LOGARITHMIC HEAT PROJECTIVE OPERATORS

XIAOTAO SUN

ABSTRACT. The sheaf of differential operators on log-schemes is defined and studied.
Then logarithmic differential operators on compactified Jacobian of singular curves
are studied. In particular, logarithmic heat equation for theta functions is produced
geometrically.

INTRODUCTION

Let C — S be a proper flat family of stable curves, smooth over Sy = S ~ A.
One can associate a flat family f : SUc(r,d) — Sy of moduli spaces SUc, (r,d)
of semistable vector bundles of rank r and degree d with fixed determinant over
the curves Cg, and also a line bundle © on SU¢(r.d) such that its restriction to
each fibre is the line bundle on SU¢, (r,d) defined by the theta divisors. It is now
well known that for any positive integer k the direct image & := f.OF is a vector
bundle on Sy and have a flat projective connection, which is in fact given by the heat
operator on ©F. Our motivation is to understand geometrically the behaviours of
the operator when the curves degenerate to singular curves (See also [Hi], p. 350).
More precisely, we can formulate the question as following

Problem. For the family Us, — So of moduli spaces of semistable vector bundles
and the relative theta line bundle Og,, find the ‘correct’ degeneration (Us,Og) of
moduli spaces and theta line bundles (in other words, the ‘correct’ algeo-geometric
analogy of spaces of conformal blocks on singular curves) such that the direct image
of ©% is a vector bundle on S with a flat logarithmic projective connection.

When the curves degenerate to singular curves, the moduli spaces usally de-
generate to some singular varieties. The existence of a (projective) heat operator
requires in general some geometric properties for the variety. In this sense, it has
independent interests to figure out some global geometric properties that the de-
generation of moduli spaces may have. Then it becomes clear for the degeneration
of moduli spaces that we should work at least in log-geometry.

We first consider the problem in a general situation (forgeting moduli spaces).
Let f: X — S be a flat family of (reduced) normal crossing varieties of dimension
d, and X, S smooth. Assume that A C S is a normal crossing divisor and Y :=
f~1(A) C X is also a normal crossing divisor such that f : X \Y — S~ A is

smooth and (X, logY’) ER (S,logA) is log smooth. Let £ be a line bundle on X.
Then we defined the logarithmic analogies (see Definition 2.2 and Definition 2.3)
of (projective) heat operators of [GJ] and figured out the sufficient conditions (see
Theorem 2.1) of existence of a projective logarithmic heat operator on L over S,
which, similar to [GJ], gave a logarithmic projective connection on f, L. In this step,
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we need a correct logarithmic analogy of sheaf of dif ferential operators and have
to work in logarithmic algebraic geometry. We defined the sheaf of logarithmic
dif ferential operators on a log scheme, which works well for the log schemes we
concern in this paper (see Proposition 2.1). These materials may be well known to
experts but I am not able to find a reference satisfying our requirements. Then we
checked the conditions in Theorem 2.1 for the rank one case, namely, we proved
that a family of moduli spaces of torsion free sheaves of rank one over nodal curves
satisfies the conditions in Theorem 2.1, thus there exists a projective logarithmic
heat operator on the relative theta line bundle ©F (see Theorem 3.1).

We developed the necessary technique tools, especially the sheaf of differential
operators in Section 1. Then, in Section 2, we figured out the sufficient conditions of
existence of a projective logarithmic heat operator (thus the conditions of existence
of the required projective logarithmic connection) in the general situation, and we
also gave some descriptions of the conditions. Finally, in Section 3, we verified the
conditions figured out in §2 for a family of generalized Jacobians (moduli spaces
of torsion free sheaves of rank one), and thus showed the existence of projective
logarithmic heat operator in this case.
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Universitat Essen. I would like to express my hearty thanks to Prof. H. Esnault
and Prof. E. Viehweg for their hospitality and encouragements. I was benefited
from the stimulating discussions with them, which stimulated me to get Lemma 3.3
and Definition 1.3. The discussions with H. Clemens, I-Hsun Tsai, Kang Zuo, and
emails of Z. Ran, are very helpful. I thank them very much..

§1 LOGARITHMIC SCHEMES AND LOGARITHMIC OPERATORS

In this preliminary section, we recall the so called logarithmic structures (or
log structures for simplicity) on schemes (see [KK]), and define the sheaves of
differential operators on logarithmic schemes. All monoids M are commutative
monoids with unit element and M9 = {ab~!} is the associated group.

By a pre-log structure M on a scheme X, we mean a sheaf of monoids M on
the étale site X.; endowed with a homomorphism « : M — Ox with respect to the
multiplication on Ox. A morphism

f:XT:=(X,M)—-Y":=(Y,N)

of schemes with pre-log structures is defined to be a pair (f,h) of a morphism of
schemes f : X — Y and a homomorphism h : f~}(N) — M such that

SN M

fHO0y) —— Ox
is commutative. A pre-log structure (M, «) is called a logarithmic structure if
a N 0%) =2 0% via «

where O% denotes the group of invertible elements of Ox. A morphism of schemes
with log structures is defined as a morphism of schemes with pre-log structures.
These schemes are called log schemes.
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For a pre-log structure (M, «) on X, one can define its associated log structure
(M, a") by
M®* .= (M@ O%)/P, a*(x,u)=u-ax)
where P = {(z,a(z)"!) |z € a7} (0%)}. Let f: X — Y be a morphism of schemes.
For a log structure M on X, we can define a log structure on Y called the direct
image of M, to be the fibre product of sheaves

f«M

l

Oy —— f.Ox
For a log structure N on Y, we define a log structure f*N on X called the inverse
image of N to be the log structure associated to the pre-log structure
FHN) = 77H(Oy) = Ox.

Definition 1.1. Let o« : M — Ox and  : N — Oy be pre-log structures
and f : (X, M) — (Y,N) be a morphism of log schemes. Then the Ox-module
Qk/y(log(M/N)) called logarithmic differential sheaf is defined to be the quotient
of

Qx/y @ (Ox @z MP)

Q% Jy 18 the usual relative differential module) divided by the Ox -submodule gen-
erated locally by local sections of the following forms

(1) (da(a),0) — (0,a(a) ® a) with a € M.
(2) (0,1 ® a) with a € Image(f~1(N) h, M).

It is easily seen that if M and N* denote the associated log structures respec-
tively, we have

/vy (log(M/N)) = Qv (log(M*®/N)) = Qv (log(M® /N?)).
We collect some easy facts in the following proposition which may be useful in the
paper.
Proposition 1.1. Let f : X — Y be a morphism of schemes, and N¢ the log
structure associated to a pre-log structure N on Y. Then
(1) f*(N®) coincides with the log structure associated to the pre-log structure
fHN) — Ox.
(2) If f: (X, M*) — (Y, N%) is a morphism of log schemes such that
fUN) - M
is surjective, we have Q}(/Y(log(M/N)) = Q}(/Y (the usual relative differ-

ential sheaf).
(3) If we have a cartesian diagram of log schemes

(X', M)y —L— (x, M)

l J

Y',N') —— (Y, N),
we have an isomorphism f*Q‘lx/Y(log(M/N)) = Qﬁf,/y,(log(M'/N’)).



