A NOTE ON POISSON HOMOGENEOUS SPACES

JIANG-HUA LU

ABSTRACT. We identify the cotangent bundle Lie algebroid of a Poisson homoge-
neous space G/H of a Poisson Lie group G as a quotient of a transformation Lie
algebroid over G. As applications, we describe the modular vector fields of G/H,
and we identify the Poisson cohomology of G/H with coefficients in powers of
its canonical line bundle with relative Lie algebra cohomology of the Drinfeld Lie
algebra associated to G/H. We also construct a Poisson groupoid over (G/H,)
which is symplectic near the identity section. This note serves as preparation for
forthcoming papers, in which we will compute explicitly the Poisson cohomology
and study their symplectic groupoids for certain examples of Poisson homogeneous
spaces related to semi-simple Lie groups.

1. INTRODUCTION

The cotangent bundle of a Poisson manifold (P, ) is naturally a Lie algebroid [21]
called the cotangent bundle Lie algebroid of (P,7) and denoted by T*(P,w). Let
Kp = A*PT*P be the canonical line bundle over P. Then the Lie algebroid T* (P, )
has a natural representation on Kp. The Poisson cohomology of (P, ) as defined in
[13], the Poisson homology of (P, 7) as defined in [3], and the twisted Poisson coho-
mology of (P, ) as defined in [7], can be regarded as the Lie algebroid cohomology
of T*(P, m) with coefficients in, respectively, the trivial line bundle, Kp and K% (see
[7, 21, 26]). In general, one can consider the Lie algebroid cohomology of T%(P, )
with coefficients in K g for any integer N, which we will denote by H®(P, m; K 1]37 ) and
refer to as generalized Poisson cohomology of (P, 7). A symplectic groupoid of (P, )
is a Lie groupoid over P with Lie algebroid 7*(P, ) and a compatible symplectic
structure [24].

This note concerns the cotangent bundle Lie algebroids of Poisson homogeneous
spaces of a Poisson Lie group (G, 7). More precisely, by a theorem of Drinfeld [6],
each Poisson homogeneous space (G/H, ) of (G, ) corresponds to a Lie subalgebra
[ of the double Lie algebra 0 of (G, 7). In this note, we identify the cotangent
bundle Lie algebroid of (G/H, ) with a quotient of the transformation Lie algebroid
G xy [ over G associated to an infinitesimal action A of [ on G. We also identify the
representation of T*(G//H, ) on Kq, g with a quotient representation of G xx [ (see
§2.3 for the detail).

We give two applications. First, for any integer NV, we identify the generalized

Poisson cohomology H*® (G JH,m K g / H) with Lie algebra cohomology of [ relative

to H with coefficients in C*°(G)y, the space of smooth functions on G together with

an ([, H)-module structure that depends on N (see Corollary 4.12 for detail). We also

discuss the canonical pairing between H*® (G/H, ; Kg/H) and H® (G/H, ;s Ké?ﬁ)

as a pairing on relative Lie algebra cohomology of [, and we compute the modular
1
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vector fields of (G/H, ). The identifications of the Poisson cohomology and homol-
ogy (i.e., when N = 0 and N = 1) with relative Lie algebra cohomology of [ have
been established in [15] and [19] but by different methods.

As a second application, we construct a Poisson groupoid I' over (G/H, ) that is
symplectic near the identity section, and we give conditions and examples when it is
symplectic. The groupoid structure on I' is a quotient of a transformation groupoid
over GG (see Mackenzie’s book [18] for a general treatment of quotients of groupoids),
while the Poisson structure on I' is obtained by reduction of a quasi-Poisson manifold
by an action of a quasi-Poisson Lie group, a theory developed by Alekseev and
Kosmann-Schwarzbach in [1]. In the special case when (G, 7¢) is complete and when
H is a Poisson Lie subgroup of (G, m) with 7 being the projection of 75 to G/H, a
symplectic groupoid of (G/H, ) was constructed by P. Xu in [25].

There are many examples of Poisson homogeneous spaces associated to semi-simple
Lie groups, and they are in general not of the type G/H with H being a Poisson
Lie subgroup. See [8, 9, 16] for studies of certain varieties which can serve as moduli
spaces of Poisson homogeneous spaces. In forthcoming papers, we will use results
from this note to compute explicitly the Poisson cohomology and study their sym-
plectic groupoids for certain examples of Poisson homogeneous spaces treated in
[8, 9, 16]. Such examples included flag varieties of complex semi-simple groups [8]
and semi-simple Riemannian symmetric spaces [10] (see Example 5.14).

1.1. Notation. For a smooth manifold P, the tangent and cotangent bundles of P
are denoted by TP and T*P respectively. For an integer 0 < k < dim P, V¥(P)
and QF(P) will denote respectively the spaces of smooth k-vector fields and smooth
k-forms on P, and

V(P) = a{mPYR(P) and Q(P) = @imPak(p).
If P and ) are smooth manifolds and F' : P — () is a smooth map, F, will denote
the induced map TP — TQ.

For a vector bundle A over P, I'(A) will denote the space of smooth sections of
A. If V is an n-dimensional vector space, A*®PV always denotes A"V. Let V* be the
dual space of V. For z € AFV and € € NVV* with k < j, 1,€ € N 7FV* is defined by
(tz€,y) = (&, 2 Ay) for all y € A=V, Unless otherwise specified, all vector spaces
are real.

