which stimulated me to get Lemma 3.3
and Definition 1.3. The discussions with H. Clemens, I-Hsun Tsai, Kang Zuo, and
emails of Z. Ran, are very helpful. I thank them very much..

§1 Logarithmic schemes and logarithmic operators

In this preliminary section, we recall the so called logarithmic structures (or
log structures for simplicity) on schemes (see [KK]), and define the sheaves of
differential operators on logarithmic schemes. All monoids M are commutative
monoids with unit element and Mgp = {ab−1} is the associated group.

By a pre-log structure M on a scheme X, we mean a sheaf of monoids M on
the étale site Xet endowed with a homomorphism α : M → OX with respect to the
multiplication on OX . A morphism

f : X† := (X, M) → Y † := (Y, N)

of schemes with pre-log structures is defined to be a pair (f, h) of a morphism of
schemes f : X → Y and a homomorphism h : f−1(N) → M such that

f−1(N) h−−−−→ M
y

y
f−1(OY ) −−−−→ OX

is commutative. A pre-log structure (M, α) is called a logarithmic structure if

α−1(O∗X) ∼= O∗X via α

where O∗X denotes the group of invertible elements of OX . A morphism of schemes
with log structures is defined as a morphism of schemes with pre-log structures.
These schemes are called log schemes.
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For a pre-log structure (M, α) on X, one can define its associated log structure
(Ma, αa) by

Ma := (M ⊕O∗X)/P, αa(x, u) = u · α(x)

where P = {(x, α(x)−1) |x ∈ α−1(O∗X)}. Let f : X → Y be a morphism of schemes.
For a log structure M on X, we can define a log structure on Y called the direct
image of M , to be the fibre product of sheaves

f∗My
OY −−−−→ f∗OX

.

For a log structure N on Y , we define a log structure f∗N on X called the inverse
image of N to be the log structure associated to the pre-log structure

f−1(N) → f−1(OY ) → OX .

Definition 1.1. Let α : M → OX and β : N → OY be pre-log structures
and f : (X, M) → (Y,N) be a morphism of log schemes. Then the OX-module
Ω1

X/Y (log(M/N)) called logarithmic differential sheaf is defined to be the quotient
of

Ω1
X/Y ⊕ (OX ⊗Z Mgp)

(Ω1
X/Y is the usual relative differential module) divided by the OX-submodule gen-

erated locally by local sections of the following forms
(1) (dα(a), 0)− (0, α(a)⊗ a) with a ∈ M .
(2) (0, 1⊗ a) with a ∈ Image(f−1(N) h−→ M).

It is easily seen that if Ma and Na denote the associated log structures respec-
tively, we have

Ω1
X/Y (log(M/N)) = Ω1

X/Y (log(Ma/N)) = Ω1
X/Y (log(Ma/Na)).

We collect some easy facts in the following proposition which may be useful in the
paper.

Proposition 1.1. Let f : X → Y be a morphism of schemes, and Na the log
structure associated to a pre-log structure N on Y . Then

(1) f∗(Na) coincides with the log structure associated to the pre-log structure
f−1(N) → OX .

(2) If f : (X, Ma) → (Y, Na) is a morphism of log schemes such that

f−1(N) → M

is surjective, we have Ω1
X/Y (log(M/N)) = Ω1

X/Y (the usual relative differ-
ential sheaf).

(3) If we have a cartesian diagram of log schemes

(X ′,M ′)
f−−−−→ (X,M)

y
y

(Y ′, N ′) −−−−→ (Y, N),

we have an isomorphism f∗Ω1
X/Y (log(M/N)) ∼= Ω1

X′/Y ′(log(M ′/N ′)).
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Now we are going to introduce the sheaf of differential operators on general
log schemes although we need it only for some special log structures, we hope this
general treatment to be useful in the future. Fix a morphism X† = (X, M) → Y † =
(Y, N) of log schemes and denote the sheaf of OY -derivations of OX by TX/Y . We
write Ω1

X/Y (log) simply for Ω1
X/Y (log(M/N)), and

d̄ : OX
d−→ Ω1

X/Y → Ω1
X/Y (log)

denotes the canonical logarithmic derivation.

Definition 1.2. A derivation δ ∈ TX/Y is called a logarithmic derivation if there
exists a θ ∈ HomOX

(Ω1
X/Y (log),OX) such that

OX
δ−−−−→ OX

d̄

y θ

x
Ω1

X/Y (log) Ω1
X/Y (log)

is commutative.

Remark 1.1. The sheaf of logarithmic derivations, denoted by TX/Y (log), is a sub-
sheaf of TX/Y . By definition, we have a surjection

HomOX
(Ω1

X/Y (log),OX) → TX/Y (log)

u 7→ u ◦ d̄,

which is not injective in general since Ω1
X/Y (log) is not generated by {d̄f}f∈OX

.
However, we will see in Lemma 1.2 that for all the logarithmic structures we concern
in this paper the above surjection is actually an isomorphism.

Let EndOY
(OX) be sheaf of OY -linear maps and OX ⊂ EndOY

(OX) be the
subsheaf of maps multiplying by elements of OX . It is clear that EndOY

(OX) is
a sheaf of noncommutative rings, thus it has two OX -module structures (left and
right multipications).

Definition 1.3. The sheaf DX†/Y † ⊂ EndOY
(OX) of subrings generated by OX

and TX/Y (log) is called the sheaf of logarithmic differential operators on log scheme
X† = (X,M) over Y † = (Y, N). We will simply call it the sheaf of log differen-
tial operators. For any integer k > 0, we define inductively the sheaf of k-th log
differential operators:

D0
X†/Y † := OX ,

Dk
X†/Y † := {D ∈ DX†/Y † | [D, f ] ∈ Dk−1

X†/Y † , for any f ∈ OX}.

If Ω1
X/Y (log) is locally free, we can describe DX†/Y † locally. Let

dlog : OX ⊗Z Mgp → Ω1
X/Y (log)

be the surjection and choose locally t1, ..., tr ∈ M such that {dlog(ti)}1≤i≤r is an
OX -base of Ω1

X/Y (log). Let fi = α(ti) ∈ OX (i = 1, ..., r), where α : M → OX
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is the log structure. Then there exists locally a system of generators {∂i}1≤i≤r of
TX/Y (log) such that

∂i(fj) =
{

fi j = i,

0 j 6= i.

All [∂i, ∂j ] vanish on the subring O′ ⊂ OX generated by f1, ..., fr and OY , which
means that [∂i, ∂j ] are derivations of OX over O′, thus [∂i, ∂j ] vanish on OX since
Ω1
OX/O′ is a torsion sheaf. Therefore any local section D ∈ DX†/Y † can be expressed

as a finite sum

(1.1) D =
∑

λβ1,...,βr
∂β1
1 · · · ∂βr

r .

We introduce a notation [D, a1 ? · · · ? an] for any local section D ∈ DX†/Y † and
a1, ..., an ∈ OX . The [D, a1 ? · · · ? an] ∈ DX†/Y † is defined inductively by

[D, a1 ? · · · ? an] := [[D, a1 ? · · · ? an−1], an].

If a1 = · · · = an, we write [D, a1 ? · · · ? an] = [D, a?n
1 ], thus the notation [D, a?i1

1 ?

a?i2
2 ? · · · ? a?ik

k ] is clear. Notice that [∂i, fj ] = 0 for i 6= j, one checks easily that

[∂β1
1 · · · ∂βr

r , f?βi

i ] = ∂β1
1 · · · ∂βi−1

i−1 · [∂βi

i , f?βi

i ] · ∂βi+1
i+1 · · · ∂βr

r .

Thus [∂β1
1 · · · ∂βr

r , f?β1
1 ? · · · ? f?βr

r ] = [∂β1
1 , f?β1

1 ] · · · [∂βr
r , f?βr

r ]. One computes that
[∂βi

i , f?βi

i ] = (βi!)f
βi

i and [∂ki
i , f?βi

i ] = 0 if ki < βi. For any D ∈ Dk
X†/Y † , let

λα1,...,αr∂
α1
1 · · · ∂αr

r be the first term of D in (1.1) (namely α1 ≥ β1, ..., αr ≥ βr and
at least one inequality is strict). Then

[D, f?α1
1 ? · · · ? f?αr

r ] = λα1,...,αr [∂
α1
1 · · · ∂αr

r , f?α1
1 ? · · · ? f?αr

r ]

= (α1!) · · · (αr!)λα1,...,αrf
α1
1 · · · fαr

r .

