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Abstract. We consider analytic maps fj : D → D of a domain D into itself and
ask when the sequence f1 ◦ · · · ◦fn converges locally uniformly on D to a constant.
In the case of one complex variable, we are able to show that this is so if there is
a sequence {w1, w2, . . .} in D whose values are not taken by any fj in D , and
which is homogeneous in the sense that it comes within a fixed hyperbolic distance
of any point of D . The situation for several complex variables is also discussed.
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1. Introduction
Given a mapping f : X → X one can study the iterates fn : X → X of f . More
generally, if F is a family of maps of X into itself, one can study the behaviour
of the sequences f1 ◦ · · · ◦ fn as n → ∞ , where the fj are chosen from F . This
process is often referred to as an Iterated Function System or, if the fj are chosen
with certain probabilities, as random iteration. The sequences f1 ◦ · · · ◦ fn arise
naturally in dynamical systems, in continued fraction theory (where the fn are
Möbius transformations), and in certain questions in complex analysis. We are
concerned here with finding conditions that imply that if f1, f2, . . . are maps of
a metric space X into itself, then every sequence f1 ◦ · · · ◦ fn converges locally
uniformly on X to some constant function. Although we shall briefly consider
the general problem, our main concern is the application of these ideas to analytic
functions of one or more complex variables.
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We begin with a modest generalization of the well known Contraction Map-
ping Theorem in a form that is applicable to random iteration and that includes
the Contraction Mapping Theorem as a special case (when fj = f for all j ).

Theorem 1.1. Suppose that (X, d) is a complete metric space, and that 0 <

k < 1 , and let f1, f2, . . . be a sequence of maps of X into itself each of which

satisfies the uniform Lipschitz condition d(fj(x), fj(y)) ≤ kd(x, y) for all x and

y in X . Suppose also that there exists some x0 in X such that the sequence

f1(x0), f2(x0), . . . is bounded. Then the sequence f1 ◦ · · · ◦ fn converges locally

uniformly on X to a constant function.

The proof of this will follow shortly. Our aim is to find criteria that will
enable us to apply Theorem 1.1 and so obtain the convergence of each sequence
f1 ◦ · · · ◦ fn to a constant. As many complex analytic maps are contractions (with
respect to hyperbolic metrics) it is natural to focus on analyticity, and we begin
by considering analytic functions of one complex variable. Later, we shall consider
functions of several complex variables. First, we recall the well known Denjoy-Wolff
Theorem on iteration of analytic maps; in this the iterates converge to a constant
limit without any assumption of a Lipschitz condition.

The Denjoy-Wolff Theorem. Let D be the open unit disc in the complex plane

C , and let f be any analytic map of D into itself that is not a conformal auto-

morphism of D . Then the iterates fn of f converge locally uniformly in D to a

constant value ζ , where |ζ| ≤ 1 .

A few remarks may be helpful. First, whereas Theorem 1.1 will necessarily
produce constant limit functions whose value lies in X , the Denjoy-Wolff Theorem
allows the constant values to lie on the boundary of D , and it is here that the hy-
perbolic nature of D is crucial. Briefly, the disc D is equipped with the hyperbolic
metric 2 |dz|/(1− |z|2), and the resulting metric space with metric ρD , where

ρD(z, w) = 2 tanh−1

∣∣∣∣
z − w

1− w̄z

∣∣∣∣ ,

is complete. An informal explanation of the Denjoy-Wolff Theorem is that the
negative curvature of ρD means that the space D is ‘expanding’ rapidly near the
circle at infinity, and the Schwarz-Pick Lemma implies that any analytic map f :
D→ D is contracting in the sense that for all z and w in D ,

ρD
(
f(z), f(w)

)
< ρD(z, w)

(unless f is an isometry, and hence a Möbius map of D onto itself). Together,
these facts force the convergence (in the Euclidean metric) of fn to a constant. In
fact, this result has nothing to do with analyticity for it is equally valid for any
map f : D → D that is contracting with respect to ρD . For more information
on the Denjoy-Wolff Theorem, see [1], [7] and [10] and the references therein. For
other results that are indirectly related to the general problem considered here see
[6], [7], [8], [9], [10] and [19]. The papers [7] and [10] contain generalizations of
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the Denjoy-Wolff Theorem to other spaces, and the papers [6], [8] and [9] discuss
the iterates of an analytic map f of a domain D into itself that is a Euclidean
contraction; that is, a map f that satisfies |f(z)− f(w)| < |z − w| in D .

Let us turn now to questions concerning random iteration of analytic func-
tions of one variable. In recent years several papers have appeared on this question;
see, for example, [2], [3] and [11], which are concerned with ergodic questions, and
also [5], [15], [16], [18] and [19] (which gives a survey of such results in the context
of continued fractions). These latter papers are closer to the work in this paper, but
apply only to the case in which the fj are analytic maps of a plane domain D into
a compact subset K of D (this is also used in [2, p.1387]), and D is (essentially)
assumed to be simply connected. To be specific, we have the following result ([18],
Theorem 1) which generalizes an earlier result due to Gill [15].

Theorem A. Suppose that D and D0 are domains in C , and that K ⊂ D0 ⊂
D ⊂ C , where D0 is simply connected, and K is a compact subset of D0 . Suppose

also that f1, f2, . . . are analytic maps of D into K . Then f1 ◦ · · · ◦ fn converges

to a constant locally uniformly in D .