For a Lie group G and g € G, l; and ry denote respectively the left and right
translation on G by g. The identity element of a group is always denoted by e.

1.2. Acknowledgement. We thank K. Mackenzie for references on quotients of Lie
algebroids and groupoids and Bing-Kwan So for helpful discussions. Research for
this paper was partially supported by HKRGC grants 701603, 703304, and the HKU
Seed Funding for basic research.

2. SOME BASIC FACTS ON LIE ALGEBROIDS
We refer to [17, 18] for details on the facts reviewed in this section.

2.1. Lie algebroids and Lie algebroid cohomology. Recall that a Lie algebroid
over a manifold P is a vector bundle A over P together with a vector bundle homo-
morphism p4 : A — TP and a Lie bracket [, | on I'(A) such that

1) [fa1,a2] = fla1,a2] — pa(a2)(f)ar for all f € C®°(P) and a1,as € T'(A);
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2) palai,az] = [palar), pa(az)] for all a1, as € T'(A).
Let A be a Lie algebroid over P. A representation of A on a vector bundle E over
P is an R-bilinear map D : T'(A) x ['(E) — ['(E) : (a, s) — Dgs, such that for any
a,beT'(A), se'(E), and f € C®(P),

1) Dygs = fDys;

2) Da(fs) = fDas+ (p(a)f)s;
3) Da(Dps) — Dy(Dgs) = Digp)s.

The trivial representation of A is the one on the trivial line bundle E = P x R given
by Dof = p(a)(f) for a € I'(A) and f € T'(E) = C*°(P). One has the natural notion
of tensor products and duals of representations of A. In particular, a representation
D of A on a line bundle L gives rise to a representation of A on the N-th power LY of
L for any integer N > 0. For a negative integer N, we use the natural identification
between LY and(L~")* and thus have a representation of A on LV as well.

For a representation D of A on E, and for k > 0, define

dap: T(Hom(AA E)) — T(Hom(AF1A E))

k+1
(dapd)(a,az, -+ ags1) = > (1 Dgd(ar, - a5, aps1)
j=1
+Z(_1)Z+]¢([a’b7aj]7 7dl7&]7 7ak+1)
1<j

for ay,...,axs1 € T'(A). Then dZA,E = 0. The cohomology of the cochain complex
(I'Hom(AA, E)), da,g),

which will be denoted by HY; (A; E), is called the Lie algebroid cohomology of A with

coefficients in E. When E is the trivial representation, we set H*(A; E) = H}, (A).

2.2. Relative Lie algebra cohomology. Our reference for this section is [2]. A
Lie algebra [ can be regarded as a Lie algebroid over a one point space, so for every
[-module V', we have the coboundary operators

dyy : Hom(AML V) — Hom(AFFL V), k> 0.

Let h C [ be a Lie subalgebra, H a Lie group with Lie algebra h, and H — Aut([) :
h — Adj a group homomorphism integrating the adjoint action of h on [.

Definition 2.1. An (I, H)-module is a topological vector space V' which is both an
[-module and an H-module such that

1) for every v € V, the map H — V : h — hv is smooth, and that the restriction
to b of the action of [ on V coincides with the one induced from the H-action;

2) for every v € V,z € [, and h € H, h(x(h~(v))) = (Adpz)(v).

Let V be an (I, H)-module. For k& > 0, let

Cluy = (N o V)"



4 JIANG-HUA LU

where the superscript H denotes the subspace of H-invariants. Identify ([/h)* =
{£ el | &y =0} CI* and regard C’{‘:H;V as in AFI* ® V = Hom(AFL V). Then

Pty c P Hom(A*LV)
k>0 k>0

is invariant under dy. The cohomology of the cochain complex (C’[' HV dyv), which
will be denoted by H?, ([, H; V), is called the Lie algebra cohomology of | relative to
H with coefficients in V.

Suppose that U and V are two ([, H)-modules. Then U ® V' is naturally an ([, H)-
module. For any 0 < j, k < n = dim(l/h), define

C[];H;U X CfH;V — C{EI?U(@V (e, ) — e =NV RuUR W,
where ¢; = ¢ ® u,c2 = ¥ @ v with ¢ € AI(I/h)*, ¥ € Ak(I/h)*, u € U, and v € V. It
is easy to check that
(2.1) dy, vevicl ®c) = d[y(cl) & co + (—1)jC1 ® d[,V(CQ)

. *
if ¢ € C[JH,U. Assume that v € (CELH;U®V) is such that

(2.2) v (dr, U®V(CELEU®V)) = 0.
For 0 < k < n, define the pairing (, ), between CFy. ;; and C7';*,, by

(c1, c2)y = v(c1 ® c2).
It follows from (2.1) that
(diu(c1), c2)u + (=1) Yer, diyv(ca))y =0

for all ¢; € Cf“I},lU and ¢y € C[";“V. Thus (, ), induces a well-defined pairing, still
denoted by (, )., between HE, (I, H;U) and Hﬁ;k([,H; V) for every 0 < k < n.

2.3. Quotients of transformation Lie algebroids. Let again [ be a Lie algebra,
h C [ a Lie subalgebra, H a Lie group with Lie algebra b, and H — Aut(l) : h — Ady,
a group homomorphism integrating the adjoint action of  on [.

