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Abstract—By employing Mawhin’s continuation theorem, the existence of periodic

solutions of the p-Laplacian differential equation with multiple deviating arguments

(ϕp(x′(t)))′ + f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− γj(t))) = e(t)

under various assumptions are obtained.
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1. INTRODUCTION

In recent years, there have been a number of results on the existence of periodic solutions for

delay differential equations. For example, in [8, 9, 10, 11, 13], the following types of second-order

scalar differential equations with delay

x′′(t) + g(x(t− τ)) = p(t), (1.1)

x′′(t) + m2x(t) + g(x(t− τ)) = p(t), (1.2)

x′′(t) + f(x(t))x′(t) + g(x(t− τ(t))) = p(t), (1.3)
∗Correspondence author. Research is partially supported by the Research Grants Council of the Hong Kong

SAR, China (Project No. HKU7040/03P)
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x′′(t) + f(t, x(t), x(t− τ0(t)))x′(t) + β(t)g(x(t− τ1(t))) = p(t), (1.4)

and

x′′(t) + f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− γj(t))) = p(t) (1.5)

have been studied. The main technique used in these works is to convert the problem into the

abstract form Lx = Nx, with L being a non-invertible linear operator. Here, the crux is that

the leading terms of these equations, that is, the 1-dimensional Laplacian x′′(t), are linear in the

unknown function x so that Mawhin’s continuation theorem [6] applies and existence of solutions

follows.

Now as the p-Laplacian of a function comes frequently into play in many practical situations (for

example, it is used to describe fluid mechanical and nonlinear elastic mechanical phenomena), it is

natural to try and consider the existence of solutions of p-Laplacian equations, that is, differential

equations with leading term being a p-Laplacian (ϕp(x′(t)))′, where ϕp(u) = |u|p−2u. Since x′′(t) =

ϕ2(x′(t))′, p-Laplacians cover the usual Laplacian as a special case. So it should be interesting to

consider the aforesaid equations with x′′(t) being replaced by (ϕp(x′(t)))′ and in fact there have

already been a few results for p-Laplacian equations, for example, see [4, 14] and references cited

there. But for the existence of solutions of p-Laplacian boundary value problems at resonance or

p-Laplacian differential equations with delay (or deviating argument), as far as we are aware of,

there have been little results until the very recent works in [2, 3, 7]. The major difficulty in this

direction is that except for p = 2, (ϕp(x′(t)))′ is no longer linear and so the usual technique of

using Mawhin’s continuation theorem does not apply directly. In order to get around with this

difficulty, Ge and Ren [7] obtained an extension of Mawhin’s continuation theorem and applied

it to boundary value problems with a p−Laplacian. At the same time, Cheung and Ren [2, 3]

designed a new technique of tackling the problem, namely, to translate the p-Laplacian equation

into a two-dimensional system for which Mawhin’s continuation theorem can be applied.

On the other hand, as multi-delays exist naturally in most non-simple situations, such phe-

nomena are worth investigating. Recent results in this direction include [4, 5, 10, 12, 15]. In this

paper, following the line of Cheung-Ren in [2, 3] we consider the p-Laplacian differential equation

with multiple deviating arguments

(ϕp(x′(t)))′ + f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− γj(t))) = e(t) , (1.6)

where p > 1 is a constant; ϕp : R → R, ϕp(u) = |u|p−2u is a one-dimensional p-Laplacian;

f, g, e, βj ∈ C(R,R), j = 1, 2, · · · , n, are periodic with period T > 0,
∫ T

0
e(s)ds = 0; and

γj ∈ C1(R,R) is periodic with period T > 0 for j = 1, 2, · · · , n. Observe that (1.6) covers

equations (1.1), (1.2), (1.3), and (1.5) as special cases. By translating equation (1.6) into a 2-

dimensional system on which Mawhin’s continuation theorem applies, sufficient conditions for the

existence of periodic solutions of (1.6) are obtained. Note that this generalizes and improves some

existing results in [2], [8], and [10].
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2. MAIN LEMMAS

In the sequel, let T > 0 be fixed. For k = 0, 1, let Ck
T (R,R) be the space of periodic Ck

functions of R into R with period T . Equip Ck
T (R,R) with norm | |0 by

|φ|0 := max
i≤k

max
t∈[0,T ]

|φ(i)(t)| for all φ ∈ Ck
T (R,R) .