Although D may be multiply connected here, the assumption that such a
simply connected D0 exists prevents the application of this result to a compact
subset K of D that separates the complement of D . Moreover, if we know that
the corresponding result holds for any simply connected domain, the assumptions
imply that the sequence f1◦· · ·◦fn converges locally uniformly on D0 to a constant
function, and it now follows (from the theory of normal families, provided only that
C\D contains at least two points) that f1◦· · ·◦fn converges locally uniformly on D

to a constant function. We remark that there is a similar result for several variables
in [25] (Theorem C in this paper) which, when specialized to one variable, applies
to bounded (possibly multiply connected) domains but still with the fj mapping
into a compact subset of D .

Theorem A also occurs, with the assumption that D is simply connected
(and hence no mention of D0 ), as Corollary 2.3 in [5], where it is derived from a
result of a quite different nature concerning the possible limits of sequences of the
form fnj ◦· · ·◦fnk

. On p.186 of [5], Baker and Rippon comment that the hypothesis
that the fj map D into a compact set K “seems stringent when compared with
the original Denjoy-Wolff Theorem”, and that “It is tempting to hope that some
weaker condition on K will yield the conclusion of the corollary”. They then
state that “the illusory nature of this hope . . . is shown by the following example”
(Example 2.6, [5],p.186). Our results here will show that considerable progress can
be made in weakening the assumption that K is compact.

We turn now to the main results in this paper. First, we recall that a
subdomain D of C is hyperbolic if it supports a complete Riemannian metric of
constant curvature −1, namely, the (unique) hyperbolic metric λD(z) |dz| , and it
is well known that this is so if and only if its complement in C contains at least
two points. We shall use ρD for the induced hyperbolic distance in D . Now the
general form of the Schwarz-Pick Lemma says that any analytic map f : D1 → D2

between two hyperbolic domains D1 and D2 is contracting in the weak sense
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that ρ2

(
f(z), f(w)

) ≤ ρ1(z, w), where ρj is the hyperbolic metric on Dj . It
is not difficult to see that if f maps D into a compact subset K of D , then
f satisfies the stronger contractive property that is required in the Contraction
Mapping Theorem and, as the scaling factor k depends only on D and K , this
enables us to apply Theorem 1.1 and so derive results on random iteration. The
essential ideas in this paper are (1) that these arguments remain valid for maps
f of D into an arbitrary subset E of D provided only that the geometry of E

guarantees this strong contractive property of f , and (2) that there is a simple
geometric condition on E that guarantees this strong contractive property, and
which is satisfied by many more subsets of D than just the compact subsets of D .
To the best of our knowledge, this is the first time that non-compact subsets of D

have been considered in this context. The introduction of the hyperbolic metric is
crucial here because we want to use Theorem 1.1 and one of the major deficiencies
of the Euclidean metric is that its restriction to a proper subdomain of C is not
complete.

Suppose that Ω is a subdomain of a hyperbolic domain D . Then Ω is also
hyperbolic, and the Schwarz-Pick Lemma applied to the identity (inclusion) map
yields the Monotonicity Principle for the hyperbolic metric, namely that λD ≤ λΩ

on Ω with a strict inequality at each point of Ω when Ω 6= D . It is convenient to
write

µ(Ω, D) = sup
w∈Ω

λD(w)
λΩ(w)

;

thus µ(Ω, D) ≤ 1. Of course, it may be that λD(z) < λΩ(z) for each z in Ω, yet
µ(Ω, D) = 1, and this suggests the next definition.

Definition 1.2 The subdomain Ω is a Lipschitz subdomain of D if µ(Ω, D) < 1.

We shall see later that this leads easily to the next result.

Theorem 1.3. Suppose that f1, f2, . . . are analytic maps of a hyperbolic plane

domain D into a Lipschitz subdomain Ω of D . Then every limit function of the

sequence f1 ◦ · · · ◦ fn is constant. Suppose that, in addition, for some z0 in D the

sequence fn(z0) lies in a compact subset of D ; then f1 ◦ · · · ◦ fn converges locally

uniformly on D to a constant function.

It is easy to see that if Ω lies in a compact subset of D then Ω is a Lipschitz
domain, and later we shall give many examples of Lipschitz subdomains that are
not relatively compact in D . Thus Theorem 1.3 is a very significant strengthening
of the earlier results of this type. It gives a very general condition under which all
limit functions are constant, and here the domain D may be multiply connected,
and the fj(D) may lie in a ‘large’ (i.e. non-compact) subset of D . In fact, the
proof of Theorem 1.3 will show that a similar result holds in the more general
circumstances in which each fj is an analytic map of D into Ωj providing only
that there is some constant k such that for all j , µ(Ωj , D) ≤ k < 1. Theorem 1.3
is the case when Ωj = Ω for all j .

In order to be able to apply Theorem 1.3 we need a criterion that enables us
to recognize when a subdomain of D is a Lipschitz subdomain, and before we can
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state our criterion we need to introduce the idea of a Bloch domain. We recall that
a subdomain Ω of C is a Bloch domain if and only if there is a finite upper bound
on the radii of the Euclidean discs that lie in Ω. We now introduce the analogous
definition for the hyperbolic metric.

Definition 1.4 A subdomain Ω of a hyperbolic domain D in C is a Bloch
subdomain of D if and only if there is a finite upper bound on the radii of the discs
(in the metric ρD ) lying in Ω.