Definition 2.2. An (I, H)-space is a smooth manifold M together with a Lie algebra
homomorphism A : [ — V(M) and a right action of H on M such that

1) the restriction of A on b coincides with the infinitesimal action of h on M
induced by the right H-action, and

2) for all m € M,z € lland h € H, A\;(mh) = hyApq,»(m), where h, is the
differential of the map h: M — M : m1 — myh for mqy € M.

We will sometimes denote an ([, H)-space by the pair (M, \) without explicitly
mentioning the action of H on M.

Let (M, \) be an (I, H)-space. Using the action A of [ on M, one can form the
transformation Lie algebroid M x [ over M, which is the trivial vector bundle M x [
over M with the anchor map

Mxl—TM: (m,z) — Az(m), m € M,z €[,
and the Lie bracket [, |ar,1 on I'(M x [) = C°°(M, ) determined by

[Z1, Z2) Myt = [21, 22),
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where for z € [, Z is the constant function on M with value x.

Assume in addition that the H-action on M is free and proper so that the quotient
M/H is a smooth manifold. Consider the associated vector bundle A = M x g (I/bh)
over M /H, where h € H acts on [/h by Adj. Points in A will be denoted by [m, z+b],
where m € M and z € [. Note that

pas A—T(M/H): [m, @ +5b]— g\ (m)

is a well-defined bundle map, where ¢ : M — M/H is the natural projection, and

L(4) = (M, 1/n)"

= {a € C®(M,1/h) | a(mh) = Adp-1a(m), Vm € M,h € H}.

Let

(M xy ) = {a € C®(M,1) | a(mh) = Adj-1a(m), Ym € M,h € H}.
For ai,as € T'(A), let ay,as € I'(M xy D be such that p(a;) = a; and p(az) = az,
where p: M x| — A: (m,x) — [m,x + b] is the natural vector bundle projection.
Define [a1, a2] € T'(A) by
(2.3) (a1, az] = p([a1, d2]ar,0)-
The proof of the following lemma is omitted since it is straightforward.

Lemma 2.3. Formula (2.3) is a well-defined Lie bracket on T'(A). With the Lie
bracket in (2.3) on I'(A) and pa as the anchor map, A is a Lie algebroid over M /H.
Moreover, the bundle map p : M x) [ — A is a Lie algebroid morphism.

Definition 2.4. The Lie algebroid A in Lemma 2.3 is called the H-quotient of the
transformation Lie algebroid M x [ and will be denoted by M i g (I/h).

Example 2.5. If G is a Lie group and H C G a closed subgroup, the tangent bundle
Lie algebroid T'(G/H) is a quotient by H of the tangent bundle Lie algebroid TG. A
more general discussion on quotients of Lie algebroid can be found in [18, Chap. 4].

We now turn to a special class of representations of M > g (I/h) that arise from
representations of M Xy [.

Definition 2.6. An (I, H)-vector bundle is an H-equivariant vector bundle E over
an (I, H)-space (M, \) together with a representation of [ on I'(E) such that
Dax-(fs)=X(f)s+ f(z-s)forallzel, f e C°(M), and s € I'(E);
2) the l-action and the H-action on I'(F) induced from the H-action on E make
I'(E) into an ([, H)-module (see Definition 2.1).

Let E be an (I, H)-vector bundle over M such that the H-action on M is free and

proper. One then has the representation D of M X [ on E given by
(Dps)(m) = (b(m) - s)(m), beT(M xyl)=C®(M,I), meM,seT(E).

Let E/H be the quotient bundle over M/H with T'(E/H) = I'(E)", the space of
H-invariant smooth sections of E. For a € T'(A), let @ € T'(M x [) be such that
p(a) = a. It is easy to see that Dzs € I'(F) is H-invariant for any s € T'(E/H) =
I'(E)H, so we can regard Dgzs as in I'(E/H). Define
(2.4) Dus = Dgs, seD(E/H)=T(E)".

The proof of the following Lemma 2.7 is straightforward.
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Lemma 2.7. Formula (2.4) is a well-defined representation of the quotient Lie al-

gebroid M x g (I/h) on E/H, and we call it the H-quotient of the representation D
of M x) 1 on E.

Lemma 2.8. The Lie algebroid cohomology of A = M ) g (I/b) with coefficient in
E/H is isomorphic to the Lie algebra cohomology of | relative to H with coefficients
inT(E), i.e.,

Hfie(A; E/H) = HEie(LH;F(E))v vk > 0.
Proof. Let T be the trivial vector bundle over M with fiber [/h. Then for every
k > 0, the vector bundle Hom(AFA, E/H) over M/H is the quotient by H of the
H-equivariant vector bundle Hom(A*T, E), so

(2.5) P(Hom(A* A, /1)) = (W (/) @ T(E)) " = Clypi.