4 XIAOTAO SUN

Now we are going to introduce the sheaf of differential operators on general
log schemes although we need it only for some special log structures, we hope this
general treatment to be useful in the future. Fix a morphism X' = (X, M) — YT =
(Y, N) of log schemes and denote the sheaf of Oy-derivations of Ox by T'x/y. We
write Qk/y(log) simply for Qﬁf/y(log(M/N)), and

d:0x 5 Q%(/Y - Q%(/Y(log)

denotes the canonical logarithmic derivation.
Definition 1.2. A derivation 6 € Tx;y is called a logarithmic derivation if there

exists a 0 € HomoX(Qk/Y(log), Ox) such that

Ox _9% . Ox

! d

Q/y (log) === Q% (log)

18 commutative.

Remark 1.1. The sheaf of logarithmic derivations, denoted by T'x,y (log), is a sub-
sheaf of T'x/y. By definition, we have a surjection

Homoy (/v (log), Ox) — Txyy (log)

u+— uod,

which is not injective in general since Q5 /Y(log) is not generated by {df} coy.
However, we will see in Lemma 1.2 that for all the logarithmic structures we concern
in this paper the above surjection is actually an isomorphism.

Let Endo, (Ox) be sheaf of Oy-linear maps and Ox C Endo, (Ox) be the
subsheaf of maps multiplying by elements of Ox. It is clear that Endp, (Ox) is
a sheaf of noncommutative rings, thus it has two Ox-module structures (left and
right multipications).

Definition 1.3. The sheaf Dx+,y+ C Endo, (Ox) of subrings generated by Ox
and Txy (log) is called the sheaf of logarithmic differential operators on log scheme
XT = (X, M) over YT = (Y,N). We will simply call it the sheaf of log differen-
tial operators. For any integer k > 0, we define inductively the sheaf of k-th log
differential operators:

Dgﬁ/yf = Ox,
DI;(T/YT :={D € Dx+,vi |[D, fl € D];}yn for any f € Ox}.
If Qﬁ(/y(log) is locally free, we can describe Dx+/y+ locally. Let
dlog : Ox ®z M7 — Q%{/Y(log)

be the surjection and choose locally t1,...,t, € M such that {dlog(t;)}1<i<, is an
Ox-base of Qﬁ(/y(log). Let f; = a(t;) € Ox (i = 1,...,r), where o« : M — Ox
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is the log structure. Then there exists locally a system of generators {0;}1<i<, of
Tx /vy (log) such that
o ={ 17

0 J #i.

All [0;,0;] vanish on the subring O' C Ox generated by fi, ..., f, and Oy, which
means that [0;,0;] are derivations of Ox over O, thus [0;,0;] vanish on Ox since
Q}QX ey is a torsion sheaf. Therefore any local section D € Dx+,y+ can be expressed
as a finite sum

(1.1) D:Z)\ﬁl ’’’’’ /3T81ﬁl"'87gr.

We introduce a notation [D,aj * --- % a,,] for any local section D € Dx+,y+ and
ay,....,an € Ox. The [D,a; *---*ay] € Dxt/y+ is defined inductively by

[D,ay %+ *ap] :=[[D,a1 x -+ * an_1], ay).

If a; = -+ = an, we write [D, a1 x -+ xa,] = [D,a7"], thus the notation [D, al™ *

ab’® x -+ xa}'"] is clear. Notice that [9;, f;] = 0 for i # j, one checks easily that
[81& . 6/87“ f*ﬁz] 6?1 (9?_11 [851, *Bl] azﬁ_ﬁl . -8}67’.

Thus [07" - 88 f190 s 1B = [820, f1P1] .- [857, £¥P7]. One computes that

07, £75 = (B f% and [0, £ = 0 if k; < fBi. For any D € Dkt gy let

Aay...a, 07" - - 0% be the first term of D in (1.1) (namely aq > 1, ..., > 5, and
at least one inequality is strict). Then

D™ w5 7] = N 000 057
= (o ) "(O‘T!)/\ah...,ar e f

If a; + - +a, >k, then [D, f7*' x--- % f**] = 0 by definition of D¥ thus

Xt/yt»
(1.2) Ny, - JE - fO = 0.

Proposition 1.2. Let Gri(Dx+/yt) = XT/YT/DXT/YT and T(Gri(Dx+/yt)) be
the tensor algebra. Then
(1) The symbol map o : Gri(Dx+/yt) — Tx/y(log), defined by o(D)(f) =
[D, f](1), is an isomorphism. '
(2) Dxiyvt = Uizo Dyt /ytr Dty 'Dﬁﬁ/yf C DxT/y’r and f~1(Oy) is in
the center of Dxi/y+ -
(3) The left and right Ox-module structures on Gri(Dxt y+) coincide
(4) The natural map

T(Gr1(Dxty+)) — Gr(Dxi ) y+) : @Grz Dxt/y+t)
=0

18 surjective.
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Proof. One checks that (D) is a derivation of Ox. To see it factorizing through
d: Ox — Qk/y(log), it is enough to show that for any m € M there exists a
unique 0(dlog(m)) € Ox such that o(D)(a(m)) = a(m)d(dlog(m)), which can be
checked by using the fact that D is a map composed by logarithmic derivations.

The proof of others is easy, we will omit it but just remark that we are not able
to claim the natural map in (4) induces surjections

T"(Gri(Dxtyt)) — Gri(Dxt y+)-

A reduced scheme Y is called a normal crossing variety of dimension d if the com-
pletion of local ring Oy, at each point y is isomorphic to C{xo,...,zq}/(zo - z,)
for some r = r(y) such that 0 < r < d. Now we discuss the log structures on nor-
mal crossing varieties and on smooth varieties induced by normal crossing divisors.
These are the only log structures we will concern in this paper.

Lemma 1.1. Let f: X — S be a flat family of (reduced) normal crossing varieties
of dimension d, and X, S smooth. Assume that A C S is a normal crossing divisor

and Y = f71(A) C X such that f : X \Y — S~ A is smooth. Then, for any
x € X, we can choose isomorphisms

@X,m = (C{.Il, ooy Ld+1, ...,l’der}, @S,f(:c) = (C{T(‘l, ceey ﬂ'm}
such that
ffClmy, o} = C{ay, ooy a1y ooy Tdgm }

is a C-algebra homomorphism with

fim) = zar2, - fH(Tm) = Tagm
and the local equation of A at f(x) is

Ty Tig * Ty :O

Proof. Let (’A)Sj(m) >~ C{m1,..., ™} and @wa >~ C{z1, ..., Zd+m}- Then, by defini-
tion,

Ay, var} o e, Zaem )

C(yryar) (PR, e fH ()

We can assume that » > 1 (otherwise, f is smooth at z, the lemma is clear). Let

N e > C{zl,...,zd+m}
R L))

. d > >
we can write p;(21, ..., Zdtm) = Z]IT a;jz; + 90;2, where 90;2 denotes the part of

0i(21, -y Zd+m) With order > 2. Then

aiil a1 d+m
(o1, .. Pat1)

8(2:1, L) zd-l—m)

0,...,00=

Ad+11  --- Qd+1d+m
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has rank d + 1. Otherwise, there is 0 # (k1, ..., kqy1) € C?*! such that

d+1 d+1

>2 2
Zki%‘(zla ooy Zddm) = ka; € (21, ooy Zdam) s
i=1 i=1

which implies that

d+1 d+1
> ki =@ 'O kivi(21, s 2atm)) € (15 s Tag1)”
=1 =1

Thus there is g(y1, ..., ¥a+1) € (Y1, ..., Ya+1)? such that

d+1

Zkiyi — 91, Yav1) € (Y1 yr),
i=1

which is impossible since 7 > 1. Replaceing some z;,, ..., zj,,, by ©1(21,.-s Zd4m),
vy ©d+1(21, oy Zdtm), We can assume that