Let CT (R,R2) be the space of periodic C functions of R into R2 with period T . Equip CT (R,R2)

with norm || || by

||x|| = max{|x1|0, |x2|0} for all x = (x1, x2) ∈ CT (R,R2) .

Clearly, both Ck
T (R,R) and CT (R,R2) are Banach spaces with these prescribed norms.

Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with index

zero, here D(L) denotes the domain of L. This means that ImL is closed in Y and dim Ker L =

dim(Y/Im L) < +∞. Consider the complementary subspaces X1 and Y1 such that X = Ker L⊕X1

and Y = Im L⊕ Y1, and let P : X → Ker L and Q : Y → Y1 be the natural projections. Clearly,

Ker L ∩ (D(L) ∩X1) = {0}, thus the restriction LP := L|D(L)∩X1 is invertible. Denote by K the

inverse of LP .

Let Ω be an open bounded subset of X with D(L) ∩ Ω 6= φ. A map N : Ω → Y is said to be

L-compact in Ω if QN(Ω) is bounded and the operator K(I −Q)N : Ω → X is compact.

The following preliminary results are needed in the derivation of our main theorems.

LEMMA 2.1 (Mawhin’s continuation theorem) [6] Let X and Y be Banach spaces, and

L : D(L) ⊂ X → Y be a Fredholm operator with index zero. Let Ω ⊂ X be an open bounded set

and N : Ω → Y be L-compact on Ω. If

(1)Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2)Nx /∈ Im L, ∀x ∈ ∂Ω ∩Ker L; and

(3)deg{JQN, Ω ∩Ker L, 0} 6= 0, where J : Im Q → Ker L is an isomorphism,

then the equation Lx = Nx has a solution in Ω
⋂

D(L).

LEMMA 2.2 [11] Let 0 ≤ α ≤ T be a constant and s ∈ CT (R,R) with max
t∈[0,T ]

|s(t)| ≤ α. Then

for any u ∈ C1
T (R,R), we have

∫ T

0

|u(t)− u(t− s(t))|2dt ≤ 2α2

∫ T

0

|u′(t)|2dt .

LEMMA 2.3 [10] Let g ∈ CT (R,R) and τ ∈ C1
T (R,R) with τ ′ < 1. Then g(µ(t)) ∈ CT (R,R),

where µ(t) is the inverse function of t− τ(t).

In order to apply Mawhin’s continuation theorem to study the existence of T -periodic solutions

of equation (1.6), we denote by x1(t) = x(t) and x2(t) = ϕp(x′1(t)). Then we can rewrite the
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equation into the following form




x′1(t) = ϕq(x2(t)) = |x2(t)|q−2x2(t)

x′2(t) = −
n∑

j=1

βj(t)g(x1(t− γj(t)))− f(x1(t))ϕq(x2(t)) + e(t) ,
(2.1)

where q > 1 is a constant with 1
p + 1

q = 1. Clearly, if x(t) = (x1(t), x2(t))> is a T -periodic solution

to equations (2.1), x1(t) must be a T -periodic solution to equation (1.6). Thus, the problem of

finding a T -periodic solution for equation (1.6) reduces to finding one for equation (2.1).

Now, once and for all we set X = Y = CT (R,R2) and define operators

L : D(L) ⊂ X → Y, Lx = x′ =


 x′1

x′2




N : X → Y, Nx =




ϕq(x2)

−
n∑

j=1

βj(t)g(x1(t− γj(t)))− f(x1(t))ϕq(x2(t)) + e(t)


 .

It is easy to see that Ker L = R2 and Im L = {y ∈ Y :
∫ T

0
y(s)ds = 0}. So L is a Fredholm

operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂ R2 be defined by

Px =
1
T

∫ T

0

x(s)ds ; Qy =
1
T

∫ T

0

y(s)ds ,

and let K denote the inverse of L|Ker P∩D(L). Obviously, Ker L = Im Q = R2 and

[Ky](t) =
∫ T

0

G(t, s)y(s)ds , (2.2)

where

G(t, s) =





s

T
, 0 ≤ s < t ≤ T

s− T

T
, 0 ≤ t ≤ s ≤ T .