By following the definitions of the Lie algebroid structure on A and the representation
of A on E/H, it is straightforward to check that the identifications in (2.5) give an
isomorphism of cochains

@F(Hom(/\kA, E/H)), dap/g | — @CfH;F(E), dig
k>0 k>0

0

Remark 2.9. Suppose that F' is an (I, H)-line bundle over an ([, H)-space (M, \)
and that F is an H-equivariant square root of F, i.e., E? = F. Then E is naturally
an ([, H)-line bundle with the [-action on I'(F) uniquely defined as follows: if ¢
is a nowhere vanishing local section of E, then z -t = %% for any = € [ (see
[7]). Consequently, one has the quotient representation of the quotient Lie algebroid

A=M X\ H ([/[]) on E/H
3. POISSON COHOMOLOGY AND MODULAR VECTOR FIELDS

3.1. The cotangent bundle Lie algebroid and Poisson cohomology. The
cotangent bundle Lie algebroid of a Poisson manifold (P, ), denoted by T (P, ), is
the cotangent bundle 7% P of P with the anchor map

Fi TP —TP: #a)(8)=n(a,8), afcQ\(P),
and the Lie bracket {, }, on Q(P) given by
(31) {a7ﬁ}ﬂ' = d(’/T(Oé,ﬁ)) + Lfr(oc)d/@ - Lfr(ﬁ)dQ7 a,p € Ql(P)
Let
Kp = NPT*P
be the canonical line bundle over P. It is shown in [7, 26] that there is a representation
of the Lie algebroid T*(P,7) on Kp given by

(82) Dapt = Ly + (m,da)u = {a, phe — (myda)pi = a Ad(ins), 5 € QP(P),

where {, } is the Schouten bracket on the space Q(P) induced from the bracket in
(3.1) on QY(P).

Definition 3.1. The representation of T*(P,7) on Kp is called the canonical rep-
resentation of T*(P,m) on Kp.
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For any integer N, let Kg be the N-th power of Kp, equipped with the natural
extension of the representation of 7*(P, ). When N is negative, we will understand
K% as (KISN )*.

Definition 3.2. For a Poisson manifold (P, ) and for any integer N, we define the
Poisson cohomology of (P, ) with coefficients Kg to be the Lie algebroid cohomology
of T*(P, ) with coefficients in K&, and we denote it by H*(P,7; K5). When N = 0,
we simply write H®(P,m; KY) as H*(P,7). The totality of H®*(P,m; KJ) for all
integers N is called the generalized Poisson cohomology of (P, ).

Remark 3.3. The Poisson cohomology of (P, w) defined in [13] is H®*(P, 7). It is
shown in [7, 26] that the Poisson homology of (P, w) defined in [3] is isomorphic
to H*(P,m; Kp). In [7], the cohomology H*(P,m; K%) is called the twisted Poisson
cohomology of (P, ).

3.2. The canonical pairing on Poisson cohomology. Suppose that P is compact
and oriented. For 0 < k£ < n = dim P and an integer N, set

CEy =T(Hom(A*T*P, K}Y)) = I(A\"TP @ Kp).
The natural identifications of bundles
NTPoAN"FTP =2 A"TP, KN @ KEN>K}, A'TPRKp=Kp
give rise to an identification
Jo (NrPeKY) e (N TPe KEN) — Kp

and thus an R-bilinear pairing
(01, 02) = /PJ(Cl,CQ), Cc1 € C]k%N, Ccy € CIE,EEN

A proof similar to that of Theorem 5.1 of [7] shows that (, ) induces a well-defined
pairing between H¥(P,m; K¥) and H" *(P,m; K5 ). We will refer to (,) the
canonical pairing on the generalized Poisson cohomology of (P, 7).

3.3. Modular vector fields. Let (P, 7) be an orientable Poisson manifold, and let
i be a volume form of P. The modular vector field of m with respect to p (see [23])
is defined to be the vector field 6, on P such that

Da:u' = (0/“L7a)u7 Va € Ql(P>7
where Dop € QP(P) is given in (3.2). For an integer N, set dy = dr-pgy €
End(Cp y)-

Proposition 3.4. Let N be any integer. For any volume form u, the action of the
modular vector field 6, on Cp y = EBkZOC}%,N by Lie derivative commutes with the

operator dy. When N # 1, the induced action of 8, on H*(P,; Kg) 1s trivial.
Proof. Consider the identification
I: VEP)—Chy: Vi—Vaul
Since Lg,pu =0, Ly, oZ =T o Lg,. It is also easy to show (see [7, Lemma 4.4]) that
the operator 0 :=Z ' ody 0T is given by
Syt VH(P) — VFYP): Vi [r, V] + N6, AV.
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Since Ly, = 0, it is clear that Ly, commutes with dy. Consider the operator
by VE(P) — V*NP) v = (—1)Fd(vp).
It is easy to see that b2 = 0 and that 6, = b,m. Moreover, for V; € VE(P) and
Vo € V(P),
bu(ViAV2) = bu(Vi) AVa + (1) Vi A bu(Va) + (—1)"[V3, V2
bulVi, Vol = [bu(Va), Vo] + (= 1)F 1 [V1, bu(V2)]

It follows that b,dy + dxby = (1 — N)Lg,. Thus 6, acts trivially on H*(P,m; Kp)
when N # 1. O

4. THE COTANGENT BUNDLE LIE ALGEBROIDS AND GENERALIZED POISSON
COHOMOLOGY OF POISSON HOMOGENEOUS SPACES

4.1. Review on Poisson Lie groups. Recall that [5, 11, 14, 20] a Poisson Lie group
is a Lie group G with a Poisson structure 7 such that the group multiplication map
(G,7¢) X (G, 1) — (G,7mg) = (g,h) — gh is Poisson. Let (G,7s) be a Poisson Lie
group. Then 7 necessarily vanishes at the identity element e of G. Let § : g — A%g
be the linearization of ws at e. Then the dual map