Suppose now that Ω is a subdomain of D , and consider the collection D of
open discs in the metric space (D, ρD). We shall denote the radius (as measured
by ρD ) of the open disc ∆ in D by r∆ . Now let

R(Ω, D) = sup{r∆ : ∆ ∈ D, ∆ ⊂ Ω}, (1.1)

where, of course, we allow R(Ω, D) to be +∞ . Clearly, Ω is a Bloch subdomain of
D if and only if R(Ω, D) < +∞ . The following theorem shows (quantitatively) that
a subdomain of D is a Lipschitz subdomain if and only if it is a Bloch subdomain.

Theorem 1.5. Suppose that Ω is a subdomain of a hyperbolic plane domain D ;

then

tanh 1
2R(Ω, D) ≤ µ(Ω, D) ≤ tanh R(Ω, D).

In particular, Ω is a Lipschitz subdomain of D if and only if R(Ω, D) < +∞ .

We can now rewrite Theorem 1.3 in the following form, and this is the main
result in this paper.

Theorem 1.6. Suppose that Ω is a Bloch subdomain of a hyperbolic domain D

and that f1, f2, . . . are analytic maps of D into Ω . Then any limit function of

f1 ◦ · · · ◦ fn is constant. Further, if there is some z0 in D such that the sequence

fn(z0) lies in a compact subset of D , then f1 ◦ · · · ◦ fn converges locally uniformly

on D to a constant function.

As a special case of Theorem 1.6, we have the following result.

Theorem 1.7. Suppose that D is a hyperbolic subdomain of C , and let zn be a

sequence in D that accumulates only on ∂D , and meets every hyperbolic disc in

D of some given radius d , say. Let Ω = D\{z1, z2, . . .} . Then for any collection

of analytic maps fj of D into Ω , any limit function of f1 ◦ · · · ◦ fn is constant.

Further, if there is some z0 in D such that the sequence fn(z0) lies in a compact

subset of D , then f1 ◦ · · · ◦ fn converges locally uniformly on D to a constant

function.

There are several straightforward but interesting consequences of Theorem
1.6, and in describing these we assume a modest familiarity with hyperbolic geom-
etry. Of course, the most striking example is that described in Theorem 1.7. The
existence of such a sequence zn in Theorem 1.7 (indeed, of many such sequences)
is easily established. We choose any point a in D , and let Un and Kn be the
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open disc, and closed disc, respectively, with centre a and radius n (measured
with respect to ρD ). Now cover the compact set K1 by a finite number of discs
of radius one. Next, cover the compact set K2\U1 by a finite number of discs of
radius one, then K3\U2 and so on. The set of centres of all of these discs, for all
n , may now be taken as the sequence zj for clearly this sequence accumulates only
on ∂D and D\{z1, z2, . . .} is a Bloch domain. A similar construction shows that
for each compact subset K there is a positive d , and a sequence zn of points in
D\K , that accumulates only on ∂D , and that meets every hyperbolic disc in D

with radius d .

We briefly mention some other examples of Lipschitz subdomains of the unit
disc D . A horodisc (an open Euclidean disc that is internally tangent to the unit
circle ∂D) is not a Lipschitz subdomain of D for it contains arbitrarily large ρD -
discs. By contrast, the region lying between two circles that are tangent to ∂D
at the same point is a Lipschitz subdomain of D . Next, a hyperbolic Stolz region
(the region formed by taking the union of all hyperbolic discs of a fixed radius
whose centres lie on a hyperbolic geodesic in D) is a Lipschitz domain. Finally, a
hyperbolic polygon in D (the hyperbolic convex hull of a finite set of points in the
closed unit disc) is also a Lipschitz subdomain of D .

We turn now to discuss the results for several complex variables. Through-
out this discussion X and Y are complex Banach spaces and H(X, Y ) denotes the
space of holomorphic (i.e. analytic) maps of X into Y . We shall follow the custom-
ary terminology (in this area) by calling a metric (in the sense of metric spaces)
a distance, and by using metric for the infinitesimal version of this. A pseudo-
distance d satisfies the usual requirements of a distance except that d(x, y) = 0
does not imply that x = y . For more details about this section, we refer the reader
to [12], [14], [17] and [24] (and especially to Chapters IV and V in [14]). We remark
that most of these ideas can be discussed for holomorphic maps between complex
manifolds (including Riemann surfaces) but as we have no new ideas to introduce
in this context we shall confine our discussion to Banach spaces.

We begin with the following fixed point theorem of Earle and Hamilton
(which is another modification of the Contraction Mapping Theorem (see [13], and
[14,p.91, pp.137-139]).

Theorem B. Let K be a compact subset of a bounded domain D in a complex

Banach space, and suppose that f : D → D is holomorphic, and that f(D) ⊂ K .

Then f has a unique fixed point, say ζ , in D , and fn → ζ in D .

This result has been extended by Ren and Zhang to a result that applies to
random iteration.

Theorem C. Let D be a bounded domain in a complex Banach space X , and

suppose that K is a compact subset of D . Suppose also that f1, f2, . . . are holo-

morphic self-maps of D , and that for each j , fj(D) ⊂ K . Then f1 ◦ · · · ◦ fn

converges uniformly on D to a constant.