From (2.2), one easily sees that for any bounded open subset Ω of X, N is L−compact on Ω.

3. MAIN RESULTS

Throughout the paper, we assume that γj ∈ C1
T with γ′j < 1 (j = 1, 2, · · · , n). So for every

j = 1, 2, · · · , n, the function t−γj(t) has a unique inverse which we shall denote by µj(t). Moreover,

in order to simplify the presentation, we shall adopt the following notations.

In := {1, 2, · · · , n}, Λm ⊂ In a subset with m elements ,

G(x) :=
∫ x

0

g(s)ds ,

h̄ :=
1
T

∫ T

0

h(s)ds, h ∈ CT (R,R) ,

|h|p := (
∫ T

0

|h(s)|pds)
1
p , p ≥ 1, h ∈ CT (R,R) ,
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Γ(t) :=
n∑

j=1

βj(µj(t))
1− γ′j(µj(t))

,

Ψ(t) :=
∑

j∈Λm

| βj(µj(t))
1− γ′j(µj(t))

| .

Note that Γ, Ψ ∈ CT (R,R).

Various combinations of the following hypotheses will be useful in the study of the existence of

T -periodic solutions to equation (1.6):

[H1] Either Γ(t) ≥ 0 for all t ∈ R or Γ(t) ≤ 0 for all t ∈ R; and Γ̄ 6= 0.

[H2] There is a constant d > 0 such that either ug(u) > 0 ∀ |u| > d or ug(u) < 0 ∀ |u| > d.

[H3] There is a constant l > 0 such that

|g(u1)− g(u2)| ≤ l|u1 − u2| ∀u1, u2 ∈ R .

[H4] There is a constant r ≥ 0 such that lim
|u|→∞

|g(u)|
|u|p−1

≤ r .

THEOREM 3.1 Suppose [H1]− [H3] hold and βj ∈ C1
T (R,R), j ∈ In. Moreover, if

(1) there is a constant σ > 0 such that |f(s)| ≥ σ for all s ∈ R ;

(2) there is an integer mj such that γj(t) ∈ [mjT − αj , mjT + αj ] for all t ∈ [0, T ], j ∈ In, where

αj is a constant satisfying 0 ≤ αj ≤ T and σ > 1
2T l

∣∣∣
n∑

j=1

β′j
∣∣∣
1

+
√

2l
n∑

j=1

|βj |0αj ,

then equation (1.6) has at least one T -periodic solution.

Proof: Consider the following operator equation

Lx = λNx, λ ∈ (0, 1) . (3.1)

Let Ω1 = {x ∈ X : Lx = λNx, λ ∈ (0, 1)}. If x(t) =


 x1(t)

x2(t)


 ∈ Ω1, then from (3.1) we have





x′1(t) = λϕq(x2(t)) = λ|x2(t)|q−2x2(t)

x′2(t) = −λ
n∑

j=1

βj(t)g(x1(t− γj(t)))− λf(x1(t))ϕq(x2(t)) + λe(t) .
(3.2)

From the first equation of (3.2), we have x2(t) = ϕp( 1
λx′1(t)), which together with the second

equation of (3.2) yields

[
ϕp

( 1
λ

x′1(t)
)]′

+ f(x1(t))x′1(t) + λ

n∑

j=1

βj(t)g(x1(t− γj(t))) = λe(t) ,

i.e.,
[
ϕp

(
x′1(t)

)]′ + λp−1f(x1(t))x′1(t) + λp
n∑

j=1

βj(t)g(x1(t− γj(t))) = λpe(t) . (3.3)

Integrating both sides of (3.3) over [0, T ], we get

n∑

j=1

∫ T

0

βj(t)g(x1(t− γj(t)))dt = 0 . (3.4)
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By Lemma 2.3, βj(µj(t))/{1− γ′j(µj(t))} is a periodic function with period T . So

∫ T

0

βj(t)g(x1(t− γj(t)))dt =
∫ T−γj(T )

−γj(0)

βj(µj(t))
1− γ′j(µj(t))

g(x1(t))dt =
∫ T

0

βj(µj(t))
1− γ′j(µj(t))

g(x1(t))dt .