Cly1, oy yag1} ~ C{z1, s Zd+m }
' (Y1 Yay1) —<fﬁ(771)7"-7fﬁ(7"m))

such that ¢(y;) = z; (i=1,...,d+1). Let

(C{yla X yd-i-l}
(yl e yr)

0 (Zavj) = 9; (Y1, s Yas1) €

then 244 — g;(21, .y 2a41) € (F¥(m1), o, fH(7m)). If we write that (for j = 2,...,m)

m
Zavj — 95 (21, s 2ag1) = Zajifﬁ(m) + higher order terms,

i=1
then
Lv 0 a21 as
01 0 = . . . . a(fﬁ(ﬂ-l)aafﬁ(ﬂ-m)) | 0 o
A : . . : a(zd—l—Qa---yZd—i-m) (0,..., )
0 0 1 m 1 amm
Thus

6(fﬁ(71'1), ) fﬁ(ﬂ-m))

a(Zd—|—27 EEX) Zd+m)

has rank m — 1, and we can choose the isomorphism

OX@ = C{l‘l, ceey Ldglyeeey l’d—}—m}

such that f¥(m2) = 2442, ..., f*(Tm) = Ta1m by changing the order of 7y, ..., 7.
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We are not able to prove in Lemma 1.1 that Y = f~1(A) is a normal crossing
divisor in X even if each fibre is a normal crossing variety. Assume that Y is a
normal crossing divisor, we have canonical log structures on X and S

logY = {g € Ox | g is invertible outside Y} C Ox

logA = {g € Og | g is invertible outside A} C Og.

These are fine log structures, and if one writes locally that
Y= J{zi=0} A=J{m=0},
i=1 i=1

then logY and logA are associated to the pre-log. structures ([KK]):
N — Ox N° — Og
(ni)1<i<r — Hﬁ“, (ni)1<i<s — HWZL
For the local descriptions and properties of Q%(logA) and Q% (logY'), we refer to
[EV1] and [EV2]. We will use Qﬁ(/s(logY) to denote Qﬁ(/s(logY/A).

Proposition 1.3. Let f : X — S be a flat family of normal crossing varieties of
dimension d, X and S be smooth. Assume thatY := f~1(A) is a normal crossing
divisor such that

f: XNY —=SNA

18 smooth. Then we have the associated exact sequence
0 — f*Qk(logA) L QX (logY) — Q% g(logY) — 0,

and the following are equivalent

(1) (X,logY) ER (S,logA) is log smooth.
(2) The image of j is locally a direct summand.
(3) For any singular point x € X of f, we can choose coordinates

@S,f(z) = (C{T(l, ...,7Tm} — C{xl, vy Td41, T2, ...,7Tm} & (’A)va
such that Ty = 1 -+ -z, for some 1 <r <d+1 and
7'('17'('2.71-8:0

is the local equation of A at f(x).
(4) Qk/s(logY) is locally free.

Proof. The map j has to be injective since it is injective at the generic point of S
and Qk/s(logA) is locally free.

The (1) < (2) follows the Proposition (3.12) of [KK], and (2) < (4) is obvious.
We prove that (3) < (4). Firstly, (3) = (4) is clear since Qﬁ(/s(logY) is locally
isomorphic to X

Ox,m{dxl, caey diL’d_H, €1,... er}
(dxy — m1€1, ..., dT) — Tpep €1+ - +€)’
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which is a free module generated by {m%dl"l,---, M%dxw_l,dfz:rﬂ, oy dzgir}. To
prove (4) = (3), we only need to show that local equation of A is divisible by m;
(assume that we choose the coordinates as in Lemma 1.1). If it is not so, we can
assume the local equation of A to be

Ty -mg = 0.

Then, as in the Lemma 1.1, f#(my---7s) = 240 - T4y is the local equation of Y
at z, and Q% /5(logY’) is locally isomorphisc to

Ox {de1,...;drapr}

=1 ox; ?

¢
It is not locally free except one of of aiﬂl)

at . But (3) is clear at this case.

is invertible, which means that f is smooth

K2

Let X, (s € A) beafibreof f: X — S, then X, is a normal crossing variety with
log structure M := (logY)|x., — Ox, such that X! := (X,, M) is a log smooth
variety. We will describe M locally and to show how it gives a log structure in the
sense of [KNJ.

For z € X, a singular point of X, there is a neighbourhood Uy C X of x and
holomorphic functions 3 € Ox (Uy) such that

U,\ N (Cd—i—m
p = (22 (P)s s 21 n)
is an open embedding and X, N U, C U, is defined by

A A A A
ry ey =0, Ty =0 = Tgg, =0,

Y N U, is defined by x{‘~-~x,>,‘-xfl‘+il---x§+is =0, for some 1 <7 < d+ 1 and

2 <iy < -+ <ig <m. The log structure logY |y, on Uy is associated to the pre-log
structure

Nr+s N OU/\

(nb cooy s Mgy vevs nd-l-is) = (xi\)nl T (xw{\)nT ’ ($§l\+i1)nd+i1 e ('Td)\+i5>nd+is :

Let 2 = 2| x.nu, € Ox.(XsNUy), then M|x.~p, is associated the pre-log
structure

N" @ N* =N+ 2% Oy, nx,
(nlv R N 17 nd+is) = (Zi\)nl e (Zﬁ\)nr ’ (ZC)l\-Fil)ndJril e (Zé\+is)nd+is .

Clearly ker(v) = N°* and v*(Of;, ~x.) = {(0,...,0) € N""*} 'so M|x v, = N @

thnx, and ax @ M|x, v, — Ou,nx, is defined by ax(, g) = v(7i) - g. Thus we
get a partial open cpvering {V) := Uy N X} of X containing the singular locus of
X, and systems of holomorphic functions

zy‘) = an(e;, 1) € Ox, (Vy),
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where i = 1,...,7) and e; = (0, ...,1,...,0) € N"™2T5_ These functions satisfy

(1) There is an isomorphism ¢, from V) to an open neighborhood of (0, ...,0)
of the variety

{(z1, ., wa1) € CH g -y = 0}

such that 3 (z;) = z§>‘) for 1 <j <rj.
(2) VANV, # (ry =, at this case), then there exist invertible holomorphic
functions uM) (1 <j<ry)onVynV, and a permutation o € S,, such

j
that

z((:(‘g.) = u?“)zy) and uy‘”) . -uﬁ’:“) =lon VANV,

Thus we have a log atlas in the sense of [KN]. To check (2), noting that

S

T
YV = J{z} =0}u [ {2, =0}
i=1 k=1

T
= J{=t =0yu | J{=t,,, =0}
i=1 k=1

(M)

on Uy NU,, we have 0 € S,, 4, and invertible holomorphic functions u; €

Ox(UxNU,) such that
D OV ) BT’
Loy =% T
Since x),; = zl s, = 0on XyNUANUy, we have o(j) € {1,...,ra}if j € {1,...,7a}.