If α1 + · · ·+ αr > k, then [D, f?α1
1 ? · · · ? f?αr

r ] = 0 by definition of Dk
X†/Y † , thus

(1.2) λα1,...,αr · fα1
1 · · · fαr

r = 0.

Proposition 1.2. Let Gri(DX†/Y †) = Di
X†/Y †/Di−1

X†/Y † and T (Gr1(DX†/Y †)) be
the tensor algebra. Then

(1) The symbol map σ : Gr1(DX†/Y †) → TX/Y (log), defined by σ(D)(f) =
[D, f ](1), is an isomorphism.

(2) DX†/Y † =
⋃∞

i=0Di
X†/Y † , Di

X†/Y † · Dj
X†/Y † ⊂ Di+j

X†/Y † and f−1(OY ) is in
the center of DX†/Y † .

(3) The left and right OX-module structures on Gri(DX†/Y †) coincide
(4) The natural map

T (Gr1(DX†/Y †)) → Gr(DX†/Y †) :=
∞⊕

i=0

Gri(DX†/Y †)

is surjective.
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Proof. One checks that σ(D) is a derivation of OX . To see it factorizing through
d̄ : OX → Ω1

X/Y (log), it is enough to show that for any m ∈ M there exists a
unique θ(dlog(m)) ∈ OX such that σ(D)(α(m)) = α(m)θ(dlog(m)), which can be
checked by using the fact that D is a map composed by logarithmic derivations.

The proof of others is easy, we will omit it but just remark that we are not able
to claim the natural map in (4) induces surjections

T i(Gr1(DX†/Y †)) → Gri(DX†/Y †).

A reduced scheme Y is called a normal crossing variety of dimension d if the com-
pletion of local ring OY,y at each point y is isomorphic to C{x0, ..., xd}/(x0 · · ·xr)
for some r = r(y) such that 0 ≤ r ≤ d. Now we discuss the log structures on nor-
mal crossing varieties and on smooth varieties induced by normal crossing divisors.
These are the only log structures we will concern in this paper.

Lemma 1.1. Let f : X → S be a flat family of (reduced) normal crossing varieties
of dimension d, and X, S smooth. Assume that ∆ ⊂ S is a normal crossing divisor
and Y := f−1(∆) ⊂ X such that f : X r Y → S r ∆ is smooth. Then, for any
x ∈ X, we can choose isomorphisms

ÔX,x
∼= C{x1, ..., xd+1, ..., xd+m}, ÔS,f(x)

∼= C{π1, ..., πm}

such that
f ] : C{π1, ..., πm} → C{x1, ..., xd+1, ..., xd+m}

is a C-algebra homomorphism with

f ](π2) = xd+2, . . . , f ](πm) = xd+m

and the local equation of ∆ at f(x) is

πi1 · πi2 · · ·πis = 0.

Proof. Let ÔS,f(x)
∼= C{π1, ..., πm} and ÔX,x

∼= C{z1, ..., zd+m}. Then, by defini-
tion,

ϕ :
C{y1, ..., yd+1}
(y1 · · · yd+1)

∼= C{z1, ..., zd+m}
(f ](π1), ..., f ](πm))

.

We can assume that r > 1 (otherwise, f is smooth at x, the lemma is clear). Let

ϕ(ȳi) = ϕi(z1, ..., zd+m) ∈ C{z1, ..., zd+m}
(f ](π1), ..., f ](πm))

,

we can write ϕi(z1, ..., zd+m) =
∑d+m

j=1 aijzj + ϕ≥2
i , where ϕ≥2

i denotes the part of
ϕi(z1, ..., zd+m) with order ≥ 2. Then

∂(ϕ1, ..., ϕd+1)
∂(z1, ..., zd+m)

|(0,...,0)=




a11 . . . a1 d+m

...
. . .

...
ad+1 1 . . . ad+1 d+m
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has rank d + 1. Otherwise, there is 0 6= (k1, ..., kd+1) ∈ Cd+1 such that

d+1∑

i=1

kiϕi(z1, ..., zd+m) =
d+1∑

i=1

kiϕ
≥2
i ∈ (z1, ..., zd+m)2,

which implies that

d+1∑

i=1

kiȳi = ϕ−1(
d+1∑

i=1

kiϕi(z1, ..., zd+m)) ∈ (ȳ1, ..., ȳd+1)2.

Thus there is g(y1, ..., yd+1) ∈ (y1, ..., yd+1)2 such that

d+1∑

i=1

kiyi − g(y1, ..., yd+1) ∈ (y1 · · · yr),

which is impossible since r > 1. Replaceing some zj1 , ..., zjd+1 by ϕ1(z1, ..., zd+m),
..., ϕd+1(z1, ..., zd+m), we can assume that

ϕ :
C{y1, ..., yd+1}
(y1 · · · yd+1)

∼= C{z1, ..., zd+m}
(f ](π1), ..., f ](πm))

such that ϕ(ȳi) = z̄i (i = 1, ..., d + 1). Let

ϕ−1(z̄d+j) = gj(y1, ..., yd+1) ∈ C{y1, ..., yd+1}
(y1 · · · yr)

,

then zd+j − gj(z1, ..., zd+1) ∈ (f ](π1), ..., f ](πm)). If we write that (for j = 2, ...,m)

zd+j − gj(z1, ..., zd+1) =
m∑

i=1

ajif
](πi) + higher order terms,

then



1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 =




a21 . . . a2 m
...

. . .
...

am 1 . . . am m


 · ∂(f ](π1), ..., f ](πm))

∂(zd+2, ..., zd+m)
|(0,...,0) .

Thus
∂(f ](π1), ..., f ](πm))

∂(zd+2, ..., zd+m)
|(0,...,0)

has rank m− 1, and we can choose the isomorphism

ÔX,x
∼= C{x1, ..., xd+1, ..., xd+m}

such that f ](π2) = xd+2, ..., f ](πm) = xd+m by changing the order of π1, ..., πm.
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We are not able to prove in Lemma 1.1 that Y = f−1(∆) is a normal crossing
divisor in X even if each fibre is a normal crossing variety. Assume that Y is a
normal crossing divisor, we have canonical log structures on X and S

logY = {g ∈ OX | g is invertible outside Y } ⊂ OX

log∆ = {g ∈ OS | g is invertible outside ∆} ⊂ OS .

These are fine log structures, and if one writes locally that

Y =
r⋃

i=1

{xi = 0} ∆ =
s⋃

i=1

{πi = 0},

then logY and log∆ are associated to the pre-log. structures ([KK]):

Nr → OX

(ni)1≤i≤r 7→
∏

xni
i ,

Ns → OS

(ni)1≤i≤s 7→
∏

πni
i .

For the local descriptions and properties of Ω1
S(log∆) and Ω1

X(logY ), we refer to
[EV1] and [EV2]. We will use Ω1

X/S(logY ) to denote Ω1
X/S(logY/∆).

Proposition 1.3. Let f : X → S be a flat family of normal crossing varieties of
dimension d, X and S be smooth. Assume that Y := f−1(∆) is a normal crossing
divisor such that

f : X r Y → S r∆

is smooth. Then we have the associated exact sequence

0 → f∗Ω1
S(log∆)

j−→ Ω1
X(logY ) → Ω1

X/S(logY ) → 0,

and the following are equivalent

(1) (X, logY )
f−→ (S, log∆) is log smooth.

(2) The image of j is locally a direct summand.
(3) For any singular point x ∈ X of f , we can choose coordinates

ÔS,f(x)
∼= C{π1, ..., πm} ↪→ C{x1, ..., xd+1, π2, ..., πm} ∼= ÔX,x

such that π1 = x1 · · ·xr for some 1 ≤ r ≤ d + 1 and

π1 · π2 · · ·πs = 0

is the local equation of ∆ at f(x).
(4) Ω1

X/S(logY ) is locally free.

Proof. The map j has to be injective since it is injective at the generic point of S
and Ω1

X/S(log∆) is locally free.
The (1) ⇔ (2) follows the Proposition (3.12) of [KK], and (2) ⇔ (4) is obvious.