50 APgF— gt EAn— (€]

of ¢ defines a Lie bracket on g*, and the pair (g,d) becomes a Lie bialgebra [5]. For
z € gand £ € g%, define ad; § € g* and ad; z € g by

(ady§, y) = (€, [y,z]) and (adgz, n) = (z, [,€]), where y € g,m€ g".
Let 0 = g @ g*. Then the bracket on 0 given by
[t+&y+n =[zyl+adey —adyz+[{n]+adzn—ady{, z,y€gneg
is a Lie bracket, and the bilinear form (, ) on 9 given by

(x+& y+n)=(xn)+ s, =wyecg §negh,

is ad-invariant with respect to [, |. The pair (9, (, )) is called the double of the Lie
bialgebra (g, d). The adjoint action of g on ? integrates to an action of G on 0, still
denoted by Ad, : 0 — 0 for g € G, which is given by [6]

(4.1) Ady(z + &) = Adgz + LAdZﬁlg(Tg—l'Trg(g)) + Adj &,

where Ad, : g — g and Ad;_l : g" — g* are the adjoint and co-adjoint actions of
g € G on g and on g* respectively. A subspace [ of 0 is said to be Lagrangian if
(x,y) =0 for all z,y € [ and if dim [ = dim g.

4.2. Drinfeld Lagrangian subalgebras. Let H be a closed subgroup of G.

Definition 4.1. [6] A (G, 7)-homogeneous Poisson structure on G/H is a bivector
field 7 on G/H such that 1) 7 is Poisson, and 2) the map

(4.2) o: (Gymg) x (G/H,m) — (G/H,7): (91,92H) — g192:H

is Poisson.
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By definition, the map o in (4.2) is Poisson if and only if
(4.3) m(gH) = (og)«m(eH) + q.ma(g), Vg€ G,

where ¢ : G — G/H is the projection, and for g € G, 04 : G/H — G/H is defined by
g1H — gg1H for g1 € G. Thus, 7 is uniquely determined by w(eH) € A®T.y(G/H),
and Conditions 1) and 2) on 7 in Definition 4.1 become the following two conditions
on m(eH) € N*T.y(G/H):

(i) m(eH) = (op)«m(eH) + qumg(h) for all h € H (so that m given by (4.3) is
well-defined); and

(ii) the bi-vector field 7 on G/H determined by w(eH) via (4.3) is Poisson.
Let b be the Lie algebra of H. Simple linear algebra arguments show that there is
a one to one correspondence between A?(g/h) and the set of Lagrangian subspaces |
of 0 such that [N g =h. The explicit correspondence is given by

(4.4) A(g/h)sr—L ={z+&|zecgécgh&y=01r=a+bh}

Identify T,y (G/H) = g/b. Then an element w(eH) € N*T.y(G/H) = A%(g/h) cor-
responds to the Lagrangian subspace [ (g of 9. Drinfeld showed [6] that Conditions
(i) and (ii) on w(eH) € A?T.y(G/H) are respectively equivalent to

(a) Adplr(err) = lr(er for all h € H, where Ady : 0 — 0 is given in (4.1), and

(b) lr(em is a Lie subalgebra of 2.

Definition 4.2. When (G/H,r) is a Poisson homogeneous space of (G,7), the
Lie subalgebra [ (.f) of 0 is called the Drinfeld Lagrangian subalgebra associated to
m(eH).

Let (G/H, ) be a Poisson homogeneous space of (G, 7). Let ¢ also denote the
projection g — g/h. Let A € A%g be any element such that

(4.5) g(A) = m(eH) € N’To(G/H) = A*(g/b).
The following Lemma 4.3 is straightforward to prove [4].

Lemma 4.3. Conditions (i) and (ii) on w(eH) are equivalent to

1) AdpA — A+ (rp,-1)sma(h) € b A g for all h € H;

2) [AA]+25(A)ebAgAg,
where [, ] is the Schouten bracket on Ag and & : g — A%g is the linearization of mg
at e as well as its extension & : N2°g — A>g given by

S(xAyNnz)=0(x) NyANz—xANd(y)ANz+xAyAd(z), z,y,2€g.
For A € A?g as in (4.5), define the bi-vector field 75 on G by
(46) A = Al -+ Ta,

where A! is the left invariant bi-vector field on G with value A at e. Condition 1) on
A in Lemma 4.3 implies that g,mp is a well-defined bi-vector field on G/H. In fact,

qxTA = T.
Let A = ¢/ for £ € g*. The Drinfeld Lagrangian subalgebra [ () is also given by
(47) [7r(eH):{‘T+A§+€|l‘€ha€€g*,§|b:0}
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Remark 4.4. Although the bi-vector field mx on G is not necessarily Poisson, we
can still define the skew-symmetric bracket {, },, on Q'(G) by replacing 7 by 7 in
(3.1). Moreover, the space of left invariant 1-forms on G is invariant under {, },.
In fact, it is easy to show that

{flﬂ?l}m - ([fﬂ?]A)la 5777 € [7

where for ¢ € g*, ¢! is the left invariant 1-form on G with value ¢ at e, and

(4.8) nla < [Enl+adien —adi, & Eneg”
Lemma 4.5. Let h° = {¢ € g* | €]y, = 0}. Then [£,n)a € b° for all £,m € b°.