(3.5)

Thus (3.4) can be reduced to ∫ T

0

Γ(t)g(x1(t))dt = 0

which means that there is a constant ξ ∈ [0, T ] such that

g(x1(ξ))Γ̄T = 0 .

In view of Γ̄ 6= 0, we get g(x1(ξ)) = 0. By [H2], it is easy to see that |x1(ξ)| ≤ d. Hence

|x1|0 ≤ d +
∫ T

0

|x′1(s)|ds . (3.6)

On the other hand, multiplying both sides of equation (3.3) by x′1(t) and integrating over [0, T ],

we have
∫ T

0

[ϕp(x′1(t))]
′x′1(t)dt + λp−1

∫ T

0

f(x1(t))[x′1(t)]
2dt + λp

n∑

j=1

∫ T

0

βj(t)g(x1(t− γj(t)))x′1(t)dt

= λp

∫ T

0

e(t)x′1(t)dt .

(3.7)

If we write w(t) = ϕp(x′1(t)), then
∫ T

0

[ϕp(x′1(t))]
′x′1(t)dt =

∫ T

0

ϕq(w(t))dw(t) = 0 ,

which together with (3.7) and the fact that λ ∈ (0, 1) yields

∣∣∣
∫ T

0

f(x1(t))[x′1(t)]
2dt

∣∣∣ <
∣∣∣

n∑

j=1

∫ T

0

βj(t)g(x1(t− γj(t)))x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣ . (3.8)

Furthermore, from condition (1), we see that

σ

∫ T

0

|x′1(t)|2dt ≤
∫ T

0

|f(x1(t))||x′1(t)|2dt =
∣∣∣
∫ T

0

f(x1(t))[x′1(t)]
2dt

∣∣∣ .

So we have from (3.8) that

σ

∫ T

0

|x′1(t)|2dt ≤
∣∣∣

n∑

j=1

∫ T

0

βj(t)g(x1(t− γj(t)))x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣ . (3.9)

In view of [H3] and using integration by parts, we find from (3.9) that

σ

∫ T

0

|x′1(t)|2dt

≤
∣∣∣−

n∑

j=1

∫ T

0

βj(t)g(x1(t))x′1(t)dt
∣∣∣ +

∣∣∣
n∑

j=1

∫ T

0

βj(t)[g(x1(t))− g(x1(t− τ(t)))]x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣

≤
∣∣∣
∫ T

0

n∑

j=1

β′j(t)G(x1(t))dt
∣∣∣ +

n∑

j=1

|βj |0l
∫ T

0

|x′1(t)||x1(t)− x1(t− γj(t))|dt + |e|0
∫ T

0

|x′1(t)|dt .
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(3.10)

By [H2], there is a constant ζ ∈ [−d, d] such that g(ζ) = 0. Then, by the definition of G(x), we

have

|G(x1(t))|0 =
∣∣∣
∫ x1(t)

0

g(s)ds
∣∣∣
0

≤
∣∣∣
∫ x1(t)

0

|g(s)− g(ζ)|ds
∣∣∣
0

≤ l
∣∣∣
∫ x1(t)

0

|s− ζ|ds
∣∣∣
0

≤ l

∫ |x1|0

0

(s + |ζ|)ds

≤ 1
2
l|x1|20 + ld|x1|0 .

It follows that ∣∣∣
∫ T

0

n∑

j=1

β′j(t)G(x1(t))dt
∣∣∣ ≤

∣∣∣
n∑

j=1

β′j
∣∣∣
1
(
1
2
l|x1|20 + ld|x1|0) . (3.11)

On the other hand, as γj(t) ∈ [mjT − αj , mjT + αj ] for all t ∈ [0, T ], if we denote by sj =

γj(t)−mjT , we have |sj | ≤ αj for all j ∈ In. Hence by Lemma 2.2, we have

∫ T

0
|x′1(t)||x1(t)− x1(t− γj(t))|dt

=
∫ T

0
|x′1(t)||x1(t)− x1(t− sj(t))|dt

≤ (
∫ T

0
|x′1(t)|2dt)

1
2 (

∫ T

0
|x1(t)− x1(t− sj(t))|2dt)

1
2

≤ √
2αj

∫ T

0
|x′1(t)|2dt .