The proof of Theorem C follows closely the proof of Theorem B that is given
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in [14], but see [25] (especially Remark 2.1, p.35). The crucial role of the hyperbolic
metric in one complex dimension is taken over in the proof of Theorem C by the
Kobayashi metric, and we now give a brief description of this. For each x and y

in a domain D in a complex Banach space X , let

δD(x, y) = inf {ρD(u, v) : f ∈ H(D, D), f(u) = x, f(v) = y}.
The set on the right-hand side is non-empty (so that δD is defined), and it is clear
that δD is symmetric. However, δD need not satisfy the triangle inequality and to
overcome this Kobayashi introduced the Kobayashi pseudo-distance kD by

kD(u, v) = inf
n∑

j=1

δD(wj , wj+1),

where this infimum is taken over all finite sequences w1, . . . , wn+1 (for any n) in D

such that w1 = u and wn+1 = v . It is known that kD is a pseudo-distance on D .
The essential role of the Schwarz-Pick Lemma remains true in these circumstances;
that is, holomorphic maps are (weak) contractions with respect to the Kobayashi
pseudo-distances; explicitly, if f ∈ H(D, D′), then

kD′
(
f(x), f(y)

) ≤ kD(x, y).

By taking the holomorphic map to be the identity, the monotonicity property of
the pseudo-distance follows; that is, if D1 ⊂ D then kD ≤ kD1 .

Next, we consider the infinitesimal Kobayashi metric on a domain D in a
Banach space X ; this is the generalization of the infinitesimal hyperbolic metric
λD(z) |dz| . The Kobayashi seminorm KD is defined at each point (p, v) of the
tangent bundle T (X) by

KD(p, v) = inf{x > 0 : there exists f in H(D, D), f(0) = p, df(0)(x) = v},
and Royden [24] proved that

kD(p, q) = inf
γ

∫ 1

0

KD

(
γ(t), γ′(t)

)
dt,

where the infimum is taken over all smooth paths γ : [0, 1] → X joining p to q .
We say that the domain D is Kobayashi hyperbolic if kD is a distance (that is,
if d(x, y) > 0 when x 6= y ), and in this case KD(p, v) > 0 (see [22, Theorem
2, p.133]). We remark that the Kobayashi metric on even a bounded subdomain
of CN may not be complete, and this fact highlights one of the major differences
between the theory of one and several variables.

Clearly, KD is a contraction with respect to holomorphic maps; explicitly,
if f ∈ H(D,D′), then for all x in D and all v in X , KD′

(
f(x), df(x)(v)

) ≤
KD(x, v). As before, this implies that if D ⊂ D′ then KD′(x, v) ≤ KD(x, v). In
view of our earlier discussion, it is now natural to make the following definition.

Definition 1.8 A subdomain Ω of a domain D in a Banach space X is a
Lipschitz subdomain of D if D is Kobayashi hyperbolic, and if

µ(Ω, D) = sup
{

KD(p, v)
KΩ(p, v)

: (p, v) ∈ T (Ω), v 6= 0
}

< 1.

The next result follows easily from this.
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Theorem 1.9. Suppose that X is a complex Banach space, and that f1, f2, . . .

are holomorphic maps from a bounded, Kobayashi hyperbolic subdomain D of X

into a Lipschitz subdomain Ω of D . Then f1 ◦ · · · ◦ fn converges locally uniformly

on D to a constant.

In this result the constant limit may lie on the boundary of D , and if we take
f1 = f2 = · · · = f here, we obtain a type of Denjoy-Wolff Theorem for bounded
subdomains of complex Banach spaces.

It is easy to see that if Ω is a relatively compact subdomain of a bounded
domain D in a complex Banach space, then Ω is a Lipschitz subdomain of D (this
is essentially the proof of Theorem C); thus (in a rather trivial sense) Theorem 1.9
contains Theorem C.

Of course, these results raise the obvious question, namely is there a char-
acterization of Lipschitz subdomains in a Banach space that corresponds to the
notion of a Bloch domain described earlier? We shall show that the answer here
is ‘no’ for we shall give an example of a bounded subdomain of C2 that is (in the
obvious sense) a Bloch domain but not a Lipschitz subdomain. In short, Theorem
1.5 does not generalize to more than one variable and as this lies at the heart of
our geometric recognition of Lipschitz domains in C , there are still open questions
about what these look like in CN , where N ≥ 2.

We give the proof of Theorem 1.1 in Section 2. In Section 3 we study random
iteration of a family of analytic maps which is assumed to satisfy a uniform Lipschitz
condition, and we prove Theorem 1.3. The proof of Theorem 1.5 is given in Sections
4 and 5. We prove Theorem 1.9 in Section 6, and finally, in Section 7, we give an
example of a Bloch subdomain of D× D that is not a Lipschitz subdomain.

2. The proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. As the sequence fn(x0) is
bounded, the sequence d(x0, fj(x0)), j = 1, 2, . . . , is also bounded, say by A . Now
for any x in X ,

d
(
x, fj(x)

) ≤ d(x, x0) + d
(
x0, fj(x0)

)
+ d

(
fj(x0), fj(x)

)
< 2d(x0, x) + A,

so that for each x , the sequence d
(
x, fj(x)

)
is bounded. Take any x in X and,

for brevity, write yn = f1 ◦ · · · ◦ fn(x). Then, for any natural numbers m and n ,

d(yn, yn+m) ≤
n+m−1∑

j=n

d(yj , yj+1) ≤
n+m−1∑

j=n

kjd
(
x, fj+1(x)

) ≤ kn

1− k

(
2d(x, x0) + A

)
.