We prove that (3) ⇔ (4). Firstly, (3) ⇒ (4) is clear since Ω1
X/S(logY ) is locally

isomorphic to
ÔX,x{dx1, ..., dxd+1, e1, ..., er}

(dx1 − x1e1, ..., dxr − xrer, e1 + · · ·+ er)
,
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which is a free module generated by { 1
x1

dx1, ...,
1

xr−1
dxr−1, dxr+1, ..., dxd+1}. To

prove (4) ⇒ (3), we only need to show that local equation of ∆ is divisible by π1

(assume that we choose the coordinates as in Lemma 1.1). If it is not so, we can
assume the local equation of ∆ to be

π2 · · ·πs = 0.

Then, as in the Lemma 1.1, f ](π2 · · ·πs) = xd+2 · · ·xd+s is the local equation of Y
at x, and Ω1

X/S(logY ) is locally isomorphisc to

ÔX,x{dx1, ..., dxd+1}∑d+1
i=1

∂f](π1)
∂xi

dxi

.

It is not locally free except one of ∂f](π1)
∂xi

is invertible, which means that f is smooth
at x. But (3) is clear at this case.

Let Xs (s ∈ ∆) be a fibre of f : X → S, then Xs is a normal crossing variety with
log structure M := (logY )|Xs

α−→ OXs such that X†
s := (Xs, M) is a log smooth

variety. We will describe M locally and to show how it gives a log structure in the
sense of [KN].

For x ∈ Xs a singular point of Xs, there is a neighbourhood Uλ ⊂ X of x and
holomorphic functions xλ

i ∈ OX(Uλ) such that

Uλ → Cd+m

p 7→ (xλ
1 (p), ..., xλ

d+m)

is an open embedding and Xs ∩ Uλ ⊂ Uλ is defined by

xλ
1 · · ·xλ

r = 0, xλ
d+2 = · · · = xλ

d+m = 0,

Y ∩ Uλ is defined by xλ
1 · · ·xλ

r · xλ
d+i1

· · ·xλ
d+is

= 0, for some 1 < r ≤ d + 1 and
2 ≤ i1 < · · · < is ≤ m. The log structure logY |Uλ

on Uλ is associated to the pre-log
structure

Nr+s → OUλ

(n1, ..., nr, nd+i1 , ..., nd+is) 7→ (xλ
1 )n1 · · · (xλ

r )nr · (xλ
d+i1)

nd+i1 · · · (xλ
d+is

)nd+is .

Let zλ
i = xλ

i |Xs∩Uλ
∈ OXs(Xs ∩ Uλ), then M |Xs∩Uλ

is associated the pre-log
structure

Nr ⊕ Ns = Nr+s υ−→ OUλ∩Xs

(n1, ..., nr, nd+i1 , ..., nd+is) 7→ (zλ
1 )n1 · · · (zλ

r )nr · (zλ
d+i1)

nd+i1 · · · (zλ
d+is

)nd+is .

Clearly ker(υ) = Ns and υ∗(O∗Uλ∩Xs
) = {(0, ..., 0) ∈ Nr+s}, so M |Xs∩Uλ

= Nr+s ⊕
O∗Uλ∩Xs

and αλ : M |Xs∩Uλ
→ OUλ∩Xs is defined by αλ(~n, g) = υ(~n) · g. Thus we

get a partial open cpvering {Vλ := Uλ ∩Xs} of Xs containing the singular locus of
Xs and systems of holomorphic functions

z
(λ)
i := αλ(ei, 1) ∈ OXs(Vλ),
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where i = 1, ..., rλ and ei = (0, ..., 1, ..., 0) ∈ Nrλ+s. These functions satisfy
(1) There is an isomorphism ϕλ from Vλ to an open neighborhood of (0, ..., 0)

of the variety

{(x1, ..., xd+1) ∈ Cd+1 |x1 · · ·xrλ
= 0}

such that ϕ∗λ(xj) = z
(λ)
j for 1 ≤ j ≤ rλ.

(2) If Vλ ∩ Vµ 6= (rλ = rµ at this case), then there exist invertible holomorphic
functions u

(λµ)
j (1 ≤ j ≤ rλ) on Vλ ∩ Vµ and a permutation σ ∈ Srλ

such
that

z
(λ)
σ(j) = u

(λµ)
j z

(µ)
j and u

(λµ)
1 · · ·u(λµ)

rλ
= 1 on Vλ ∩ Vµ.

Thus we have a log atlas in the sense of [KN]. To check (2), noting that

Y =
rλ⋃

i=1

{xλ
i = 0} ∪

s⋃

k=1

{xλ
d+ik

= 0}

=
rλ⋃

i=1

{xµ
i = 0} ∪

s⋃

k=1

{xµ
d+ik

= 0}

on Uλ ∩ Uµ, we have σ ∈ Srλ+s and invertible holomorphic functions u
(λµ)
j ∈

OX(Uλ ∩ Uµ) such that
xλ

σ(j) = u
(λµ)
j xµ

j .

Since xλ
d+ik

= xµ
d+ik

= 0 on Xs∩Uλ∩Uµ, we have σ(j) ∈ {1, ..., rλ} if j ∈ {1, ..., rλ}.
On the other hand, for fixed (π1, ..., πm) = ms, we have π1 = xλ

1 · · ·xλ
rλ

= xµ
1 · · ·xµ

rλ
,

thus u
(λµ)
1 · · ·u(λµ)

rλ = 1. The restrictions of {u(λµ)
j } to Xs∩Uλ∩Uµ give the required

functions in (2).

Lemma 1.2. For the smooth variety X with log structure logY given by a normal
crossing divisor Y , and for the normal crossing variety Xs with log structure in the
sense of [KN] (in particular, for logY |Xs), the surjections

Ω1
X/S(logY )∗ → TX/S(logY )

u 7→ u ◦ d̄

Ω1
Xs

(log)∗ → TXs(log)

u 7→ u ◦ d̄

are isomorphisms, where E∗ denotes the dual of E.
Proof. It is enough to check the injectivity of the above morphisms, which is a local
problem. Thus we may assume that

OXs =
C[[x1, ..., xr, ..., xn]]

(x1 · · ·xr)
, Ω1

Xs
(log) =

OXs{ d̄x1
x1

, ..., d̄xr

xr
, d̄xr+1, ..., d̄xn}

( d̄x1
x1

+ · · ·+ d̄xr

xr
)

.

For any u : Ω1
Xs

(log) → OXs such that u(d̄f) = 0 for all f ∈ OXs , we need to show
that for i = 1, ..., r

āi := u(
1
xi

d̄xi) = 0.
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Firstly, ai = bi(x1 · · · x̂i · · ·xr) for some bi ∈ C[[x1, ..., xn]] since āix̄i = u(d̄xi) = 0.
Secondly, a1 + · · ·+ ar is divisible by x1 · · ·xr since

ā1 + · · ·+ ār = u(
1
x1

d̄x1 + · · ·+ 1
xr

d̄xr) = 0.

These facts imply that bi is dvisible by xi (i = 1, ..., r), which means all āi are zero.
When X is a smooth variety, local ring (analytic) at any point of X is integral,

the injectivity is obvious from the above proof.

Thus for a logarithmic derivation θ, we will write < θ, · > denoting the unique
element of Ω1

Xs
(log)∗ such that < θ, d̄a >= θ(a).

Proposition 1.4. Let W ⊂ Xs be the singular locus of Xs and IW ⊂ OXs the
ideal sheaf of W . Then every local section D ∈ Dk

X†
s

can be expressed into

D =
∑

β1+···+βd≤k

λβ1,...,βd
∂β1
1 · · · ∂βd

d

for a local basis ∂1, ..., ∂d of TXs(log) and D(IW ) ⊂ IW . In particular, we have
the canonical exact sequence

(1.3) 0 → Dk−1

X†
s
→ Dk

X†
s

σk−→ SkTXs(log) → 0,

where SkTXs(log) is the subsheaf of symmetric tensors of T k(TXs(log)) and σk will
be defined in the proof.

Proof. Locally, ÔXs,x = C{x1, ..., xd+1}/(x1 · · ·xr), and TXs(log) is locally gener-
ated by

x1
∂

∂x1
, ..., xr

∂

∂xr
,

∂

∂xr+1
, ...,

∂

∂xd+1

with a relation
x1

∂

∂x1
+ · · ·+ xr

∂

∂xr
= 0.