Therefore,
n∑

j=1

|βj |0l
∫ T

0

|x′1(t)||x1(t)− x1(t− γj(t))|dt ≤
√

2l

n∑

j=1

|βj |0αj

∫ T

0

|x′1(t)|2dt . (3.12)

Substituting (3.11) and (3.12) into (3.10), we have

σ

∫ T

0

|x′1(t)|2dt ≤ 1
2
l|x1|20

∣∣∣
n∑

j=1

β′j
∣∣∣
1

+ |e|0
∫ T

0

|x′1(t)|dt +
√

2l

n∑

j=1

|βj |0αj

∫ T

0

|x′1(t)|2dt + ld
∣∣∣

n∑

j=1

β′j
∣∣∣
1
|x1|0 .

(3.13)

Substituting (3.6) into (3.13) and by Hölder’s inequality, we get

σ
∫ T

0
|x′1(t)|2dt

≤ l
(

1
2

∣∣∣
n∑

j=1

β′j
∣∣∣
1
T +

√
2

n∑
j=1

|βj |0αj

) ∫ T

0
|x′1(t)|2dt + T

1
2

(
2ld

∣∣∣
n∑

j=1

β′j
∣∣∣
1

+ |e|0
)( ∫ T

0
|x′1(t)|2dt

) 1
2

+ 3
2 ld2

∣∣∣
n∑

j=1

β′j
∣∣∣
1

.

(3.14)

By assumption (2), it is easy to see from above that there is a constant R0 > 0, independent of λ,

such that ∫ T

0

|x′1(t)|2dt ≤ R0 .

It follows from (3.6) and Hölder’s inequality that

|x1|0 ≤ d + T 1/2R
1
2
0 =: M1 . (3.15)
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By the first equation of (3.2), we have
∫ T

0

|x2(s)|q−2x2(s)ds = 0 ,

which implies that there is a constant t2 ∈ [0, T ] such that x2(t2) = 0. So

|x2|0 ≤
∫ t2

0

|x′2(s)|ds ≤
∫ T

0

|x′2(s)|ds .

By the two equations of (3.2) and Hölder’s inequality, we obtain
∫ T

0

|x′2(s)|ds ≤ λ

n∑

j=1

|βj |0gM1T + λ

∫ T

0

|f(x1(s))||x2(s)|q−1ds + λ|e|1

= λ

n∑

j=1

|βj |0gM1T +
∫ T

0

|f(x1(s))||x′1(s)|ds + λ|e|1

<

n∑

j=1

|βj |0gM1T + |f |0T 1/2R
1/2
0 + |e|1 ,

where gM1 := max
|s|≤M1

|g(s)|. So we have

|x2|0 ≤
n∑

j=1

|βj |0gM1T + |f |0T 1/2R
1/2
0 + |e|1 =: M2 . (3.16)

Let Ω2 = {x ∈ Ker L : Nx ∈ ImL}. If x ∈ Ω2, then x ∈ Ker L and QNx = 0. By the

assumption that
∫ T

0
e(t)dt = 0, we see that




|x2|q−2x2 = 0
n∑

j=1

β̄jg(x1) = 0 .
(3.17)

So x2 = 0 ≤ M2. At the same time, from the proof of Lemma 2.3, we find that µj(T ) =

T + µj(0), j ∈ In. So
∫ T

0

βj(µj(s))
1− γ′j(µj(s))

ds =
∫ µj(T )

µj(0)

βj(t)
1− γ′j(t)

(1− γ′j(t))dt = T β̄j ,

which yields
n∑

j=1

β̄j = Γ̄ 6= 0 by [H1]. So by (3.17), we have

g(x1) = 0 .

By [H2],

|x1| ≤ d ≤ M1 .

Now let Ω = {x = (x1, x2)> ∈ X : |x1|0 < N1, |x2|0 < N2}, where N1 and N2 are constants

with N1 > M1, N2 > M2 and (N2)q > dgd, where gd := max
|u|≤d

|g(u)|. Then Ω1 ⊂ Ω, Ω2 ⊂ Ω. From

(3.10), (3.11) and the above, it is easy to see that conditions (1) and (2) of Lemma 2.1 are satisfied.