Proof. The condition Adplr(er) = lr(err) for all b € H implies that [z, [z (cm)] C lren)
for all x € b, so [z,A§ +&] € ly(eq) for all z € h and £ € O, from which it follows
that [£,1]a € b° for all £,1 € hY. See also [4]. a

Let xpo.5 € (h°)* be defined by

xpoa(§) =tr(Ty), €€n’,

where T € End(h) : n — [¢,n]a for &,n € BY. Let x1 € I*, x4 € g%, and xg« € g
be the adjoint characters of [, g and g* respectively. Let bA = ) .[z;,v;] € g if
A =3, z; ANy;. We now prove a fact that will be used in the proof of Theorem 4.7.

Lemma 4.6. For every &£ € hY,

(49) XA (6) (A, €) = £ (Xi(AE +6) — xg(AE) + xg-(€)

Proof. For ¢ € g*, consider the operator Ty € End(g*) : T¢(n) = [£, n]a, and define
Xg+,A(§) = tr(T¢ € End(g*)). It is easy to see that

Xo+,A(€) = Xg+(§) — xg(AE) — 2(bA,E), Ee€g™

For ¢ € h°, since T¢(h°) C %, we have an induced map T¢ € End(g*/h°). Define
x(€) = tr(T¢ € End(g*/h°)) for € € h°. Then

(4.10) Xio,A (&) = Xgr.a(§) — X(§) = Xg* (§) — xg(AE) — 2(bA, §) — (&)

for all ¢ € h°. On the other hand, consider the embedding  : h° < [ by € — A€ + &,
and let py : [ — b be the projection with respect to the decomposition I = b + r(h°).
For ¢ € h°, let S¢ € End(h) be the operator S¢(x) = py[A + &, z] for € h. Then

XA (€) = Xi(AE + &) — tr(Se € End(h)), V¢ € b’

By identifying g*/b° = h*, one can show that =S¢ =T¢ € End(g*/b%), and so
tr(Se € End(h)) = —x(€) for all £ € h°. Thus

(4.11) Xio A (€) = xi(AE+€) +x(6),  VEen’.
Adding (4.10) and (4.11), we get (4.9). O
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4.3. The cotangent bundle Lie algebroid of (G/H, ). Let (G, 7¢) be a Poisson
Lie group. For € g and £ € g*, let 2! (resp. €') be the left invariant vector field
(resp. 1-form) on G with value x (resp. &) at e. Then [15] the map

(4.12) A0 — VG 24— Npye =2l + 7a(Eh)

is a Lie algebra homomorphism from 0 to the space V!(G) of vector fields on G. Let
pg : 0 — g be the projection along g*. By (4.1), we also have

(4.13) Aate(g) = (1g)spgAdg(z + &), geG,xecg, {cg”

Let now (G/H, ) be a (G, mg)-homogeneous Poisson space, and let [ = [(.f) be
the Drinfeld Lagrangian subalgebra of ? as in Definition 4.2. Then G, with the right
action of H by right translations and the infinitesimal action of [ by A, becomes
an (I, H)-space in the sense of Definition 2.2. Let G x [ be the corresponding
transformation Lie algebroid over G.

Theorem 4.7. The cotangent bundle Lie algebroid of (G/H,r) is isomorphic to the
H-quotient A= G x g (I/h) of the transformation Lie algebroid G x L.

Proof. Let A € A%g be any element with ¢(A) = w(eH) € N*T.y(G/H) = A%(g/bh).
Recall that h = {¢ € g* | ¢, = 0}. The projection [ — g* : z + & — & gives an
H-equivariant isomorphism [/h — §° whose inverse is h — [/h : € — & + A& + .

Using left translations by elements in G' and the identification T (G/H) = b°,
we have the vector bundle isomorphism

(4.14) I: T"(G/H) — G xyg h’ =G xg (1/p).

It remains to show that I is a Lie algebroid isomorphism. Recall that m = g.mx,
where 7, is the bi-vector field on G given by mp = Al + 75.
Let n = dim b, and let &1, &, ..., &, be a basis of h°. For o € QY(G/H), write

(4.15) fa=> faié € QNG), where fo;€C®(G), j=1,...,n.
j=1

Then I(Oz) = Z?:l fa’jfj < COO(G, bO)H = F(A), and ba = Z?:l foé’j(Afj + f]) S
C®(G, )" =T(G %) NH is an H-invariant lifting of I(a). Using g.mp = 7, one has

7~r(04) = Q*ﬁA(q*a) = QGx Z fa,jfrA<f§‘) = QGx Z fa,j((Agj)l + ﬁG({é))

j= j=
n
= d(x Zfa,j)‘Afj-i-ﬁj = pA(I(O())
=1

Thus I maps the anchor map of T*(G/H) to the anchor map p4 of A.
It remains to show that I{a,B}r = [[(a),I(B)] for any o, 3 € QYG/H). Let
{, }x, be the skew-symmetric bracket on Q'(G) defined by replacing 7 by ma in
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(3.1). Using again the fact that m = g,ma, we have
{8} = (¢, BYmy = > {fai&h Fonbhtra

7.k
= " (fasma () (faeh) = X (Fouia(€h)(far)€))
Jk i
+> (fa,jfﬁ,k{éé,EL}WQ .