If we take the local basis ∂1, ..., ∂d of TXs(log) to be

∂1 = x1
∂

∂x1
, ..., ∂r−1 = xr−1

∂

∂xr−1
, ∂r =

∂

∂xr+1
, ..., ∂d =

∂

∂xd+1
,

one can check that ∂αi
i = xigi(xi,

∂
∂xi

) when αi > 0 and 1 ≤ i < r, where gi(x, y)
is a polynoimal. Thus the first term of (1.1) becomes into

λα1,...,αd
∂α1
1 · · · ∂αd

d = λα1,...,αd
xi1 · · ·xit · gi1 · · · git · ∂αr

r · · · ∂αd

d ,

and the equality (1.2) becomes into λα1,...,αd
x

αi1
i1

· · ·xαit
it

= 0, where αi1 , ..., αit are
nonzero integers of α1, ..., αr−1. This implies that λα1,...,αd

is divisible by all xi

with i ∈ {1, ..., r} r {i1, ..., it}, namely λα1,...,αd
∂α1
1 · · · ∂αd

d = 0, which means that
any D ∈ Dk

X†
s

can be expressed into

D =
∑

β1+···+βd≤k

λβ1,...,βd
∂β1
1 · · · ∂βd

d .
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On the other hand, IW is locally generated by x1···xr

xi
(i = 1, ..., r), and

∂j(
x1 · · ·xr

xi
) =

{
0, if j = i or j ≥ r
x1···xr

xi
. if i 6= j < r

Thus D(IW ) ⊂ IW . Now we see that the natural map in Proposition 1.2 (4)
induces isomorphisms (it is surjective by the above proof, and injective since it is
generically injective and Gr1(DX†/Y †) locally free)

Sk(Gr1(DX†/Y †)) → Grk(DX†/Y †).

For any local section D ∈ Dk
X†

s
, let D<k denote the lower order part and write

D = D<k +
∑

β1+···+βd=k

λβ1,...,βd
∂β1
1 · · · ∂βd

d ,

D(ω1, ..., ωk) =
∑

β1+···+βd=k

λβ1,...,βd




β1∏
1

< σ(∂1), ωi > · · ·
βd∏

βd−1+1

< σ(∂d), ωi >




where ω1, ..., ωk are elements of Ω1
Xs

(log). The symbol σk(D) of D as a symmetric
function on ⊗kΩ1

Xs
(log) is defined to be

σk(D)(ω1, ..., ωk) =
∑

τ∈Sk

D(ωτ(1), ..., ωτ(k)).

This gives the exact sequence (1.3) and coincides the definition of [GJ] and [We] in
smooth case (see Remark 2.2.4 of [GJ]).

§2 Logarithmic heat operators and logarithmic connections

In this section, we generalize the definitions and arguments about heat operators
and connections in [GJ] and [We] to the logarithmic case. Our task here is to figure
out the conditions for the existence of a projective logarithmic heat operator.

Let f : X → S be a flat family of normal crossing varieties of dimension d
satisfying the assumpations of Proposition 1.3. Since X is smooth, the (1.2) will
imply that λα1,...,αr = 0. Thus, for any local section D ∈ Dk

X†/S† , we have

D =
∑

β1+···+βr≤k

λβ1,...,βr∂
β1
1 · · · ∂βr

r .

Namely, in this case, we have (TX/S(logY ) isomorphic to the dual of Ω1
X/S(logY ))

Symi
OX

(TX/S(logY )) ∼= Gri(DX†/S†),

which means that we have the canonical exact sequences (Proposition 1.4)

(2.1)

0 −−−−→ Dk−1
X† −−−−→ Dk

X† −−−−→ SkTX(logY ) −−−−→ 0
x

x
x

0 −−−−→ Dk−1
X†/S† −−−−→ Dk

X†/S† −−−−→ SkTX/S(logY ) −−−−→ 0
x

x
x

0 0 0
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For convenience of applications, we summarize the discussions in section 1 for
the special logarithmic varieties we consider in this paper. Let f : Z → T denote
the logarithmic schemes: (1) Z = X and T = S with log structures logY and log∆,
(2) Z = Xs and T = {s} with log structures logY |Xs

and log∆|{s}. Let Λ and Λi

denote the corresponding sheaf of logarithmic differential operators on Z. Then,
according to [Si], the following proposition (which is the definition of [Si]) assures
that Λ is a sheaf of split almost polynomial rings of differential operators on
Z/T . Thus Λ and Λi are endowed with all the nice properties such as compatible
with base changes and Λ generated by Λ1 as a ring (see [Si]).

Proposition 2.1. The sheaf Λ of rings of logarithmic differential operators on Z
over T is a sheaf of OZ-algebra Λ over T with a filtration

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λi ⊂ · · · ,

which satisfies

(1) Λ =
⋃∞

i=0 Λi and Λi · Λj ⊂ Λi+j .
(2) The image of the morphism OZ → Λ is equal to Λ0.
(3) The image of f−1(OT ) in OZ is contained in the center of Λ.
(4) The left and right OZ-module structures on Gri(Λ) := Λi/Λi−1 are equal.
(5) The sheaves of OZ-modules Gri(Λ) are coherent.
(6) The sheaf of graded OZ-algebra Gr(Λ) :=

⊕∞
i=0 Gri(Λ) is generated by

Gr1(Λ) in the sense that the morphism of sheaves

Gr1(Λ)⊗OZ
· · · ⊗OZ

Gr1(Λ) → Gri(Λ)

is surjective.
(7) Λ0 = OZ , Gr1(Λ) is locally free and Gr(Λ) is the symmetric algebra on

Gr1(Λ).
(8) There is a morphism ξ : Gr1(Λ) → Λ1 of left OZ-modules splitting the

projection Λ1 → Gr1(Λ).

Definition 2.1. For any coherent OX-modules E1 and E2, we define

Dk
X†/S†(E1, E2) := E2 ⊗OX

Dk
X†/S† ⊗OX

E∗
1

Dk
X†(E1, E2) := E2 ⊗OX Dk

X† ⊗OX E∗
1 ,

where E∗
1 = HomOX

(E1,OX), and the notation Dk
X†/S† ⊗OX

E∗
1 (resp. Dk

X† ⊗OX

E∗
1 means that we use the right OX-module structure of Dk

X†/S† (resp. Dk
X†). If

E1 = E2 = E, we simply write Dk
X†/S†(E) = Dk

X†/S†(E1, E2) and Dk
X†(E) =

Dk
X†(E1, E2).

Let L be a line bundle on X, and define the subsheaf WX/S(L) of D2
X†(L) to be

WX/S(L) := D1
X†(L) +D2

X†/S†(L).
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Tensor firstly the sequence (2.1) on the right by L∗ as a right OX -module then on
the left by L as a left OX -module, we get the commutative diagram for k = 2

0 −−−−→ D1
X†(L) −−−−→ D2

X†(L) σ−−−−→ S2TX(logY ) −−−−→ 0
∥∥∥

x
x

0 −−−−→ D1
X†(L) −−−−→ WX/S(L) σ−−−−→ S2TX/S(logY ) −−−−→ 0
x

x
∥∥∥

0 −−−−→ D1
X†/S†(L) −−−−→ D2

X†/S†(L) σ−−−−→ S2TX/S(logY ) −−−−→ 0,

and the commutative diagram for k = 1

(2.2)

f∗TS(log∆)
x

0 −−−−→ OX −−−−→ D1
X†(L) σ1−−−−→ TX(logY ) −−−−→ 0

∥∥∥
x

x
0 −−−−→ OX −−−−→ D1

X†/S†(L) σ1−−−−→ TX/S(logY ) −−−−→ 0,

where the third vertical is the canonical exact sequence

(2.3) 0 → TX/S(logY ) → TX(logY ) → f∗TS(log∆) → 0.

Let ε : D1
X†(L) σ1−→ TX(logY ) → f∗TS(log∆) be the composition of canonical maps,

one can see easily from the diagram (2.2) that

ker(ε) = D1
X†/S†(L).