On the other hand, for fixed (71, ..., 7 ) = ms, we have m = a3 -+ ap = af - -z

X7
thus u{™) - 4 = 1. The restrictions of {ug-)‘”)} to X,;NU,NU,, give the required
functions in (2).

Lemma 1.2. For the smooth variety X with log structure logY given by a normal
crossing divisor 'Y, and for the normal crossing variety Xs with log structure in the
sense of [KN] (in particular, for logY |x, ), the surjections

Q}(/S(logY)* — Tx/5(logY’) Q}( (log)* — Tx_(log)
u—uod u—uod
are isomorphisms, where £* denotes the dual of £.

Proof. Tt is enough to check the injectivity of the above morphisms, which is a local
problem. Thus we may assume that

O o (C[[xlw“wrra ---yxn]] Ql o OXS{%"”’ dxm:a(jxr-ﬁ-la "'7623371}
Xs — ’ Xs(log) - 7 7 .
(z1--- ) (%+...+%)

For any u : Q% (log) — Ox, such that u(df) = 0 for all f € Ox,, we need to show
that fort=1,...,r

1 -
a; == u(—dz;) = 0.

L
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Firstly, a; = b;j(xy---2;---x,) for some b; € C[[xy, ..., ,,]] since @;Z; = u(dx;) = 0.
Secondly, ay + - - - + a, is divisible by x1 - - - z,. since

1 - 1 -
C_L1—|——|—C_1r:u<x—d$1++_dxr):0
1

T,

These facts imply that b; is dvisible by z; (i = 1, ...,7), which means all a; are zero.
When X is a smooth variety, local ring (analytic) at any point of X is integral,
the injectivity is obvious from the above proof.

Thus for a logarithmic derivation ¢, we will write < 6,- > denoting the unique
element of Q% (log)* such that < 6, da >= 6(a).

Proposition 1.4. Let W C X, be the singular locus of X5 and Iy C Ox, the
1deal sheaf of W. Then every local section D € D;T can be expressed into

D - Z Aﬁlw“vﬁdaf’l .“85d
B1+-+Ba<k

for a local basis 01, ..., 04 of Tx (log) and D(Zw) C Iw. In particular, we have
the canonical exact sequence

(1.3) 0— D';(El — DYy 5 8™, (log) — 0,
where S¥Tx_(log) is the subsheaf of symmetric tensors of T*(Tx_(log)) and oy will

be defined in the proof.

Proof. Locally, @Xs,m = C{z1,....,xq41}/(x1 - 2,), and Tx_(log) is locally gener-

ated by
0 0 0 0

0x, 7" 0z, Oxpyn T 0T g

X1

with a relation

e, 2 0
Lo, "Ox,

If we take the local basis 01, ..., 94 of T'x_(log) to be

L N A W
81‘1

y Up =— y .- = 5
O0Tr—1 0Ty 41 0441

one can check that 9, = x;g;(x;, %) when «; > 0 and 1 < i < r, where g;(z,y)
is a polynoimal. Thus the first term of (1.1) becomes into

o1 Xd e} g
>‘Oé1,~~.,0td81 ce ad = )\al,._.ﬂdmil Ty, Giy iy 8TT - 097,

and the equality (1.2) becomes into )\al,__,7ada:?‘1” xfit = 0, where «;,, ..., o;, are
nonzero integers of aq,...,,—1. This implies that A\,, . o, is divisible by all x;
with 4 € {1,...,7} N\ {i1, ..., %}, namely Ao, . 0,07" ---05% = 0, which means that

any D € D’;{T can be expressed into

_ &)
D - Z ABI»"'a/Bdalﬁl ..'add'
Bi+-+Ba<k
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On the other hand, Zy is locally generated by “*= (i = 1,...,7), and
Ty Xy 0, 1fj:zorjzr
() =9 wrowr o
x; Bt dfi#Fj<r
Thus D(Zw) C Zw. Now we see that the natural map in Proposition 1.2 (4)

induces isomorphisms (it is surjective by the above proof, and injective since it is
generically injective and Gry(Dx+/y+) locally free)

Sk(Grl (Dx‘r/yf)) - Grk(Dxf/Y’r)-

For any local section D € D’;{ t let Dy denote the lower order part and write

D=Dop+ > Agp08 04
Br-ttBa=k

D(wy,...,wg) = Z 77777 H<061 Wi > H < 0(0q),w; >

Bi+-+Ba=k Ba—1+1

where w, ...,w;, are elements of Q% (log). The symbol 04 (D) of D as a symmetric
function on ®*Q% (log) is defined to be

O'k(D)(wl, 7wk) = Z D(wT(l)a 7w7'(k))
TESE
This gives the exact sequence (1.3) and coincides the definition of [GJ] and [We] in
smooth case (see Remark 2.2.4 of [GJ]).

§2 LOGARITHMIC HEAT OPERATORS AND LOGARITHMIC CONNECTIONS

In this section, we generalize the definitions and arguments about heat operators
and connections in [GJ] and [We] to the logarithmic case. Our task here is to figure
out the conditions for the existence of a projective logarithmic heat operator.

Let f: X — S be a flat family of normal crossing varieties of dimension d
satisfying the assumpations of Proposition 1.3. Since X is smooth, the (1.2) will
imply that Ao, ..., = 0. Thus, for any local section D € D’%T/ST, we have

D: Z Aﬁl 7777 :87'8]?1 ...857"

Namely, in this case, we have (T’x,s(logY") isomorphic to the dual of Qﬁ( / s(logY))
Symi, (Txs(logY)) = Gri(Dxt st),
which means that we have the canonical exact sequences (Proposition 1.4)
0 —— DY —— Db, —— S*Ty(logY) —— 0

I T I

(21) 0 —— Dilg —— Dhyjer —— ST s(logy) —— 0

I I I

0 0 0
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For convenience of applications, we summarize the discussions in section 1 for
the special logarithmic varieties we consider in this paper. Let f : Z — T denote
the logarithmic schemes: (1) Z = X and T' = S with log structures logY and logA,
(2) Z = Xy and T' = {s} with log structures logY'|x, and logA|y. Let A and A;
denote the corresponding sheaf of logarithmic differential operators on Z. Then,
according to [Si], the following proposition (which is the definition of [Si]) assures
that A is a sheaf of split almost polynomial rings of dif ferential operators on
Z/T. Thus A and A; are endowed with all the nice properties such as compatible
with base changes and A generated by A; as a ring (see [Si]).

Proposition 2.1. The sheaf A of rings of logarithmic differential operators on Z
over T is a sheaf of Oz-algebra A over T with a filtration

A CMhC---CNC---,
which satisfies

)

) The image of the morphism Oz — A is equal to Ay.

) The image of f~1(Or) in Oz is contained in the center of A.

) The left and right Oz-module structures on Gri(A) := A;/A;—1 are equal.

) The sheaves of Oz-modules Gri(A) are coherent.

) The sheaf of graded Oz-algebra Gr(A) = @, Gri(A) is generated by
Gri(A) in the sense that the morphism of sheaves

Gri(A) ®o, -+ ®o, Gri(A) — Gri(A)

18 surjective.

(7) Ao = Oz, Gri(A) is locally free and Gr(A) is the symmetric algebra on
GT‘l(A).

(8) There is a morphism & : Gri(A) — Ay of left Oz-modules splitting the
projection Ay — Gr1(A).