As (X, d) is complete, this shows that the sequence yn converges, and hence that
the sequence f1 ◦ · · · ◦ fn converges pointwise on X , say to the function g . As

d
(
f1 ◦ · · · ◦ fn(x), f1 ◦ · · · ◦ fn(y)

) ≤ knd(x, y) → 0

as n →∞ , we see that g is constant on X , with value ζ , say. Now take any a in
X , and any compact subset K of X , and let da = supx∈K d(a, x) (which is finite).
Then for all x in K we have

d(f1 ◦ · · · ◦ fn(a), f1 ◦ · · · ◦ fn(x)) ≤ knd(a, x) ≤ knda,
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so that f1 ◦ · · · ◦ fn → ζ locally uniformly on X . The proof is complete.

Of course, the extent to which Theorem 1.1 is useful depends on our ability
to find (preferably geometric) conditions under which a family of maps from X to
itself is uniformly Lipschitz. The rest of the paper is concerned with this problem.

Remark Given any sequence f1, f2, . . . of self-maps of (X, d), we say that g

is a limit function of the sequence fn if there is a subsequence of this sequence
that converges locally uniformly on X to g . This paper is about the possible
limit functions of the sequence f1 ◦ · · · ◦ fn . We note that the last part of the
proof of Theorem 1.1 shows that even when (X, d) is not complete, if the sequence
f1◦· · ·◦fn converges pointwise on X , then it converges locally uniformly on X to a
constant. Thus if (X, d) is any metric space, and if the family {fj} of self-maps of

X is uniformly Lipschitz in the sense of Theorem 1.1, then the sequence f1◦· · ·◦fn

can only have constant limit functions. Situations such as these are common in the
study of dynamical systems; for example, if X = [0, 1] with the Euclidean metric,
and F = {f1, f2} , where f1(x) = x/3 and f2(x) = (2 + x)/3, then the possible
constant limit functions are those whose value lies in the classical Cantor set.

3. Random iteration of uniformly Lipschitz families of analytic maps
In this section we explain our terminology in Definition 1.2, and we prove Theorem
1.3.

We begin by noting that µ(Ω, D) is conformally invariant (and this is another
reason for using the hyperbolic rather than the Euclidean metric). Indeed, if f is
any conformal map of D onto the domain f(D) (so that f is also a conformal
map of Ω onto f(Ω)) then, for every z in Ω,

λf(D)

(
f(z)

)|f ′(z)| = λD(z),

λf(Ω)

(
f(z)

)|f ′(z)| = λΩ(z),

and hence
µ
(
f(Ω), f(D)

)
= µ(Ω, D) (3.1)

(we shall generalize this result to covering maps later). It follows that the rela-
tionship of Ω being a Lipschitz subdomain of D is also conformally invariant. In
addition, it is immediate from the definition of a Lipschitz subdomain and the
Monotonicity Principle that any subdomain of a Lipschitz subdomain is also Lip-
schitz; indeed, if Ω′ ⊂ Ω ⊂ D , then µ(Ω′, D) ≤ µ(Ω, D). The following lemma
allows us to apply Theorem 1.1.

Lemma 3.1. Suppose that Ω is a Lipschitz subdomain of D . Then the family

of analytic maps from (D, ρD) to (Ω, ρD) is uniformly Lipschitz with Lipschitz

constant µ(Ω, D) ; that is, for each analytic f : D → Ω , and each z and w in D ,

ρD

(
f(z), f(w)

) ≤ µ(Ω, D)ρD(z, w) .

Proof Suppose that Ω is a Lipschitz subdomain of D , and that f : D → Ω is
any analytic map. Let z and w be any two points in D , and let γ be the geodesic
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in the metric ρΩ that joins f(z) to f(w) in Ω. Then

ρD

(
f(z), f(w)

) ≤
∫

γ

λD(ζ) |dζ|

≤ µ(Ω, D)
∫

γ

λΩ(ζ) |dζ|

= µ(Ω, D)ρΩ

(
f(z), f(w)

)

≤ µ(Ω, D)ρD(z, w)

as required, the last inequality following directly from the general form of the
Schwarz-Pick Lemma. The proof of Lemma 3.1 is complete.

If we combine Theorem 1.1 and the Remark at the end of Section 2 with
Lemma 3.1 we immediately obtain Theorem 1.3.

4. Universal cover maps
Throughout this short section we suppose that D is a hyperbolic domain in C ,
and that Ω is a proper subdomain of D . We take any point a in Ω, let π : D→ D

be a universal covering projection with π(0) = a , and let Σ be the component of
π−1(Ω) that contains the origin. The next result generalizes (3.1) and, in effect,
implies that when proving Theorem 1.5 we may assume that D = D .

Lemma 4.1. In the notation above, µ(Ω, D) = µ(Σ,D) .

Proof As π : D→ D is a universal covering projection, λD(π(z))|π′(z)| = λD(z),
and as π|Σ is a covering projection of Σ onto Ω, we have λΩ(π(z))|π′(z)| = λΣ(z).
Thus

λD(π(z))
λΩ(π(z))

=
λD(z)
λΣ(z)

,

and because π maps Σ onto Ω, this implies that µ(Ω, D) = µ(Σ,D) as required.