Thus we have a surjection ε̄ : WX/S(L) → f∗TS(log∆) such that the following
diagram is commutative

(2.4)

f∗TS(log∆) f∗TS(log∆)

ε

x ε̄

x
D1

X†(L) i−−−−→ WX/S(L) σ−−−−→ S2TX/S(logY ) −−−−→ 0
x

x
∥∥∥

D1
X†/S†(L) −−−−→ D2

X†/S†(L) σ−−−−→ S2TX/S(logY ) −−−−→ 0

Let WX/S(L) σ⊕ε̄−−→ S2TX/S(logY ) ⊕ f∗TS(log∆) be the surjection defined by σ ⊕
ε̄(D) := σ(D)⊕ ε̄(D) for any local section D ∈ WX/S(L). Then we have the exact
sequence

(2.5) 0 → D1
X†/S†(L) →WX/S(L) σ⊕ε̄−−→ S2TX/S(logY )⊕ f∗TS(log∆) → 0.
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Definition 2.2. A logarithmic heat operator on L over S is an OS-module homo-
morphism

H : TS(log∆) → f∗WX/S(L) ⊂ D2
X†(L)

such that

(2.6) TS(log∆) H−→ f∗WX/S(L)
f∗ε̄−−→ TS(log∆)

is the identity map. A logarithmic heat operator H on L is called flat if

H([θ1, θ2]) = [H(θ1),H(θ2)]

for any local sections θ1, θ2 ∈ TS(log∆)(U).

Any OS-linear map H̃ : TS(log∆) → f∗WX/S(L)/OS has local lifting. Namely,
there exists an open covering

⋃
U = S such that for each open set U there is an

OU -linear map HU : TS(log∆) → f∗WX/S(L)|U which reduces to H̃|U .

Definition 2.3. A projective logarithmic heat operator H̃ on L over S is an OS-
linear map

H̃ : TS(log∆) → f∗WX/S(L)
OS

such that any local lifting HU is a logarithmic heat operator on L|f−1(U) over U .
H̃ is called projectively flat if any of the local lifts HU satisfies

HU ([θ1, θ2]) = hθ1,θ2 + [HU (θ1),HU (θ2)]

for some function hθ1,θ2 ∈ OS(V ), where V ⊂ U is any open set of U and θ1, θ2 ∈
TS(log∆)(V ).

In the following, we will figure out the conditions under which a projective loga-
rithmic heat operator on L over S do exist. As the same as in [GJ], one can see that
a (projective) logarithmic heat operator of L over S gives a (projective) logarithmic
connection on f∗L. Firstly, it is clear that the map

f∗σ : f∗WX/S(L) → f∗S2TX/S(logY )

factors through f∗WX/S(L)/OS , thus we have the map

ρH̃ : TS(log∆) H̃−→ f∗WX/S(L)/OS
f∗σ−−→ f∗S2TX/S(logY ),

which is called the symbol of H̃. By taking the direct image of

(2.7) 0 −→ OX −→ D1
X†/S†(L) σ1−→ TX/S(logY ) −→ 0,

we have the connecting map f∗TX/S(logY )
∪[L]−−−→ R1f∗OX and the map

R1f∗D1
X†/S†(L)

R1f∗σ1−−−−−→ R1f∗TX/S(logY )

induced by the symbol map D1
X†/S†(L) σ1−→ TX/S(logY ). Similarly, from

(2.8) 0 −→ D1
X†/S†(L) −→ D2

X†/S†(L) σ−→ S2TX/S(logY ) −→ 0,

we have the connecting map f∗S2TX/S(logY ) c−→ R1f∗D1
X†/S†(L) and thus

µL : f∗S2TX/S(logY ) c−→ R1f∗D1
X†/S†(L)

R1f∗σ1−−−−−→ R1f∗TX/S(logY ).

¿From the canonical exact sequence (2.3), we get the connecting map

κX/S : TS(log∆) → R1f∗TX/S(logY ),

which is the Kodaira-Spencer map of the family X/S.
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Theorem 2.1. Let f : X → S, ∆ and Y = f−1(∆) satisfy the assumptions of
Proprosition 1.3 and f∗OX = OS, L a line bundle on X. If there exists a symbol

ρ : TS(log∆) → f∗S2TX/S(logY )

such that the following two conditions hold
(1) µL · ρ + κX/S = 0,

(2) f∗TX/S(logY )
∪[L]−−−→ R1f∗OX is an isomorphism.

Then there exists a unique projective logarithmic heat operator

H̃ : TS(log∆) → f∗WX/S(L)/OS

such that ρH̃ = ρ. In particular, there exists a projective logarithmic connection on
f∗L.

Proof. It is enough to prove that for any θ ∈ TS(log∆)(U) there exists a unique
lifting of ρ(θ) ⊕ θ to f∗WX/S(L)(U) up to a section of OS(U). Thus we consider
the commutative diagram

TX/S(logY ) −−−−→ WX/S(L)

OX

σ⊕ε̄−−−−→ S2TX/S(logY )⊕ f∗TS(log∆)

σ1

x
x

∥∥∥
D1

X†/S†(L) −−−−→ WX/S(L) σ⊕ε̄−−−−→ S2TX/S(logY )⊕ f∗TS(log∆)
x

x
OX OX ,

which gives the induced commutative diagram

R1f∗OX R1f∗OX

∪[L]

x ν

x
f∗TX/S(logY ) −−−−→ f∗

WX/S(L)

OX
−−−−→ f∗S2TX/S(logY )⊕ TS(log∆) o−−−−→

x
x

∥∥∥
f∗D1

X†/S†(L) −−−−→ f∗WX/S(L) −−−−→ f∗S2TX/S(logY )⊕ TS(log∆) −−−−→
x

x
f∗OX f∗OX ,

where f∗S2TX/S(logY )⊕TS(log∆) o−→ R1f∗TX/S(logY ) is the connecting map. We
claim that

o(ρ(θ)⊕ θ) = µL · ρ(θ) + κX/S(θ).

If it is true, by the condition (1), we will have a lifting H̃U (θ) ∈ f∗
WX/S(L)

OX
(U). By

the surjectivity in condition (2), there exists a section s ∈ f∗TX/S(logY )(U) such
that s ∪ [L] = ν(H̃U (θ)). Thus there exists a HU (θ) ∈ f∗WX/S(L)(U) such that
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H̃U (θ) = H̃U (θ)− s, which is also a lifting of ρ(θ)⊕ θ. The injectivity in condition
(2) implies that such HU (θ) is unique up to a section of f∗OX(U) = OS(U). This
gives a unique projective logarithmic heat operator

H̃ : TS(log∆) → f∗WX/S(L)
OS

.

Now we show the claim by considering the following commutative diagrams

0 −−−−→ D1
X†/S† (L)

OX
−−−−→ WX/S(L)

OX

σ⊕ε̄−−−−→ S2TX/S(logY )⊕ f∗TS(log∆)
∥∥∥

x
x

0 −−−−→ D1
X†/S† (L)

OX
−−−−→ D2

X†/S† (L)

OX

σ−−−−→ S2TX/S(logY )

0 −−−−→ D1
X†/S† (L)

OX
−−−−→ WX/S(L)

OX

σ⊕ε̄−−−−→ S2TX/S(logY )⊕ f∗TS(log∆)
∥∥∥ i

x
x

0 −−−−→ D1
X†/S† (L)

OX
−−−−→ D1

X† (L)

OX

ε−−−−→ f∗TS(log∆)

σ1

y σ1

y
∥∥∥

0 −−−−→ TX/S(logY ) −−−−→ TX(logY ) −−−−→ f∗TS(log∆),

from which we have commutative diagrams for the connecting maps

f∗S2TX/S(logY )⊕ TS(log∆) o−−−−→ R1f∗
D1

X†/S† (L)

OX

∼= R1f∗TX/S(logY )
x

∥∥∥

f∗S2TX/S(logY )
µL−−−−→ R1f∗

D1
X†/S† (L)

OX

∼= R1f∗TX/S(logY )

and

f∗S2TX/S(logY )⊕ TS(log∆) o−−−−→ R1f∗
D1

X†/S† (L)

OX

∼= R1f∗TX/S(logY )
x

∥∥∥

TS(log∆)
κX/S−−−−→ R1f∗

D1
X†/S† (L)

OX

∼= R1f∗TX/S(logY ).

Thus the claim o(ρ(θ)⊕ θ) = µL · ρ(θ) + κX/S(θ) is indeed true.