Next, we claim that condition (3) of Lemma 2.1 is also satisfied. For this, define the isomorphism

J : Im Q → Ker L by

J(x1, x2) =





(x2, x1) if
n∑

j=1

β̄jug(u) < 0 for |u| > d

(−x2, x1) if
n∑

j=1

β̄jug(u) > 0 for |u| > d,
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and let H(v, µ) := µv + 1−µ
T JQNv, (v, µ) ∈ Ω × [0, 1]. By simple calculation, we obtain, for

(x, µ) ∈ ∂(Ω ∩KerL)× [0, 1],

x>H(x, µ) =





µ(x2
1 + x2

2) + 1−µ
T (−

n∑
j=1

β̄jx1g(x1) + |x2|q) > 0 if
n∑

j=1

β̄jug(u) < 0 for |u| > d

µ(x2
1 + x2

2) + 1−µ
T (

n∑
j=1

β̄jx1g(x1) + |x2|q) > 0 if
n∑

j=1

β̄jug(u) > 0 for |u| > d .

Obviously, x>H(x, µ) 6= 0 for (x, µ) ∈ ∂(Ω ∩KerL)× [0, 1]. Hence

deg{JQN, Ω ∩KerL, 0} = deg{H(x, 0), Ω ∩KerL, 0}

= deg{H(x, 1), Ω ∩KerL, 0} = deg{I, Ω ∩KerL, 0}

6= 0,

and so condition (3) of Lemma 2.1 is satisfied.

Therefore, by Lemma 2.1, we conclude that equation

Lx = Nx

has a solution x(t) = (x1(t), x2(t))> on Ω, i.e., equation (1.6) has a T -periodic solution x1(t) with

|x1|0 ≤ M1. This completes the proof of Theorem 3.1. ¤

REMARK 3.1 (i) In case n = 1 and β1 ≡ 1, Theorem 3.1 reduces to Theorem 3.1 in [2].

(ii) Similarly, Theorem 3.1 is a generalization of Theorem 1 in [10]. Moreover, assumption (2) in

the former is considerably weaker than the corresponding one in the latter, which reads “there is

an integer mj such that γj(t) ∈ [mjT − αj ,mjT + αj ] for all t ∈ [0, T ], j ∈ In, where αj is a

constant satisfying 0 ≤ αj ≤ T and σ > 1
2T l

∣∣∣
n∑

j=1

β′j
∣∣∣
1

+
√

2l
n∑

j=1

|βj |0(1 + αj

T )
1
2 αj”.

THEOREM 3.2 If [H1], [H2] and [H4] hold, and if

(1) Ψ̄T pr < 1;

(2) γj(t) = kjT for j ∈ In − Λm, and
∑

j∈In−Λm

βj(t)ug(u) ≤ 0 for |u| > d,

then equation (1.6) has at least one T -periodic solution.

PROOF: Let Ω1 be defined as in Theorem 3.1. If x(t) =
( x1(t)

x2(t)

)
∈ Ω1, then from the proof

of Theorem 3.1 we see that

[ϕp(x′1(t))]
′ + λp−1f(x1(t))x′1(t) + λp

n∑

j=1

βj(t)g(x1(t− γj(t))) = λpe(t) , (3.18)

and

|x1|0 ≤ d +
∫ T

0

|x′1(s)|ds . (3.19)

Multiplying both sides of equation (3.18) by x1(t) and integrating over [0, T ], we have

∫ T

0

[
ϕp(x′1(t))

]′
x1(t)dt + λp−1

∫ T

0
x1(t)f(x1(t))x′1(t)dt + λp

n∑
j=1

∫ T

0
βj(t)g(x1(t− γj(t)))

)
x1(t)dt

= λp
∫ T

0
x1(t)e(t)dt .