Definition 2.1. For any coherent Ox-modules E1 and Es5, we define

Dxtst(Bv, B2) := By ®0x D51 ®0x B}

D% (By, Ey) := B3 ®0y Dkt ®0y Ef,

where EY = Homo, (E1,Ox), and the notation Dl)fﬁ/sT ®oy Ef (resp. DEy @0y
ET means that we use the right Ox-module structure of D’)‘C(T/ST (resp. Dljﬁ). If
E, = Ey = E, we simply write D§(T/5T(E) = DI;(T/ST(El,Ez) and D% (E) =
D% (Eq, E»).

Let £ be a line bundle on X, and define the subsheaf Wy (L) of D% (L) to be

Wxs(L) = D+ (L) + D?{T/sT (L).
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Tensor firstly the sequence (2.1) on the right by £* as a right O x-module then on
the left by £ as a left Ox-module, we get the commutative diagram for k£ = 2

0 —— DL(L) —— D% (L) —Z— S*Tx(logY) —— 0

H I T

0 —— Di(L) —— Wxys(£) —— STxys(logY) —— 0

T I H

0 —— DYy (L) —— D2y (L) —T— S2Txs(logy) —— 0,

Xt/st

and the commutative diagram for k =1

[*Ts(logA)
(2.2) 0 —— Ox —— DL(L) —2— Tx(logY) —— 0

H I T

1

0 —— Ox —— Dk (L) —2— Txys(log¥) —— 0,

where the third vertical is the canonical exact sequence
(2.3) 0 — Tx/s(logY) — Tx (logY) — f*Ts(logA) — 0.

Let e : DY, (L) 2L Tx (logY) — f*Ts(logA) be the composition of canonical maps,
one can see easily from the diagram (2.2) that

ker(e) = D%{T/ST (£).

Thus we have a surjection & : Wx,g(L) — f*Ts(logA) such that the following
diagram is commutative

f*Ts(logA) ——— f*Ts(logA)
(2.4) D%+ (L) ., Wx/s(L) —2— S*Tx/s(logY) —— 0

T T |

D}(T/sT(‘C) - D%{T/sf(£> — SQTX/S(ZOQY) — 0

Let Wx/s(L) o0, SQTX/S(logY) @ f*Ts(logA) be the surjection defined by o &

E(D) :=o(D) @ &(D) for any local section D € Wx/,s(L). Then we have the exact
sequence

(2.5) 0= Dxy,51(L) = Wxs(L) 225 §2Tx/5(logY ) @ f*Ts(logA) — 0.
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Definition 2.2. A logarithmic heat operator on L over S is an Og-module homo-

morphism

H : Ts(logA) — fuWx,s(L) C Diﬁ(ﬁ)
such that
(2.6) Ts(logA) 5 £ Wy s(L) L5 Ts(logA)

is the identity map. A logarithmic heat operator H on L is called flat if
H([01,062]) = [H(61), H(02)]
for any local sections 61,62 € Ts(logA)(U).
Any Og-linear map H : Ts(logA) — f+Wxs(L)/Os has local lifting. Namely,
there exists an open covering | JU = S such that for each open set U there is an
Oyp-linear map Hy : Ts(logA) — f.Wx,s(L)|y which reduces to H|y.

Definition 2.3. A projective logarithmic heat operator H on L over S is an Og-
linear map
fiWxs(L)
PR

Os
such that any local lifting Hy is a logarithmic heat operator on L]y over U.

H : Ts(logA)

H is called projectively flat if any of the local lifts Hy satisfies

Hy ([61,02]) = hoy 0, + [Hu(61), Hu(62)]
for some function hg, 9, € Os(V'), where V.C U is any open set of U and 6,02 €
Ts(logA)(V).

In the following, we will figure out the conditions under which a projective loga-
rithmic heat operator on £ over S do exist. As the same as in [GJ], one can see that
a (projective) logarithmic heat operator of £ over S gives a (projective) logarithmic
connection on f,L. Firstly, it is clear that the map

f*O' : f*WX/S(‘C) - f*SZTX/S(logY)
factors through f.Wx,s(£)/Os, thus we have the map

H .o
pi : Ts(logA) 5 FWx/s(£)/0s L5 £.52Txs(logY),
which is called the symbol of H. By taking the direct image of

(2.7) 0—O0x — D}(T/ST (L) = Tx/s(logY) — 0,
we have the connecting map f.Tx/s(logY’) LN R'f.Ox and the map
R! e
R'£. DY s (£) =25 R f.Tx s (logY)

induced by the symbol map D5, /st (L) =5 Tx/s(logY). Similarly, from
(2.8) 0— D%{T/sT (£) — D?(T/sT (£) = SQTX/S(ZOQY) — 0,
we have the connecting map f,.5*Tx/s(logY’) = le*Dﬁﬁ/Si (£) and thus

C Rl *01
ne: £.5°Tx s(logY) 5 R'f.Dy g1 (L) 2170 R £ Ty /s(logY).

. From the canonical exact sequence (2.3), we get the connecting map
kx/s : Ts(logA) — R' f,Tx/s(logY),
which is the Kodaira-Spencer map of the family X/S.
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Theorem 2.1. Let f : X — S, A and Y = f~Y(A) satisfy the assumptions of
Proprosition 1.3 and f.Ox = Og, L a line bundle on X. If there exists a symbol

p: Ts(logA) — f.5*Tx/s(logY’)

such that the following two conditions hold
(1) pe-p+rxs =0,
(2) fiTx/s(logY) i, R f.Ox is an isomorphism.

Then there exists a unique projective logarithmic heat operator
H Ts(lOgA) — f*WX/S(E)/OS
such that pg = p. In particular, there exists a projective logarithmic connection on

f.L.

Proof. 1t is enough to prove that for any 6 € Ts(logA)(U) there exists a unique
lifting of p(0) © 0 to fLWx,s(L)(U) up to a section of Og(U). Thus we consider
the commutative diagram

Tx/s(logY’) Wxéi(ﬁ) 70e S?Tx;s(logY) & f*Ts(logA)

gl T H

Dl gr(L) —— Wxys(L) —== 2Ty /s(logY) & f*Ts(logA)

I [

Ox — Oy,

which gives the induced commutative diagram

R'f.Ox — RYf.0Ox
UlL] v
f«Tx/s(logY) fe Wxéi(ﬁ) f+S*Txs(logY) @ Ts(logA) LN

H

fiDxig1(L) —— [Wxs(L) — [S%Tx;s(logV) ® Ts(logA) ——

f+Ox — f.Ox,

where f,5*Tx,s(logY) & Ts(logA) = R f. Tx,s(logY) is the connecting map. We
claim that
olp(6) © 0) = iz - p(6) + x5 ).