Remark 2.1. From the proof, we see that the local lifting exists when the map in
condition (2) is surjective, and the injectivity was only used to assure the uniqueness
of the local lifting. Thus in some cases the map in condition (2) is only surjective
but one has a natural way to choose the lifting uniquely, we still have the heat
operator. For example, the map in [GJ] is zero but one can choose uniquely the
G-invariant lifting.
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We are now going to describe the maps ∪[L] and µL. For any s ∈ ∆, {s} =
Speck(s) has the induced log structure, we denote this logarithmic point by s†,
then the logarithmic fibre X†

s over s† is (Xs, logY |Xs
). Thus

Ω1
Xs

(log) = Ω1
X/S(logY )|Xs

, Dk
X†

s
= Dk

X†/S† |Xs

and, if the dimensions of H0(TXs
(log)), H0(S2TXs

(log)), H1(OXs
), H1(TXs

(log))
are constant (for s), then fibrewisely the maps ∪[L] and µL are the following maps

∪[Ls] : H0(TXs(log)) → H1(OXs)

µLs : H0(S2TXs(log)) → H1(TXs(log))

where Ls = L|Xs and ∪[Ls] is the connecting map of

(2.9) 0 → OXs → D1
X†

s
(Ls)

σ1−→ TXs(log) → 0

and µLs is the connecting map H0(S2TXs(log)) → H1(D1
X†

s
(Ls)) of

(2.10) 0 → D1
X†

s
(Ls) → D2

X†
s
(Ls)

σ2−→ S2TXs(log) → 0,

composing with the natural map H1(D1
X†

s
(Ls))

H1(σ1)−−−−→ H1(TXs(log)).
Let [Ls] ∈ H1(Ω1

Xs
(log)) denote the extension class of (2.9), then the map ∪[Ls]

means the cup product. In general, for any class cl ∈ H1(Ω1
Xs

(log)), one has the
natural cup product map

H0(⊗kTXs(log)) ∪cl−−→ H1(⊗k−1TXs(log))

and for any ω ∈ H0(SkTXs(log)) the symbol ω ∪ cl means that we consider ω as a
symmetric tensor. For any line bundle L on Xs, we define the Chern class c1(L) ∈
H1(Ω1

Xs
(log)) of L to be the image of usual Chern class of L under the natural map

H1(Ω1
Xs

) → H1(Ω1
Xs

(log)). More precisely, let d̄ : OXs

d−→ Ω1
Xs

→ Ω1
Xs

(log) and
dl : O∗Xs

→ Ω1
Xs

(log) be defined as dl(u) = 1
u d̄u. Then dl is a morphism of abelian

sheaves and induces a morphism

H1(O∗Xs
) c1−→ H1(Ω1

Xs
(log))

of abelian groups. The Chern class c1(L) of L is defined to be the image of this
morphism. With these notation, we have

Proposition 2.2. The extension class [Ls] ∈ H1(Ω1
Xs

(log)) of

(2.11) 0 → OXs → D1
X†

s
(Ls)

σ1−→ TXs(log) → 0

is equal to the Chern class c1(Ls) and for any ω ∈ H0(S2TXs(log)), we have

µLs(ω) = −ω ∪ c1(Ls) + µOXs
(ω).
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Proof. We check firstly the following descriptions about the symbol maps.
(1) If D is a local section of D1

X†
s
(Ls), its image σ1(D) ∈ TXs

(log) is determined
by the requirement, for all a ∈ OXs

and all s ∈ Ls

(2.12) < σ1(D), d̄a > ·s = σ1(D)(a) · s = D(a · s)− a ·D(s).

(2) If D is a local section of D2
X†

s
(Ls), its image σ2(D) ∈ S2TXs

(log) is charac-
terized by the formula, for all a, b ∈ OXs

and all s ∈ Ls

(2.13) σ2(D)(a, b) · s = D(ab · s)− a ·D(b · s)− b ·D(a · s) + ab ·D(s).

(1) is clear by the definition σ1(D)(a) · s = [D, a](1) · s = D(a · s) − a · D(s) in
Proposition 1.2 (1). To check (2), one can write D = D<2 +

∑
λij∂i∂j , where D<2

denotes the part with order smaller than 2. Then, by definition in Proposition 1.4,

< σ2(D), d̄a⊗d̄b > ·s := σ2(D)(a, b) = (
∑

λij [∂i, a][∂j , b]+
∑

λij [∂i, b][∂j , a])(1)·s.

Thus (2) is clear from the following computations

∑
λij [∂i, a][∂j , b] =

∑
λij∂ia∂jb−

∑
λija∂i∂jb−

∑
λij∂iab∂j +

∑
λija∂ib∂j

= Dab− aDb− bDa + abD + b[D<2, a]− [D<2, a]b

− [
∑

λij∂i[∂j , a], b]− [
∑

λij [∂i, b]∂j , a] +
∑

λij [∂i, b][∂j , a]

= Dab− aDb− bDa + abD −
∑

λij [∂i, b][∂j , a].

Let U = {Ui}i∈I be an affine open cover of Xs trivializing Ls and si : OUi
∼=

Ls|Ui , sj = uij · si on Uij = Ui ∩ Uj . Then c1(Ls) ∈ H1(Ω1
Xs

(log)) is given by the
1-cocycle

{ d̄uij

uij
} ∈ C1(U , Ω1

Xs
(log)).

The sequence (2.11) is locally splitting, and there exist morphisms of OUi-modoules

ρi : TXs(log)(Ui) → D1
X†

s
(Ls)(Ui)

such that σ1 ◦ ρi(θ) = θ for any θ ∈ TXs(log)(Ui). Let ρi(θ)(si) = ωi(θ) · si, then
ωi ∈ TXs(log)(Ui)∗ = Ω1

Xs
(log)(Ui) since ρi is a morphism of OUi-modules. For

any θ ∈ TXs(log)(Uij)

ρi(θ)(si)− ρj(θ)(si) =< θ, ωi − ωj +
d̄uij

uij
> ·si.

Thus the extension class of (2.11) is c1(Ls).
Given ω ∈ H0(S2TXs(log)), let Di ∈ H0(Ui,D2

X†
s
(OXs)) be the lifting of ωi =

ω|Ui , thus
{Dij}i<j = {Dj −Di}i<j ∈ C1(U ,D1

X†
s
(OXs)).
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Then µOXs
(ω) ∈ H1(TXs

(log)) is given by the 1-cocycle {vij} ∈ C1(U , TXs
(log)),

where vij ∈ H0(Uij , TXs
(log)) is the image σ1(Dij) of Dij = Dj −Di, namely, for

all a ∈ OXs
(Uij),

< vij , d̄a >= vij(a) = Dij(a)− aDij(1).

To compute µLs
(ω), we see that by definition D̃i = si⊗Di⊗s∗i ∈ H0(Ui,D2

X†
s
(Ls)

is a lifting of ωi, and thus D̃i(a · si) = Di(a) · si and

{D̃ij}i<j = {D̃j − D̃i}i<j ∈ C1(U ,D1
X†

s
(Ls)).

Then µLs(ω) ∈ H1(TXs(log)) is given by the 1-cocycle {ṽij} ∈ C1(U , TXs(log)),
where ṽij ∈ H0(Uij , TXs(log)) is the image σ1(D̃ij) of D̃ij , namely, for all a ∈
OXs(Uij), by using (2.13), we have

< ṽij , d̄a > ·sj = ṽij(a) = D̃ij(a · sj)− a · D̃ij(sj)

= Dj(a) · sj −Di(auij) · si − aDj(1) · sj + aDi(Uij) · si

= (vij(a)− < ω, d̄a⊗ d̄uij

uij
>) · sj .

Hence ṽij = vij − ω ∪ d̄uij

uij
and µLs(ω) = µOXs

(ω)− ω ∪ c1(Ls).

§3 Logarithmic operators on generalized Jacobians

In this section, we will verify the conditions in Theorem 2.1 for a family of
generalized Jacobians of stable curves, and thus show the existence of logarithmic
heat operator. Let (C, C∆) → (S, ∆) be a flat family of stable curves satisfying
the assumpations in Proposition 1.3, namely, S, C are regular schemes and ∆ a
(reduced) normal crossing divisor. It is well known there exists a projective S-
scheme f : J(C) → S such that for any s ∈ S the fibre J(C)s is the generalized
Jacobian J(Cs) of Cs.

Lemma 3.1. If (C, C∆) → (S, ∆) satisfies the assumpations of Proposition 1.3,
then so do f : J(C) → S.