(3.20)
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In view of
∫ T

0
x1(t)f(x1(t))x′1(t)dt = 0 and

∫ T

0
[ϕp(x′1(t))]

′x1(t)dt = − ∫ T

0
|x′1(t)|pdt, it follows from

(3.20) that

∫ T

0
|x′1(t)|pdt

= λp
n∑

j=1

∫ T

0
βj(t)g(x1(t− γj(t)))x1(t)dt− λp

∫ T

0
x1(t)e(t)dt

<
n∑

j=1

∫ T

0
βj(t)g(x1(t− γj(t)))x1(t)dt− ∫ T

0
x1(t)e(t)dt

=
∑

j∈Λm

∫ T

0
βj(t)g(x1(t− γj(t)))x1(t)dt− ∫ T

0
x1(t)e(t)dt +

∑
j∈In−Λm

∫ T

0
βj(t)g(x1(t− γj(t)))x1(t)dt

=
∑

j∈Λm

∫ T

0
βj(t)g(x1(t− γj(t)))x1(t)dt− ∫ T

0
x1(t)e(t)dt +

∑
j∈In−Λm

∫ T

0
βj(t)x1(t)g(x1(t))dt .

(3.21)

Let E1 = {t ∈ [0, T ] : |u(t)| > d}, E2 = {t ∈ [0, T ] : |u(t)| ≤ d}. By assumption (2),
∫

E1

∑

j∈In−Λm

βj(t)x1(t)g(x1(t))dt ≤ 0 .

Hence (3.21) can be reduced into

∫ T

0
|x′1(t)|pdt

≤ ∑
j∈Λm

∫ T

0
βj(t)g(x1(t− γj(t)))x1(t)dt− ∫ T

0
x1(t)e(t)dt

+
∫

E1

∑
j∈In−Λm

βj(t)x1(t)g(x1(t))dt +
∫

E2

∑
j∈In−Λm

βj(t)x1(t)g(x1(t))dt

≤ |x1|0
∫ T

0

∑
j∈Λm

β(µj(t))
1−γ′j(µj(t))

g(x1(t))dt +
∫

E2

∑
j∈In−Λm

βj(t)x1(t)g(x1(t))dt− ∫ T

0
x1(t)e(t)dt

≤ |x1|0
∫ T

0
|Ψ(t)||g(x1(t))|dt + T

∑
j∈In−Λm

|βj |0dgd + |x1|0|e|1 .

(3.22)

By assumption (1), we easily see that there is a constant ε > 0, independent of λ, such that

Ψ̄T p(r + ε) < 1 . (3.23)

For such a constant ε, we have by assumption [H4] that there is a constant ρ > d, independent of

λ, such that

|g(u)| ≤ (r + ε)|u|p−1 for |u| > ρ . (3.24)

Let E3 = {t ∈ [0, T ] : |u(t)| ≤ ρ} and E4 = {t ∈ [0, T ] : |u(t)| > ρ}. Then by (3.22), (3.24), and

(3.19),

∫ T

0
|x′1(t)|pdt

≤ |x1|0
∫

E3
|Ψ(t)||g(x1(t))|dt + |x1|0

∫
E4
|Ψ(t)||g(x1(t))|dt + T

∑
j∈In−Λm

|βj |0dgd + |x1|0|e|1

≤ gρ|Ψ|1|x1|0 + (r + ε)T Ψ̄|x1|p0 + T
∑

j∈In−Λm

|βj |0dgd + |x1|0|e|1

= (r + ε)T Ψ̄|x1|p0 + (gρ|Ψ|1 + |e|1)|x1|0 + T
∑

j∈In−Λm

|βj |0dgd

≤ (r + ε)T Ψ̄(d +
∫ T

0
|x′1(t)|dt)p + (gρ|Ψ|1 + |e|1)

∫ T

0
|x′1(t)|dt + gρ|Ψ|1d + |e|1d + T

∑
j∈In−Λm

|βj |0dgd .

(3.25)

We claim that there exists a constant M1 > 0 such that

|x1|0 ≤ M1 . (3.26)
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Case 1. If
∫ T

0
|x′1(s)|ds = 0, then by (3.19), |x1|0 ≤ d.