If it is true, by the condition (1), we will have a lifting Hy (6) € f*w%/—i(ﬁ)(U). By
the surjectivity in condition (2), there exists a section s € f.Tx/5(logY")(U) such
that s U [£] = v(Hy (). Thus there exists a Hy (6) € [sWx,s(L)(U) such that
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Hy(0) = Hy(0) — s, which is also a lifting of p(8) @ 6. The injectivity in condition
(2) implies that such Hy () is unique up to a section of f,Ox(U) = Og(U). This
gives a unique projective logarithmic heat operator

_ f*WX/S(‘C)

H : Ts(logA) Os

Now we show the claim by considering the following commutative diagrams

D} £ ode

0 XTéiT( ) Wxéi(ﬁ) @ SQTX/S(logy) o f*Ts(ZOQA)
Dyt st (L) D2, (L)

0 Xféf: Xféir SQTx/S(logY)
D! L .

0 XTC/)iT( ) Wxéi(l:) DE S2TX/S(ZOQY) ® f*TS<l0_gA>
D! L L c

0 XTéf:( ) D)g)fﬁ) f*TS(logA)

[ |
0 Tx/s(logY) —— Tx(logY) —— f*Ts(logA),

from which we have commutative diagrams for the connecting maps

o D] (L)
[85%Txs(logY) ® Ts(logA) —— R'f,2945— = R' f.Tx,s(logY’)

T H

Dl L
1.8%Txs(logY) —pe, grp, 2xysi o e (logY)
and

o D) (£)
f.8°Txs(logY) @ Ts(logh) —"— R'f, =45 = RUE, Ty /s(logY)

T H

K D! L
Ts(log) SN R TR R Ty s (logY ).

Thus the claim o(p(0) ® 0) = pc - p(0) + £x/5(0) is indeed true.

Remark 2.1. From the proof, we see that the local lifting exists when the map in
condition (2) is surjective, and the injectivity was only used to assure the uniqueness
of the local lifting. Thus in some cases the map in condition (2) is only surjective
but one has a natural way to choose the lifting uniquely, we still have the heat
operator. For example, the map in [GJ] is zero but one can choose uniquely the
G-invariant lifting.
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We are now going to describe the maps U[L] and pp. For any s € A, {s} =

Speck(s) has the induced log structure, we denote this logarithmic point by s,
then the logarithmic fibre X over st is (X,,logY|x.). Thus

Q% (log) = Q/5(logY)|x,, D];(;L = Dt /st

Xs

and, if the dimensions of H(Tx_(log)), HY(S*Tx,(log)), H*(Ox,), H (Tx,(log))
are constant (for s), then fibrewisely the maps U[L] and p. are the following maps

UILs] : HO(Tx, (log)) — H'(Ox,)

pe, + HY(S°Tx, (log)) — H' (T, (log))

where £, = L|x, and U[L] is the connecting map of
(2.9) 0—Ox, — D;T(ﬁs) 7L Tx_ (log) — 0

and yi., is the connecting map H°(S%*Tx, (log)) — Hl(D;(T (L)) of

(2.10) 0 — D}(l (Ls) — D_;g (Ls) 22 ST (log) — 0,
composing with the natural map H'(D} ;(Ls)) Hio), HY(Tx_(log)).

Let [Ls] € H' () (log)) denote the extension class of (2.9), then the map U[L,]
means the cup product. In general, for any class ¢l € H'(QY_(log)), one has the
natural cup product map

Ucl

H°(®"Tx, (log)) — H'(&"'Tx, (log))

and for any w € H°(S*Tx_(log)) the symbol w U cl means that we consider w as a
symmetric tensor. For any line bundle L on X, we define the Chern class ¢ (L) €
H'(Q (log)) of L to be the image of usual Chern class of L under the natural map

H'(Q% ) — H'(Q% _(log)). More precisely, let d : Ox, <, Q% — QX (log) and
dl : O% — Q% (log) be defined as di(u) = +du. Then dl is a morphism of abelian
sheaves and induces a morphism

H'(0%,) = H'(Qx, (log))

of abelian groups. The Chern class ¢1(L) of L is defined to be the image of this
morphism. With these notation, we have

Proposition 2.2. The extension class [Ls] € H'(Q_(log)) of
(2.11) 0 — Ox, — D (L) =5 Tx,(log) — 0
is equal to the Chern class c1(Ls) and for any w € H°(S*Tx_(log)), we have

e, () = —wUen(La) + pos, (@),
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Proof. We check firstly the following descriptions about the symbol maps.
(1) If D is a local section of D;T (Ls), its image 01(D) € Tx_(log) is determined
by the requirement, for all a € Ox,_ and all s € L,

(2.12) < o01(D),da > s =01(D)(a)-s= D(a-s) —a-D(s).

(2) If D is a local section of Dif (L), its image 02(D) € S*Tx, (log) is charac-
terized by the formula, for all a, b € Ox_ and all s € L,

(2.13) o2(D)(a,b)-s=D(ab-s)—a-D(b-s)—b-D(a-s)+ab- D(s).

(1) is clear by the definition o1(D)(a) - s = [D,al(1) -s = D(a-s) —a- D(s) in
Proposition 1.2 (1). To check (2), one can write D = Do+ > \;;0;0;, where D.g
denotes the part with order smaller than 2. Then, by definition in Proposition 1.4,

< UQ(D), Ja@a_lb > 8§ 1= 09 (D) (a, b) = (Z )\ij [62, (I] [6j, b]—l—z )\ij [82, b] [6j, a])(l)-s.

Thus (2) is clear from the following computations

Z >\ij [61, CL] [aj, b] = Z )\ij(‘)iaé?jb — Z )\ijaai@jb — Z )\ij(‘)iab(?j + Z )xija(‘?ib@j
= Dab — aDb — bDa + abD + b[D.s,a] — [D<2,alb
— D Xi;0il0;,al,b] = [ Xij[03, 0195, al + > Xij[03,b][0;,
= Dab — aDb — bDa+ abD — > \;;[0;,](0;, a].

Let U = {U,}iesr be an affine open cover of X trivializing L4 and s; : Oy, =
Lslu,, sj = ui; - s; on U;jj = U; NU;. Then ¢;(L;) € Hl(ka (log)) is given by the
1-cocycle

(Biiy & o, 0k (log)).

Usg

The sequence (2.11) is locally splitting, and there exist morphisms of Op,-modoules
pi: Tx,(log)(Us;) — Dy (L) (Uy)

such that o1 o p;(0) = 0 for any 0 € Tx_(log)(U;). Let p;(0)(s;) = w;i() - s;, then

wi € Tx,(log)(Us)* = Q. (log)(U;) since p; is a morphism of Oy,-modules. For

any 0 € T'x_(log)(U;;)

dui j

pi(0)(s5) — py(0)(s5) =< B,; — w; + 2 > ;.

1y
Thus the extension class of (2.11) is ¢1(Ls).
Given w € H%(S?Tx_(log)), let D; € HO(Ui,Dil((’)XS)) be the lifting of w; =

wl|y,, thus
{Dij}ticj ={Dj — Di}icj € C*(U,Dy(Ox.)).
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Then poy, (w) € H(Tx,(log)) is given by the 1-cocycle {v;;} € C (U, Tx,(log)),
where v;; € H(U;;, Tx, (log)) is the image o1(D;;) of D;; = D; — D;, namely, for
all @ € OXS(Uij)a

< Vij, da >= Vij (CL) = Dij (a) — aDij(l).

To compute jiz, (w), we see that by definition D; = s;@D;®s* € HO(U, Di,T (Ls)
is a lifting of w;, and thus 5i(a - 8;) = D;(a) - s; and

{Dij}Yicj ={D; — Di}ic; € C'(U, Dy (Ls)).