3.k
Thus, by Remark 4.4,
Ko, BYr = D (fagragre, (Fan)le) =D (Fordnere, (fai)és)

ij ]7k
+ > (faj foklE Gl
j’k
where the bracket [, ]ao on g* is defined in (4.8). On the other hand, using
n

bo =) faj(A&+&) and bg = far(Ad+ &)
k=1

j=1 =

as H-invariant liftings of I(«) and I(3) to smooth sections of G x [, one can compute
(), I(B)] € T'(A) and see that I{«a, 3} = [I(a),I(B3)]. This completes the proof
that I is a Lie algebroid isomorphism. O

4.4. The canonical representation of 7%(G/H, ) on K¢ /. Let (G/H, ) be a
Poisson homogeneous space of (G, n¢). Let

E =G x A'°Pp°
be the trivial H-equivariant line bundle over G, where
(9,Y)-h=(gh, Ad}Y), g€G,Y e Py’

Then the identification I : T*(G/H) — G xp h° by left translation induces an
identification I : Kg/g — F /H. In this section, we show that F is naturally an
(I, H)-line bundle and that the canonical representation of T*(G/H) on Kg/y =
E/H can be identified with the H-quotient of the representation of G x) [ on E,
where [ is the Drinfeld Lagrangian subalgebra of ® associated to w(eH ), and A is the
infinitesimal action of [ on G given in (4.12) (see Definition 3.1 and Lemma 2.7).

Let A™P[ be the 1-dimensional (I, H)-module, on which [ acts by the adjoint char-
acter x; and h € H acts by Ady € Aut(l). The trivial line bundle over G with fiber
AP still denoted by AY™PL, is then an ([, H)-line bundle. Regard A"PT*G as an
(I, H)-line bundle, on which H acts by right translation and [ acts by Lie derivatives
via A. Set

F = AP @ APT*@,

Then F' is an ([, H)-line bundle. Clearly, left translation in G gives rise to an H-
equivariant trivialization

F i G x (/\top[® /\topg*)7
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where h € H acts on G x (AYPl® APg*) by
(9, X @ p) - h = (gh, (Ady1 X) @ (Adjp)), X € AP e A"Pg™.

Lemma 4.8. APP[@ APPg* =2 (APPHO)2 g5 H-modules, so E?> = F as H-equivariant
line bundles over G.

Proof. For V€ {bh,[,h° g*}, let xy be the character of the H-action on A®PV
induced from the Adjoint and co-Adjoint actions. It is easy to see that

—1
XH,t = XH,hXH,H0 and  Xpggr = X, X H,50-
Thus X g, Xu,g = X;ho- 0

Since F' is an (I, H)-line bundle, so is E as a square root of F' by Remark 2.9.
In the next Lemma 4.9, we determine the I-module structure on I'(E). Recall that
X1 € I*,xg € g" and x4+ are the adjoint characters of [, g, and g* respectively.

Lemma 4.9. Fiz Yy € A'Ph0) Yy # 0, and write elements in T'(E) = C*(G, A*Ph?)
as fYy for f € C°(G). Then the l-module structure on I'(E) is given by

(z+€)- (/Y) = (Aﬁg(f) 45 (@ +8) — xe(a) + xee () — 2o, ') f) Yo

foranyx+ &€l and f € C°(G).
Proof. Fix non-zero elements Xy € A™Pl and pg € A*Pg* and let ué be the left

invariant volume form on G with p}(e) = po. Then Xo ® pl) is a nowhere vanishing
section of F'. For x + £ € [, one has

(z+&) - (Xo@uy) = xilz+&Xo® ph+ Xo® L, o
= (ule +&) = xg(@)Xo ® ph + Xo ® L, et iy
By (3.2),
LﬁG(fl)IUJZO = {flu Mé}ﬂc - 2<7TG7 dgl)ué) = (Xg* (5) - 2(7TG7d€l>):U'g)7
from which the formula in Lemma 4.9 follows. O

By §2.3, the (I, H)-line bundle structure on E gives rise to a representation of the
transformation Lie algebroid G x [ on F and a representation of the H-quotient Lie
algebroid A = G xy g (I/h) on E/H.

Theorem 4.10. Under the identification I : T*(G/H,m) = A = G x g (I/h) of
Lie algebroids and the identification I : Kg/p = E/H of line bundles, the canonical
representation of T*(G/H, ) on Kqg/u becomes the H-quotient representation of A
on E/H.

Proof. Denote by D both the canonical representation of 7*(G//H, ) on K¢/ and
the quotient representation of A on E/H. We need to show that

(4.16) DyayI(p) = I(Dap), Vae QYG/H), p € Q°P(G/H).
Let Yo =& A--- A&, € APPRO where &1, ..., &, is a basis for h?, and write

a=Y fai€l € QYG) and g'p=o€ A€ € QVG),

Jj=1
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where fo; € C®(G) for j =1,...,n, and ¢ € C*°(G). Then
a) = fai& € C(G, )T and  I(u) = ¢Yp € T(E)!
j+1
Moreover by := > ", fa,j(A§; +&5) € T(G =y 0 is an H-invariant lifting of I(«a) to
a section of G x [. Let D be the representation of G X [ on . By Lemma 4.9,

(417)  Dufu = I fas (Mgrg (@) - (m,de)o) Yo
j=1

32 fag (MG + &) — xo(AG) + X (65)) Yo,
j=1

On the other hand, let Y{ be the left invariant n-form on G with Y{(e) = Yy. Then
¢ Dap = ¢ ({a, plx = (7, dajp) ={q"@, ¢ piny — (7, dg"@)q"