Next, given any pair Ω and D , and z in Ω, let R(z; Ω, D) be the radius of
the largest open disc (relative to the hyperbolic metric on D ) with centre z that
is contained in Ω; thus (see (1.1))

R(Ω, D) = sup{R(z; Ω,D) : z ∈ Ω}. (4.1)

We now show that this too is invariant under a cover map.

Lemma 4.2. In the notation above, R(Ω, D) = R(Σ,D) .

Proof It is convenient to use the notation ∆D(z, r) to denote the open disc (rel-
ative to the hyperbolic metric on D ) with centre z and radius r . As any point of
∆D(z, r) can be joined to z by an arc of length less than r , and as π is a local
isometry, it is immediate that

π
(
∆D(z, r)

) ⊂ ∆D

(
π(z), r

)
.

10
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A similar argument holds for π−1 (as all curves lift under π−1 ) so we find that

π
(
∆D(z, r)

)
= ∆D

(
π(z), r

)
. (4.2)

Suppose now that ∆D(z, r) ⊂ Σ. Then, from (4.2), ∆D

(
π(z), r

) ⊂ Ω, and
this implies that

R(z; Σ,D) ≤ R
(
π(z); Ω, D

)
. (4.3)

On the other hand, if ∆D

(
π(z), r

) ⊂ Ω then π(∆D(z, r)) ⊂ Ω, so that ∆D(z, r) ⊂
π−1(Ω). As z ∈ Σ, Σ is a component of π−1(Ω), and ∆D(z, r) is connected,
we conclude that ∆D(z, r) ⊂ Σ. This gives the reverse inequality to (4.3), and
consequently

R(z; Σ,D) = R
(
π(z); Ω, D

)
.

The conclusion of Lemma 4.2 now follows directly from (4.1).

5. The proof of Theorem 1.5
We recall that a subdomain Ω of C is a Bloch domain if and only if there is a
finite upper bound, say Re(Ω,C), on the radii of the Euclidean discs lying in Ω.
If the supremum of the quotient of the Euclidean metric |dz| on the larger domain
C by the hyperbolic metric on the smaller domain Ω is µe(Ω,C), that is

µe(Ω,C) = sup
z∈Ω

|dz|
λΩ(z)|dz| ,

then
1
2Re(Ω,C) ≤ µe(Ω,C) ≤ Re(Ω,C),

(see [23]) so that Ω is a Bloch domain if and only if µe(Ω,C) < ∞ . Theorem 1.5
gives the hyperbolic analogue of these inequalities (for related ideas, see [20] and
[21]). We shall break the proof of Theorem 1.5 into four lemmas, the first of which
gives the left-hand inequality in Theorem 1.5.

Lemma 5.1. Suppose that Ω is a subdomain of a hyperbolic domain D . Then,

for z in Ω ,

tanh 1
2R(z; Ω, D) ≤ λD(z)

λΩ(z)
≤ µ(Ω, D).

Proof By Lemmas 4.1 and 4.2, we may assume that D = D and Ω ⊂ D . Take any
z0 in Ω; let g be an automorphism of D with g(z0) = 0, and let g(Ω) = Ω′ . Then
from Lemmas 4.1 and 4.2 again, µ(Ω,D) = µ(Ω′,D), and R(Ω,D) = R(Ω′,D).
Suppose now that ∆D(0, t) ⊂ Ω′ . Then

λD(0)
λΩ′(0)

=
2

λΩ′(0)
≥ r,

where r is the Euclidean radius of ∆D(0, t). Thus r = tanh 1
2 t , and (after taking

the supremum over all admissible t) we conclude that

λD(0)
λΩ′(0)

≥ tanh 1
2R(0; Ω′,D).

11
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The conformal invariance (under g−1 ) now gives
λD(z0)
λΩ(z0)

≥ tanh 1
2R(z0; Ω,D),

and this is the first inequality in Lemma 5.1. The second inequality follows imme-
diately from the definition of µ(Ω, D).

In order to prove the second inequality in Theorem 1.5 we need two prelim-
inary results. The first of these is an explicit example of a hyperbolic metric, and
in this it is convenient to focus on the pseudohyperbolic distance between z and
w in D , namely

p(z, w) =
∣∣∣∣

z − w

1− w̄z

∣∣∣∣ = tanh 1
2ρD(z, w).

Lemma 5.2. Suppose that c ∈ D , and let ∆∗
D(c,R) = ∆D(c,R)\{c} (this is the

hyperbolic disc in D with centre c and radius R that is punctured at c). Then

λ∆∗(c,R)(z) =
1− p(z, c)2

2p(z, c) log(r/p(z, c))
λD(z), (5.1)

where r = tanh 1
2R .

Proof For brevity, we write ∆∗(c,R) instead of ∆∗
D(c,R). The function T (z) =

(z − c)/(1 − c̄z) is a conformal automorphism of D that maps ∆∗(c, R) onto
∆∗(0, R). As

∆∗(0, R) = {z : 0 < |z| < r}, r = tanh 1
2R,

we see that g defined by g(z) = r−1T (z) maps ∆∗(c,R) conformally onto D\{0} .
Thus (see [4], p.17)

λ∆∗(c,R)(z) = λD\{0}
(
g(z)

)|g′(z)|

=
|g′(z)|

|g(z)| log(1/|g(z)|)

=
|T ′(z)|

|T (z)| log(r/|T (z)| ,

and the result follows as p(z, c) = |T (z)| and |T ′(z)| = 1
2

(
1− |T (z)|2)λD(z).