Then uc, (w) € H' (Tx,(log)) is given by the 1-cocycle {v;;} € C*(U,Tx,(log)),
where v;; € H(U;j,Tx,(log)) is the image o1(D;;) of D;;, namely, for all a €
Ox,(U;j;), by using (2.13), we have

< i?ij,cia > 85 = 51']'(&) = Eij(a . Sj) —-a- Eij(sj)
= Dj(a) . Sj — Dz(auw) ©S8; — CLD]<1> . Sj + CLDZ<UZ]) -7

dui j

= (vij(a)— < w,da ® >) - 8.

uij

quiJ_j and fiz, (W) = poy, (W) —wUcr1(Ly).

Hence v;; = v —w U

§3 LOGARITHMIC OPERATORS ON GENERALIZED JACOBIANS

In this section, we will verify the conditions in Theorem 2.1 for a family of
generalized Jacobians of stable curves, and thus show the existence of logarithmic
heat operator. Let (C,Ca) — (S,A) be a flat family of stable curves satisfying
the assumpations in Proposition 1.3, namely, S, C are regular schemes and A a
(reduced) normal crossing divisor. It is well known there exists a projective S-
scheme f : J(C) — S such that for any s € S the fibre J(C)s is the generalized
Jacobian J(Cs) of Cs.

Lemma 3.1. If (C,Ca) — (S,A) satisfies the assumpations of Proposition 1.3,
then so do f: J(C) — S.

Proof. By deformation theory of torsion free sheaves with rank one, for any point
y € J(C) corresponds to a torsion free sheaf 7 on Cy(, such that F is not locally
free at a double point x € Cy(,), there are integers l1, [ such that

Oy plltn, ooy )] 2 Oc pl[v1, ooy 01, ]

Thus f : J(C) — S satisfies the assumpations in Proposition 1.3 if C/S satisfies
them. In particular, J(C) is regular and all fibres J(Cs) are normal crossing varieties.

For simplicity, we assume that all fibres C; = C (s € A) are irreducible and
smooth except one node xy and the family has a rational section. We recall briefly
some facts about the so called generalized Jacobian J¢(C) (we write J(C) for
JO(C)) of a projective (singular) curve C of (arithmetic) genus g).
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The J4(C) is defined to be the moduli space of rank one torsion free sheaves
with degree d. There is a natural ample line bundle

© ja(cy = detH*(F) ™' @ (detF,)* 19

called theta line bundle on J%(C), where F is a universal family on C x J¢(C),
detH*(F) is the determinant of cohomology and F,, denotes the restriction of F to
{y} x J4(C) for a fixed smooth point y € C. This construction can be generalized
to relative case, namely, for a family of curves C/T, one can construct a family of
generalized Jacobians J¢(C)/T and a line bundle © on J¢(C) such that each fibre
J4(C); is the generalized Jacobian J%(C;) and the restriction of © to J¢(C); is the
theta line bundle © ya(c,).

Let 7 : C — C be the normalization and 71 (20) = {z1, 22}, let P = P(&,, BE,,)
and &,, ® &, — O(1) — 0 be the universal quotient on P, where £ is a univeral

line bundle over C' x J¢(C'). We consider the diagram

P=P(E, ®&,) —— JIC)

g
J4(C)
where p is the natural projection, and ¢ is defined as follows: for any (L,q) :=
(L, Ly, @ Ly, 5 C) € P, ¢(L,q) is the kernel of 7.L % , C — 0.

Lemma 3.2. Let W C J4(C) be the reduced subscheme of non-locally free sheaves
and Dy, Dy be the sections of P J4(C) given by projections E, ® Ep, — Ex,
and Ey, ® Ey, — Ex,. Then

(1) P 2, J4(C) is the normalization of J4(C), and W is the non-normal locus

of J4(C).
(2) oY (W)= D1+ Dy and ¢|p, : D; = W (i =1,2) are isomorphisms.
(3) For any integer k >0, Op := ‘b*(@?d(())) =0()r@pEF ®p*@§d(é) and
k . .
p O =&l @k
§=0
Proof. This is the special case (rank one) of [NR] and [Su].
Lemma 3.3. Fiz a line bundle L = Op1 (1) and two points py = (1,0), p2 = (0,1)
of X = P!, which give a logarithmic structure on X. For any D € H (D,%(

such that
D(s)(p2) = ¢~ D(s)(p1)-
Then the symbol of D is trivial.
Proof. P! is covered by Vi = P! < {p2} = SpecC[2] and Vo = P {p1} =
SpecC[L], and there is a global vector field 0 € H%(Tx (—p1 — p2)) such that

0 0
31 = 8]‘/1 = u%, 02 = 0]‘/2 = —’U%
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1

where u = 22, v =1L = % The space H?(Tx(—p;1 — p2)) is generated by 0.
We see that L]y, = Clu] - 1 and L]y, = C[v] - 22, thus any section s € H(L)
has the form
s1:= |y, = (ag + a1u) - x1, S92 := 8|y, = (a1 + agv) - 2,
where (ag,a1) = (s(p1),s(p2)) € C*. Therefore, for any D € H(D%, (L)), there
exists (bo, b1) € C? such that
D(S)|V1 = (b0+b1u) X1, l)(S)’V2 = (bl—f—bov)'l‘g.

If the symbol of D is k - 0, by the definition of symbol, we have

D<5)|Vl = D(Sl) = (CLO -+ G1U> . D(]?l) + k’alu T

D(s)|v, = D(s2) = (a1 + agv) - D(z2) — kagv - 5.

Thus D is determined by any given number D(1) € C such that
D(.I‘l) :D(l) X1, D(Ig) = (D(1)+k) Lo,

and one checks that for any given number D(1) € C the above definition gives
indeed a global differential operator of £ with symbol k- 9. It is easy to see that
for any s € HY(L) and ¢ € C*

D(s)(p2) —¢- D(s)(p1) = (s(p2) — ¢~ 5(p1))D(1) + k- s(p2).

Thus, if there exist a nonzero s and ¢ such that s(p2) = ¢ - s(p1), we have

D(s)(p2) —c- D(s)(p1) = ks(p2),

which is nonzero except k£ = 0 since s(p2) # 0 (otherwise s(p1) = 0 and s will have
at least two zero points).

The fact that X = J(C) is a degenerating fibre of flat family means that X is
more special than usual normal crossing varieties. For example, its cohomology has
low bound (h!'(Ox) > g) and there is a logarithmic structure on it. Moreover, we
have

Proposition 3.1. Let X = J4(C) be the moduli space of torsion free sheaves on
C with rank one and degree d, and L be the theta line bundle on X. Then for any
logarithmic structure on X in the sense of [KN] and any integer k > 0

HO(DY(L5) = C,  HO(Tx(log)) = H'(Ox) = C”.

Proof. Tt is enough to prove Proposition 3.1 for k = 1 since ¢1(L£F) = ke (£) and
thus we have isomorphism D%, (£) = D3, (L") by Proposition 2.2.