Proof. By deformation theory of torsion free sheaves with rank one, for any point
y ∈ J(C) corresponds to a torsion free sheaf F on Cf(y) such that F is not locally
free at a double point x ∈ Cf(y), there are integers l1, l2 such that

ÔJ(C),y[[u1, ..., ul1 ]] ∼= ÔC,x[[v1, ..., vl2 ]].

Thus f : J(C) → S satisfies the assumpations in Proposition 1.3 if C/S satisfies
them. In particular, J(C) is regular and all fibres J(Cs) are normal crossing varieties.

For simplicity, we assume that all fibres Cs = C (s ∈ ∆) are irreducible and
smooth except one node x0 and the family has a rational section. We recall briefly
some facts about the so called generalized Jacobian Jd(C) (we write J(C) for
J0(C)) of a projective (singular) curve C of (arithmetic) genus g).
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The Jd(C) is defined to be the moduli space of rank one torsion free sheaves
with degree d. There is a natural ample line bundle

ΘJd(C) = detH∗(F)−1 ⊗ (detFy)d+1−g

called theta line bundle on Jd(C), where F is a universal family on C × Jd(C),
detH∗(F) is the determinant of cohomology and Fy denotes the restriction of F to
{y} × Jd(C) for a fixed smooth point y ∈ C. This construction can be generalized
to relative case, namely, for a family of curves C/T , one can construct a family of
generalized Jacobians Jd(C)/T and a line bundle Θ on Jd(C) such that each fibre
Jd(C)t is the generalized Jacobian Jd(Ct) and the restriction of Θ to Jd(C)t is the
theta line bundle ΘJd(Ct).

Let π : C̃ → C be the normalization and π−1(x0) = {x1, x2}, let P = P(Ex1⊕Ex2)
and Ex1 ⊕ Ex2 → O(1) → 0 be the universal quotient on P , where E is a univeral
line bundle over C̃ × Jd(C̃). We consider the diagram

P = P(Ex1 ⊕ Ex2)
φ−−−−→ Jd(C)

ρ

y
Jd(C̃)

where ρ is the natural projection, and φ is defined as follows: for any (L, q) :=
(L,Lx1 ⊕ Lx2

q−→ C) ∈ P , φ(L, q) is the kernel of π∗L
q−→ x0C→ 0.

Lemma 3.2. Let W ⊂ Jd(C) be the reduced subscheme of non-locally free sheaves
and D1, D2 be the sections of P

ρ−→ Jd(C̃) given by projections Ex1 ⊕ Ex2 → Ex1

and Ex1 ⊕ Ex2 → Ex2 . Then

(1) P
φ−→ Jd(C) is the normalization of Jd(C), and W is the non-normal locus

of Jd(C).
(2) φ−1(W ) = D1 + D2 and φ|Di : Di → W (i = 1, 2) are isomorphisms.
(3) For any integer k > 0, ΘP := φ∗(Θk

Jd(C)) = O(1)k⊗ ρ∗E−k
y ⊗ ρ∗Θk

Jd(C̃)
and

ρ∗O(1)k =
k⊕

j=0

Ej
x1
⊗ Ek−j

x2
.

Proof. This is the special case (rank one) of [NR] and [Su].

Lemma 3.3. Fix a line bundle L = OP1(1) and two points p1 = (1, 0), p2 = (0, 1)
of X = P1, which give a logarithmic structure on X. For any D ∈ H0(D1

X†(L)),
if there exist c ∈ C∗ and a nonzero section s ∈ H0(L) satisfying s(p2) = c · s(p1),
such that

D(s)(p2) = c ·D(s)(p1).

Then the symbol of D is trivial.

Proof. P1 is covered by V1 = P1 r {p2} = SpecC[x2
x1

] and V2 = P1 r {p1} =
SpecC[x1

x2
], and there is a global vector field ∂ ∈ H0(TX(−p1 − p2)) such that

∂1 := ∂|V1 = u
∂

∂u
, ∂2 := ∂|V2 = −v

∂

∂v
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where u = x2
x1

, v = x1
x2

= 1
u . The space H0(TX(−p1 − p2)) is generated by ∂.

We see that L|V1 = C[u] · x1 and L|V2 = C[v] · x2, thus any section s ∈ H0(L)
has the form

s1 := s|V1 = (a0 + a1u) · x1, s2 := s|V2 = (a1 + a0v) · x2,

where (a0, a1) = (s(p1), s(p2)) ∈ C2. Therefore, for any D ∈ H0(D1
X†(L)), there

exists (b0, b1) ∈ C2 such that

D(s)|V1 = (b0 + b1u) · x1, D(s)|V2 = (b1 + b0v) · x2.

If the symbol of D is k · ∂, by the definition of symbol, we have

D(s)|V1 = D(s1) = (a0 + a1u) ·D(x1) + ka1u · x1

D(s)|V2 = D(s2) = (a1 + a0v) ·D(x2)− ka0v · x2.

Thus D is determined by any given number D(1) ∈ C such that

D(x1) = D(1) · x1, D(x2) = (D(1) + k) · x2,

and one checks that for any given number D(1) ∈ C the above definition gives
indeed a global differential operator of L with symbol k · ∂. It is easy to see that
for any s ∈ H0(L) and c ∈ C∗

D(s)(p2)− c ·D(s)(p1) = (s(p2)− c · s(p1))D(1) + k · s(p2).

Thus, if there exist a nonzero s and c such that s(p2) = c · s(p1), we have

D(s)(p2)− c ·D(s)(p1) = ks(p2),

which is nonzero except k = 0 since s(p2) 6= 0 (otherwise s(p1) = 0 and s will have
at least two zero points).

The fact that X = Jd(C) is a degenerating fibre of flat family means that X is
more special than usual normal crossing varieties. For example, its cohomology has
low bound (h1(OX) ≥ g) and there is a logarithmic structure on it. Moreover, we
have

Proposition 3.1. Let X = Jd(C) be the moduli space of torsion free sheaves on
C with rank one and degree d, and L be the theta line bundle on X. Then for any
logarithmic structure on X in the sense of [KN] and any integer k > 0

H0(D1
X†(Lk)) ∼= C, H0(TX(log)) ∼= H1(OX) ∼= Cg.

Proof. It is enough to prove Proposition 3.1 for k = 1 since c1(Lk) = kc1(L) and
thus we have isomorphism D1

X†(L) ∼= D1
X†(Lk) by Proposition 2.2.

Local computation shows that φ∗Ω1
X(log) ∼= Ω1

P (log(D1 + D2)) and thus the
natural map TP † := TP (log(D1 + D2)) → φ∗TX(log) is an isomorphism, where
P † = (P, log(D1 + D2)), and the diagram

0 −−−−→ OP −−−−→ D1
P †(φ

∗L) −−−−→ TP † −−−−→ 0
∥∥∥

y
y

0 −−−−→ φ∗OX −−−−→ φ∗D1
X†(L) −−−−→ φ∗TX(log) −−−−→ 0
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implies that D1
P †(ΘP ) → φ∗D1

X†(L) is an isomorphism. Hence we have

0 −−−−→ φ∗OP −−−−→ φ∗D1
P †(ΘP ) −−−−→ φ∗TP † −−−−→ 0

x
x

x
0 −−−−→ OX −−−−→ D1

X†(L) −−−−→ TX(log) −−−−→ 0

Any operator D ∈ H0(D1
X†(L)) with nonzero symbol will give an operator D ∈

H0(D1
P †(ΘP )) with nonzero symbol σ(D) ∈ H0(TP †). It is easy to see that

D1
P †(ΘP ) ↪→ D1

P (ΘP ) ↪→ D1
P (ΘP )⊗O(D1) = O(D1)⊗D1

P (ρ∗L̃),

where O(D1) = O(1)⊗ ρ∗E−1
x1

and L̃ = ΘJd(C̃) ⊗ E−1
y ⊗ Ex1 , which is algebraically

equivalent to ΘJd(C̃). On the other hand, we have

0 −−−−→ OP −−−−→ D1
P (ρ∗L̃) −−−−→ TP −−−−→ 0

∥∥∥
y

y
0 −−−−→ ρ∗OJd(C̃) −−−−→ ρ∗D1

Jd(C̃)
(L̃) −−−−→ ρ∗TJd(C̃) −−−−→ 0

and Consider 0 → TP/Jd(C̃)(log) → TP † → ρ∗TJd(C̃), if the image of σ(D) in
H0(ρ∗TJd(C̃)) is nonzero, then the connecting map of