The second result that we need is motivated by the function in (5.1) and its
proof (which we omit) is a simple exercise in calculus.

Lemma 5.3. The function

A(k) = k exp
(

1− k2

1 + k2

)

is increasing on (0, 1) and satisfies A(k) > k there. For 0 < t < A(k) , let

h(t) =
1− t2

2t log(A(k)/t)
.

Then h is decreasing on (0, k] , increasing on [k,A(k)) , and satisfies h(k) = (1 +
k2)/2k . In particular, if k = tanh y , then h(tanh y) = 1/ tanh(2y) .

We now give our final lemma, and this will enable us to complete the proof
of Theorem 1.5.

12
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Lemma 5.4. Suppose that Ω is a Lipschitz subdomain of a hyperbolic domain

D , and that z ∈ Ω . For brevity, write τ(z) = tanh 1
2R(z; Ω,D) . Then

1− τ(z)2

2τ(z) log
(
A0/τ(z)

)λD(z) ≤ λΩ(z), (5.2)

where

A0 =
(
tanh 1

2R(Ω, D)
)
exp

1− tanh2 1
2R(Ω, D)

1 + tanh2 1
2R(Ω, D)

= A
(
tanh 1

2R(Ω, D)
)
.

Consequently, µ(Ω, D) ≤ tanh R(Ω, D) .

Proof As Ω is a Lipschitz subdomain, µ(Ω, D) < 1 and so, from Lemma 5.1,
R(Ω, D) < +∞ . As before, we may assume that D = D and that Ω ⊂ D . Our
proof uses Alhfors’ Lemma concerning ultrahyperbolic metrics (see [4], p.13, and
[22]), and the example in Lemma 5.2 is used to construct a supporting metric.

We choose k so that

0 < tanh 1
2R(Ω, D) < k < 1,

and then (recall that D = D) define

σ(z) = h
(
τ(z)

)
λD(z) =

1− τ(z)2

2τ(z) log(A(k)/τ(z))
λD(z). (5.3)

The idea of the proof is to show that σ(z)|dz| is an ultrahyperbolic metric on Ω.
Ahlfors’ Lemma then implies that σ ≤ λΩ , and as this inequality is preserved as we
let k decrease to tanh 1

2R(Ω, D) this gives (5.2). Assuming this for the moment,
we then have

λD(z)
λΩ(z)

≤ 2τ(z) log(A0/τ(z))
1− τ(z)2

=
1

h
(
τ(z)

)

≤ 1
h(tanh 1

2R(Ω, D))

= tanh R(Ω, D)

which yields the final inequality in Lemma 5.4 (which coincides with the second in-
equality in Theorem 1.5). It remains only to prove that σ(z) |dz| is ultrahyperbolic
on Ω.

Select a point a in Ω. We need to demonstrate that σ(z)|dz| defined in
(5.3) has a supporting metric in a neighborhood of a . Choose c in D ∩ ∂Ω with
ρD(a, c) = R(a; Ω,D). Then for z in Ω with

ρD(z, a) < 2 tanh−1 k − ρD(a, c)

13
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(the upper bound here is positive) we have

R(z; Ω,D) ≤ ρD(z, c) ≤ ρD(z, a) + ρD(a, c) < 2 tanh−1 k,

or equivalently,
τ(z) ≤ tanh 1

2ρD(z, c) < k,

with equality when z = a . This implies that

σ(z) = h
(
τ(z)

)
λD(z)

≥ h(tanh 1
2ρD(z, c))λD(z)

= h(p(z, c))λD(z)

= λ∆∗(c,A(k))(z),

with equality at a . Thus λ∆∗(c,A(k))(z)|dz| is a supporting metric for σ(z)|dz| at
a and our proof of Theorem 1.5 is finally complete.

6. Several complex variables
We begin by showing that Theorem 1.9 does contain Theorem C, and for this it is
sufficient to prove the following lemma.

Lemma 6.1. Let D be a bounded domain in a complex Banach space X , and

suppose that Ω is a relatively compact subdomain of D . Then Ω is a Lipschitz

subdomain of D .

Proof Let

ε =
dist(Ω, ∂D)
2 diam(Ω)

,

where these terms are computed in the norm ||·|| on X . Now take any (p, v) ∈ T (Ω)
with v 6= 0, and let f : D → Ω be any holomorphic map such that f(0) = p and
df(0)(x) = v , where x > 0. Next, define g : D→ X by g(w) = f(w)+ε(f(w)−p).
As f(w) ∈ Ω, and

||g(w)− f(w)|| ≤ ε diam(Ω) < dist(Ω, ∂D),

we see that g maps D into D ; thus g ∈ H(D, D). Clearly, g(0) = p , and if
λ = 1/(1 + ε) then

dg(0)(λx) = (1 + ε)df(0)(λx) = df(0)(x) = v,

so we can deduce that
KD(p, v) ≤ λx = x/(1 + ε).

As f is arbitrary, and ε is independent of f , this implies that

KD(p, v) ≤ 1
1 + ε

KΩ(p, v).

14
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As (p, v) is any point in T (Ω) and v 6= 0, we deduce that µ(Ω, D) ≤ 1/(1+ ε) < 1
as required.