Case 2. If
∫ T

0
|x′1(s)|ds > 0, then by (3.19),

[
d +

∫ T

0

|x′1(s)|ds
]p

=
( ∫ T

0

|x′1(s)|ds
)p[

1 +
d∫ T

0
|x′1(s)|ds

]p

. (3.27)

By elementary analysis, there is a constant h > 0, independent of λ, such that

(1 + x)p < 1 + (1 + p)x ∀x ∈ (0, h] . (3.28)

If
d∫ T

0
|x′1(s)|ds

≥ h, then

∫ T

0

|x′1(s)|ds ≤ d/h ,

and so by (3.19),

|x1|0 ≤ d + d/h . (3.29)

If
d∫ T

0
|x′1(s)|ds

< h, by (3.27) and (3.28), we have

[
d +

∫ T

0

|x′1(s)|ds
]p

≤
( ∫ T

0

|x′1(s)|ds
)p[

1 +
(p + 1)d∫ T

0
|x′1(s)|ds

]

=
( ∫ T

0

|x′1(s)|ds
)p

+ (p + 1)d
( ∫ T

0

|x′1(s)|ds
)p−1

≤ T p/q

∫ T

0

|x′1(s)|pds + (p + 1)dT (p−1)/q
( ∫ T

0

|x′1(s)|pds
)1/q

.

(3.30)

Substituting (3.30) into (3.25), we obtain
∫ T

0

|x′1(t)|pdt

≤ (r + ε)T 1+p/qΨ̄
∫ T

0

|x′1(s)|pds + (r + ε)(p + 1)dT (p+q−1)/qΨ̄
(∫ T

0

|x′1(s)|pds
)1/q

+

[
gρ|Ψ|1 + |e|1

]
T 1/q

( ∫ T

0

|x′1(s)|pds
)1/p

+ gρ|Ψ|1d + |e|1d + T
∑

j∈In−Λm

|βj |0dgd

= (r + ε)T pΨ̄
∫ T

0

|x′1(s)|pds + (r + ε)(p + 1)dT (p+q−1)/qΨ̄
( ∫ T

0

|x′1(s)|pds
)1/q

+

[
gρ|Ψ|1 + |e|1

]
T 1/q

( ∫ T

0

|x′1(s)|pds
)1/p

+ gρ|Ψ|1d + |e|1d + T
∑

j∈In−Λm

|βj |0dgd .

(3.31)

In view of 1
q < 1, 1

p < 1, and Ψ̄T p(r+ε) < 1, it follows that there is a constant M0 > 0, independent

of λ, such that
∫ T

0
|x′1(t)|pdt ≤ M0, which together with (3.19) yields

|x1|0 ≤ d + T 1/q(M0)1/p . (3.32)

This completes the proof of the claim and the rest of the proof of the theorem is identical to that

of Theorem 3.1. ¤
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REMARK 3.2 In case p = 2, Theorem 3.2 reduces to Theorem 3 in [10].

We conclude by applying the above results to a simple p-Laplacian equation with 2 delays.

EXAMPLE 3.2 Consider the equation

(ϕp(x′(t)))′ + (δ + x2(t))x′(t) + (1 +
1
2

sin t)x(t− 1
2

cos t)− 1
2

sin tu(t− 2π) = 2 sin t, (3.33)

where p, δ are constants with p > 1 and δ > 0.

Comparing with Theorem 3.1, we have n = 2, σ = δ, β1(t) = 1 + 1
2 sin t, β2(t) = − 1

2 sin t,

γ1(t) = 1
2 cos t, γ2(t) ≡ 2π, e(t) = 2 sin t, l = 1, T = 2π, α1 = 1

2 , α2 = 0. Let µ(t) be the inverse of

function t− 1
2 cos t, we have

Γ(t) = −1
2

sin t +
1 + 1

2 sin µ(t)
1 + 1

2 sin µ(t)
= 1− 1

2
sin t > 0

and
1
2T l

∣∣∣
n∑

j=1

β′j
∣∣∣
1

+
√

2l
n∑

j=1

|βj |0αj

= 1
2T l

∣∣∣β′1 + β′2
∣∣∣
1

+
√

2
∣∣∣β1

∣∣∣
0
α1 +

√
2
∣∣∣β2

∣∣∣
0
α2

=
√

2
∣∣∣β1

∣∣∣
0
α1

= 3
√

2
4 .

In view of Theorem 3.1, for every p > 1, (3.33) has at least one 2π-periodic solution when δ > 3
√

2
4 .
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