Local computation shows that ¢*Q% (log) = QL(log(D1 + D3)) and thus the
natural map Tpi = Tp(log(D1 + D3)) — ¢*T'x(log) is an isomorphism, where
P = (P,log(D; + Ds)), and the diagram

0 —— Op —— DL($"L) ——  Tpt —— 0

| l l

0 —— ¢"Ox —— ¢"Dx(L) —— ¢*Tx(log) —— 0
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implies that Dy, (©p) — ¢*DL, (L) is an isomorphism. Hence we have

0 —— (b*OP E— ¢*D113T(®P) E— ¢*TPT — 0

T T I

0 —— Ox —— DL (L) —— Tx(log) —— 0

Any operator D € H%(D%, (L)) with nonzero symbol will give an operator D €
H®(D1, (©p)) with nonzero symbol o(D) € H(Tpi). It is easy to see that

DL (0p) — Dh(Op) — Dh(Op) ® O(Dy) = O(D;) @ Dh(p*L),

where O(D;) = O(1) ® p*€,.F and L= © a6y ® £, ® E,,, which is algebraically
equivalent to © &) On the other hand, we have

0 —— Op —— DL(p*L) —— Tp — 0

H l l

0 —— "0 — PPy L) —— P Tjae —— 0

and Consider 0 — TP/Jd(é)(log) — Tpit — p"T )4, if the image of o(D) in

H(p*T 4 (5)) is nonzero, then the connecting map of

0 — O(D1) ® p*0 juy — O(D1) @ p* D)y ) (£) = O(D1) © p*T sy — 0

is not injective, which is impossible since the space

HO(O(Dy) @ p* DY, 6, (L))

= H*(D}, (L)) ® H(D}y ) (£, L © €y © )
and the space

HY(O(D1) ® 90 ja@)) = H(O u(zy) & H*(0 yuiz) ® £ @ Eiy)

have the same dimension. In fact, when &,, ® £, =0 JA(EYs they are two dimen-
sional spaces (see [We]), and if £,, ® ;' # O j4(6)> one has

HYE, &) =HE ' ®E,) =0
since &, ® &, is algebraically equivalent to zero, which implies that

0 1 ~or -1 _
H (Djd(é)(c,ﬁ<§<>8Iz@EJQC1 )) =0.

To see it, we tensor the exact sequence

X N
0= 054 = Pjay L) = Tya@) — 0
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by €, ® E." (as left modules) and use the fact that
gxz ® 5:5_11 ® TJd(é) — (5$2 ® (c;x—ll)@g(é)

Thus if D € H%(D%.: (L)) has nonzero symbol, then D gives an operator D €

HO(D}DT/Jd(é)(@p)), which induces an operator D € HY(Dp, (L)) with nonzero

symbol for general fibre F = P! of p : P — J%C) and the L = Opi(1). By
using Lemma 3.3, we will show that it is impossible. In fact, for any fibre F, let
p1 = FN Dy, po = FN Dy. Since HY(X, £) has dimension 1 and any nonzero
section s € H°(L) does not vanish on W, we can find a fibre F such that s(p;) # 0,
s(p2) # 0. Then we find a ¢ := s(p2)/s(p1) and a nonzero s|p € H°(Opi(1))
satisfying that s(p2) = ¢ - s(p1). Since D has to induce a morphism £ — L of
abelian group sheaves, D(s) € H°(L) = C- s has to satisfy D(s)(p2) = ¢- D(s)(p1),
which means that D has zero symbol by Lemma 3.3.

To see that H?(Tx (log)) = H'(Ox) = CY, we remark that both spaces have at
least dimension g, then we only need to check that dim H1(Ox) < g. This is easy
to see by using

0—0x — ¢.0p — Ow — 0

and H'(6,0p) = H'(Op) = H'(p.Op) = H'(O4&)) = CI L.

Lemma 3.4. For any logarithmic structure on X = J¢(C) in the sense of [KN],
we have H°(S?Tx (log)) = S2H®(Tx (log)).

Proof. 1t is enough to show that

1
1O(S2Tx (log)) := dim H°(S*Tx (log)) < dim 52 H(Tx (log)) = %.
To prove it, let F := ¢*T'x (log) = Tp(log(Dy + Ds)), F' := Tp)jaey(—D1 — Da),

F7 = p*T 4 ©) and use the exact squence
0—-F —-F—>F —0,
one has h%(S%Tx (log)) < h°(S?F) and the following two exact sequences
0—G— S*F — S*(F") -0,
0—S*(F)—=G—F F —0.

Thus, by using h°(S*(F”)) = h°(S*Tjuy) = 9(92_1), we have

glg—1)

hY(S*Tx (log)) < 5

+hO(S2F) + BT ey @ puF).

To compute F, noting that Op(D;) = O(1) ® p*E, ! and using the exact sequence
0—O0p —01)@p" (& &) = Tp)yaey =

we get F' = P/Jd(é)(_Dl — D3) = Op and hence

g(g—1)

glg+1)
5 At AN

h?(S°Tx (log)) < )
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Proposition 3.2. Let C/S be a flat family of proper curves satisfing the assumpa-
tions of Proposition 1.3 and such that Cs (s € A C S) are irreducible curves of one
node. Let f : J(C) — S be the associated family of moduli spaces of torsion free
sheaves of rank 1 and degree 0, and L be the relative theta line bundle on J(C)/S.
Then for any integer k > 0 and s € A

(1) H°(Tyc,)(log)) & HY(Oy(c.)) is an isomorphism.

(2) poye,, =0 and HO(D2 (Ek)) C.

Proof. From the discussions in Section 1, the log structure on J(Cs) induced by
logf~1(A) is a logarithmic structure in the sense of [KN], thus we can use our
Proposition 3.1 and Lemma 3.4, the (1) is a corollary of Proposition 3.1.

The claim p10, ., = 0 is equivalent to that

W (D7 et (Oscy)) = K (D)1 (Oueny)) + b0 (S*Tye,) (log)),

which is true for s € S\ A (see [We]). Therefore, by using the semicontinuity and
Lemma 3.4, it is true for all s € S if we remark that h° (D1 1O, ))) is constant

for all s € S since the canonical exact sequence
0— Oycy = Dyt (Ouieny) = Tre.)(log) — 0

is splitting by Proposition 2.2 and ¢;(O(c,)) = 0. By using again Proposition 2.2
and the above (1), we know that ppr = — U c1(LF) is injective. Hence

HO( J(Cs )T('Ck)) = HO(’D}](CS)T(,C};)) =~ C.

Theorem 3.1. Let f: J(C) — S be the family of generalized Jacobians in Propo-
sition 3.2, Y = f~1(A) and L be the relative theta line bundles. Then there exists
a symbol
p: Ts(logA) — f.5*T ) s(logY)

such that the following two conditions hold

(1) per-p+rycys =0,

k
(2) fuTycy/s(logY) Yell?), le*OJ(C) is an isomorphism.

In particular, there exists a unique projective logarithmic heat operator
H : Ts(logA) — fWieyys(£F)/Os
such that pg = p, and thus there exists a projective logarithmic connection on fLF.

Proof. 1t is clear that we only need to check (1) since (2) has been shown in Propo-
sition 3.2, namely, we need to find a solution of pzr - p+ Kycy/s = 0. By (2), we
have the isomorphism

LT 5y s(l0gY) ® £.Tres(logY) 220 RULT o s (logY).

Let p = (Uer(£%)) ™! o myeyss = Ts(logA) — fTscys(logY) @ fuTsc)s(logY),
which, over the open set S\ A, is a map into f*S2TJ(C)/S(logY) (see §2.3.8 of [GJ]
or [We]), thus it is a map

P = (UCl (Ek))_l o ’K”'J(C)/S' : TS([OQA) — f*SQTJ(C)/S(lOgY)
By Proposition 2.2, jize) = —U c1(L*) and p is a solution of pizr - p+ Kye)/s = 0.
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