0 −→ O(D1)⊗ ρ∗OJd(C̃) −→ O(D1)⊗ ρ∗D1
Jd(C̃)

(L̃) −→ O(D1)⊗ ρ∗TJd(C̃) −→ 0

is not injective, which is impossible since the space

H0(O(D1)⊗ ρ∗D1
Jd(C̃)

(L̃))

= H0(D1
Jd(C̃)

(L̃))⊕H0(D1
Jd(C̃)

(L̃, L̃ ⊗ Ex2 ⊗ E−1
x1

))

and the space

H0(O(D1)⊗ ρ∗OJd(C̃)) = H0(OJd(C̃))⊕H0(OJd(C̃) ⊗ E−1
x1
⊗ Ex2)

have the same dimension. In fact, when Ex2 ⊗ E−1
x1

= OJd(C̃), they are two dimen-
sional spaces (see [We]), and if Ex2 ⊗ E−1

x1
6= OJd(C̃), one has

H0(Ex2 ⊗ E−1
x1

) = H0(E−1
x1
⊗ Ex2) = 0

since Ex2 ⊗ E−1
x1

is algebraically equivalent to zero, which implies that

H0(D1
Jd(C̃)

(L̃, L̃ ⊗ Ex2 ⊗ E−1
x1

)) = 0.

To see it, we tensor the exact sequence

0 → OJd(C̃) → D1
Jd(C̃)

(L̃) → TJd(C̃) → 0
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by Ex2 ⊗ E−1
x1

(as left modules) and use the fact that

Ex2 ⊗ E−1
x1
⊗ TJd(C̃) = (Ex2 ⊗ E−1

x1
)⊕g(C̃).

Thus if D ∈ H0(D1
X†(L)) has nonzero symbol, then D gives an operator D ∈

H0(D1
P †/Jd(C̃)

(ΘP )), which induces an operator D ∈ H0(D1
F †(L̃)) with nonzero

symbol for general fibre F = P1 of ρ : P → Jd(C̃) and the L̃ = OP1(1). By
using Lemma 3.3, we will show that it is impossible. In fact, for any fibre F , let
p1 = F ∩ D1, p2 = F ∩ D2. Since H0(X,L) has dimension 1 and any nonzero
section s ∈ H0(L) does not vanish on W , we can find a fibre F such that s(p1) 6= 0,
s(p2) 6= 0. Then we find a c := s(p2)/s(p1) and a nonzero s|F ∈ H0(OP1(1))
satisfying that s(p2) = c · s(p1). Since D has to induce a morphism L → L of
abelian group sheaves, D(s) ∈ H0(L) = C · s has to satisfy D(s)(p2) = c ·D(s)(p1),
which means that D has zero symbol by Lemma 3.3.

To see that H0(TX(log)) = H1(OX) = Cg, we remark that both spaces have at
least dimension g, then we only need to check that dimH1(OX) ≤ g. This is easy
to see by using

0 → OX → φ∗OP → OW → 0

and H1(φ∗OP ) = H1(OP ) = H1(ρ∗OP ) = H1(OJd(C̃)) = Cg−1.

Lemma 3.4. For any logarithmic structure on X = Jd(C) in the sense of [KN],
we have H0(S2TX(log)) = S2H0(TX(log)).

Proof. It is enough to show that

h0(S2TX(log)) := dimH0(S2TX(log)) ≤ dimS2H0(TX(log)) =
g(g + 1)

2
.

To prove it, let F := φ∗TX(log) = TP (log(D1 + D2)), F ′ := TP/Jd(C̃)(−D1 −D2),
F” := ρ∗TJd(C̃) and use the exact squence

0 → F ′ → F → F” → 0,

one has h0(S2TX(log)) ≤ h0(S2F) and the following two exact sequences

0 → G → S2F → S2(F”) → 0,

0 → S2(F ′) → G → F ′ ⊗F” → 0.

Thus, by using h0(S2(F”)) = h0(S2TJd(C̃)) = g(g−1)
2 , we have

h0(S2TX(log)) ≤ g(g − 1)
2

+ h0(S2F ′) + h0(TJd(C̃) ⊗ ρ∗F ′).

To compute F ′, noting that OP (Di) = O(1)⊗ ρ∗E−1
xi

and using the exact sequence

0 → OP → O(1)⊗ ρ∗(E−1
x1
⊕ E−1

x2
) → TP/Jd(C̃) →,

we get F ′ = TP/Jd(C̃)(−D1 −D2) = OP and hence

h0(S2TX(log)) ≤ g(g − 1)
2

+ h0(TJd(C̃)) + 1 =
g(g + 1)

2
.
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Proposition 3.2. Let C/S be a flat family of proper curves satisfing the assumpa-
tions of Proposition 1.3 and such that Cs (s ∈ ∆ ⊂ S) are irreducible curves of one
node. Let f : J(C) → S be the associated family of moduli spaces of torsion free
sheaves of rank 1 and degree 0, and L be the relative theta line bundle on J(C)/S.
Then for any integer k > 0 and s ∈ ∆

(1) H0(TJ(Cs)(log))
∪c1(Lk

s )−−−−−→ H1(OJ(Cs)) is an isomorphism.
(2) µOJ(Cs) = 0 and H0(D2

J(Cs)†(Lk
s)) ∼= C.

Proof. From the discussions in Section 1, the log structure on J(Cs) induced by
logf−1(∆) is a logarithmic structure in the sense of [KN], thus we can use our
Proposition 3.1 and Lemma 3.4, the (1) is a corollary of Proposition 3.1.

The claim µOJ(Cs) = 0 is equivalent to that

h0(D2
J(Cs)†(OJ(Cs))) = h0(D1

J(Cs)†(OJ(Cs))) + h0(S2TJ(Cs)(log)),

which is true for s ∈ S r∆ (see [We]). Therefore, by using the semicontinuity and
Lemma 3.4, it is true for all s ∈ S if we remark that h0(D1

J(Cs)†(OJ(Cs))) is constant
for all s ∈ S since the canonical exact sequence

0 → OJ(Cs) → D1
J(Cs)†(OJ(Cs)) → TJ(Cs)(log) → 0

is splitting by Proposition 2.2 and c1(OJ(Cs)) = 0. By using again Proposition 2.2
and the above (1), we know that µLk

s
= − ∪ c1(Lk

s) is injective. Hence

H0(D2
J(Cs)†(Lk

s)) = H0(D1
J(Cs)†(Lk

s)) ∼= C.

Theorem 3.1. Let f : J(C) → S be the family of generalized Jacobians in Propo-
sition 3.2, Y = f−1(∆) and L be the relative theta line bundles. Then there exists
a symbol

ρ : TS(log∆) → f∗S2TJ(C)/S(logY )

such that the following two conditions hold
(1) µLk · ρ + κJ(C)/S = 0,

(2) f∗TJ(C)/S(logY )
∪c1(Lk)−−−−−→ R1f∗OJ(C) is an isomorphism.

In particular, there exists a unique projective logarithmic heat operator

H̃ : TS(log∆) → f∗WJ(C)/S(Lk)/OS

such that ρH̃ = ρ, and thus there exists a projective logarithmic connection on f∗Lk.

Proof. It is clear that we only need to check (1) since (2) has been shown in Propo-
sition 3.2, namely, we need to find a solution of µLk · ρ + κJ(C)/S = 0. By (2), we
have the isomorphism

f∗TJ(C)/S(logY )⊗ f∗TJ(C)/S(logY )
∪c1(Lk)−−−−−→ R1f∗TJ(C)/S(logY ).

Let ρ = (∪c1(Lk))−1 ◦ κJ(C)/S : TS(log∆) → f∗TJ(C)/S(logY ) ⊗ f∗TJ(C)/S(logY ),
which, over the open set Sr∆, is a map into f∗S2TJ(C)/S(logY ) (see §2.3.8 of [GJ]
or [We]), thus it is a map

ρ = (∪c1(Lk))−1 ◦ κJ(C)/S : TS(log∆) → f∗S2TJ(C)/S(logY ).

By Proposition 2.2, µLk) = −∪ c1(Lk) and ρ is a solution of µLk · ρ + κJ(C)/S = 0.
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