Next, we give the proof of Theorem 1.9, and this follows much as before
except that the metric space (D, kD) need not be complete (see [12, p.81]). Note
that in the case of one complex variable, kD = ρD and completeness is assured.
This difficulty is overcome by following the ideas in the proof of Theorem B in [14]
which is based on Lemma V.5.1 (p.137) in [14].

The proof of Theorem 1.9 First, the obvious analogue of Lemma 3.1 holds in
the circumstances given here, but we cannot use Theorem 1.1 directly as the space
(D, kD) might not be complete. However, the argument used to prove Theorem 1.1
does show that, for any x in D , the sequence f1 ◦ · · · ◦ fn(x) is a Cauchy sequence
with respect to kD . As D is bounded then there is some positive R such that for
any x in D , D lies in the open ball B(x,R), and using this and the monotonicity
of the metric as a function of the domain, we find that if x and y are in D , then

kD(x, y) ≥ kB(x,R)(x, y) = tanh−1

( ||x− y||
R

)
.

It follows that for any x in D , the sequence f1 ◦ · · · ◦ fn(x) is a Cauchy sequence
with respect to the norm of the underlying Banach space X and so converges in
X to some value, say g(x). Now take any x and y in D and observe that

kD

(
f1 ◦ · · · ◦ fn(x), f1 ◦ · · · ◦ fn(y)

) ≤ µ(Ω, D)nkD(x, y) → 0

as n → ∞ . Thus g(x) = g(y), and as this implies that g is constant on X , the
proof is complete.

We remark that the proof of Theorem 1.9 shows that if f1, f2, . . . are holo-
morphic maps from a bounded subdomain D of X into a Lipschitz subdomain Ω
of D , then for each x in D , the sequence f1 ◦ · · · ◦ fn(x) either converges to a
point ζ in D , or it accumulates only on ∂D . Moreover, the two possibilities here
are independent of the choice of x and, in the former case, ζ is also independent
of x .

7. An example
We end this paper with an example of a domain Ω in C2 that is a Bloch domain
but not a Lipschitz domain (both with respect to the Kobayashi metric). As
our example is in C2 , it is convenient to begin with some general remarks about
Lipschitz subdomains of product spaces.

First, we note that if U and V are subdomains of the complex Banach
spaces X and Y , respectively, then [14, Proposition V.1.6, p.117]

KU×V

(
(z, w), (u, v)

)
= max

{
KU (z, u),KV (w, v)

}
.

Suppose now that Ωj is a Lipschitz subdomain of Dj , j = 1, 2; then

KD1×D2

(
(p1, p2), (v1, v2)

)

KΩ1×Ω2

(
(p1, p2), (v1, v2)

) =
max{KD1(p1, v1), KD2(p2, v2)}
max{KΩ1(p1, v1), KΩ2(p2, v2)} .
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Now for any positive numbers ai and bj ,

max{a1, a2}
max{b1, b2} ≤ max

{
a1

b1
,
a2

b2

}
,

so the next result follows immediately.

Theorem 7.1. Suppose that Ωj is a Lipschitz subdomain of Dj , j = 1, 2 , and

that each Dj is Kobayashi hyperbolic. Then Ω1 ×Ω2 is a Lipschitz subdomain of

D1 ×D2 .

This lemma enables us to construct many Lipschitz subdomains of, for exam-
ple, DN , and hence to provide many examples to which Theorem 1.9 is applicable.

Finally, given X and Y , let πj be the projections given by π1(z, w) = z

and π2(z, w) = w . Then we have the following result.

Theorem 7.2. Supppose that Ω ⊂ D1×D2 , where each Dj is Kobayashi hyper-

bolic. If πj(Ω) is a Lipschitz subdomain of Dj , j = 1, 2 , then Ω is a Lipschitz

subdomain of D1 ×D2 .

Proof First, Ω ⊂ π1(Ω) × π2(Ω). By Theorem 7.1 this product set is Lipschitz,
and hence so is any subdomain of it.

We now construct our example. First, we construct a sequence zn in the
unit disc D in C such that |zn| → 1 and such that if E = {z1, z2, . . .} , then every
point of D is within a distance one of E when measured in the hyperbolic metric
ρD of D . We shall show that Ω defined by

Ω = (D× D)\(E × E)

is a Bloch, but not a Lipschitz, domain. First, Ω is a Bloch domain in D × D
because

kD×D
(
(z, w), (zp, zq)

)
= max

{
kD(z, zp), kD(w, zq)

}

= max
{
ρD(z, zp), ρD(w, zq)

}

≤ 1

for a suitable choice of p and q (see [14, p.136]).

To show that Ω is not Lipschitz we use a result of Kobayashi [17, Proposition
3.5.35, p.96] which says that if A is a closed analytic subset of codimension two in
a complex manifold M , then

KM\A(p, v) = KM (p, v)

when p ∈ M\A . In particular, µ(M\A,M) = 1, so that M\A is certainly not
Lipschitz. We take M = D×D and A = E×E , and as E×E is obviously closed
and of codimension two in D×D , it is sufficient to show that it is an analytic subset
of D × D . The assumptions on the zn in D guarantee that there is an analytic
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function f : D → C that is zero on, and only on, E [23,p.295], so we may define
functions f1(z, w) = z and f2(z, w) = w that are analytic on D× D . As

E × E = f−1
1 ({0}) ∩ f−1

2 ({0}),

we see that E × E is indeed an analytic subset of D× D .
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