- Z ({fai) OYides = (ma, d(fas€5))0Y5)

= <foc]7TA fj Yo + {faj§j7 YO}WA¢)

n

- Zm, Afaj NE+ fa dE5) PV
j=1

= Y Jas (Mgrg, (0) = (ma, d€D6) VT + {fashs Yidnro

Jj=1
n
+ 3 (FA(ED) (Fa) — Fas (W, d&))) 0¥y
j=1
Using the properties of the Schouten bracket {, }r, on Q(G), one has

> i€ Yaban = 3 (Faul€hs Yoben = 7al€)) (fa) ¥4 -
j=1

j=1
Thus
(4.18) Dot = > fug (Mg 26, (0) = (o, d€)o) ¥y
7=1
+ 3 o (18 Yidmo — (A, d))ox).
By Lemma 4.6,

(€ Yhna — (A dEVY = 2 (AL +6) — xo(AD) + xe(€) Ve, VE €0
Comparing with (4.17) and (4.18), we see that (4.16) holds. O
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4.5. Poisson cohomology of (G/H,n). Let the notation be as in §4.3. For any
integer NV, since E is a trivial line bundle over G, I'(E™V) = C*(G) as vector spaces.
The induced (I, H)-module structure on C*°(G) is specified as follows.

Notation 4.11. For an integer N, denote C*°(G)y the vector space C*°(G) with
the following ([, H)-module structure: for x + & € [,h € H and f € C*(G),

(& T = Ausel)+ 5 (e +6) — xole) + xe- () — 2mo,de)) .

N
hyf = (XH,hO(h)) (fOTh>,
where X, ,0(h) = det(Adj_, : h° — §°) and 7}, is the right translation by h.
We can now identify the Poisson cohomology of G/H with relative Lie algebra

cohomology. Corollary 4.12 follows directly from Lemma 2.8, Theorem 4.7, and
Theorem 4.10.

Corollary 4.12. For any integer N,
H* (G/H, s Kby ) = Hiso (1 H; C%(G) ).

where the left hand side is the generalized Poisson cohomology of (G/H, ) and the

right hand side is the Lie algebra cohomology of | relative to H with coefficients in
C>(G)N

The special case of Corollary 4.12 when N = 0 was proved in [15].

4.6. The pairing on the Poisson cohomology. Assume that G/H is compact
and orientable with a fixed orientation, so one has the map

(4.19) Q°P(G/H) — R: wr— w.
G/H

By §3.2, for any integer N and any 0 < k < n = dim(G/H), there is a well-defined

pairing (, ) between H¥ (G/H,T(';Kg/H) and H"F (G/H,ﬂ' K&g) In view of

Corollary 4.12, we now identify this pairing with a pairing on the corresponding
relative Lie algebra cohomology spaces. Let the notation be as in §4.4. Then we
have the identifications of H-modules:

AP(I/) @ T(EN) @ T(E*N) = A'"P(1/h)* @ I'(E?)
= AYP(I/h)* @ T(F)
> AYP([/h)* @ AYPL @ QFP(G)
> APP([/h)* @ APPL® APg* ® C°(G)

12

AP(I/h)" @ (A°Ph°)? @ C(G)

AP @ C(@),

where we used Lemma 4.8 to identify APl @ APg* =2 (APHY)2 and left translation
in G to identify Q%P(G) 2 APg* @ C°(G). Thus we have an identification

(4.20) (AP(/h)" @ D(EY) @ D(E*N))T 2 (AP1/h) @ C(G)" = QP(G/H).
Let v : (AYP(1/h)*@T(EN)QT(E?>N))# — R be the composition of the identification

in (4.20) with the integration map in (4.19). One checks directly that (2.2) holds
and that, under the identifications in Corollary 4.12; the canonical pairing between

I
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HF (G/H, m; Kg/H) and H"F (G/H, s Ké;g) coincides with the pairing between
HE (I, H; C®(G) ) and HEH (1, H; C°(G)9— ) induced by v (see §2.2).

4.7. Modular vector fields of (G/H, ). Assume again that G/H is orientable
and let 1 be a fixed volume form on G/H. Fix a non-zero Yy € A*Ph°, and let Yol
be the corresponding left invariant form on G. Write ¢*u = ¢Y{, with ¢ € C®°(G)
everywhere non-zero. Let A € A%g be any element such that q(A) = w(eH) €
NT,G/H = N%g/h, and let mp = Al + 74 so that g.mpy = 7. Recall that x; € [*, x4 €
g" and x4 € g are the adjoint characters of [,g and g* respectively. Write g =
Xg* € 8, &0 = xg € ¢, and let x; be any element in g* such that z((§) = x(A{ + €)
for £ € h0. Recall that for € g and & € g, 2! (resp. 2" and &) is the left (resp.
right) invariant vector field and one form on G with values = and & at e € G.

Lemma 4.13. Let the notation be as above. Let X be the vector field on G given by

X = ~7a(dlog|o]) + 5 (v +af + 7aleh).

Then q. X is a well-defined vector field on G/H, and it is the modular vector field of
w with respect to .

Proof. Let &1, ..., &, be a basis of h° such that & A--- A&, = Yo, Let a € QY(G/H),
and write ¢*av =37, f%jéé. € QY(G). As in the proof of Theorem 4.10,

¢*Dap = =Y fa((&, Taldlog|g]) + (7, d€}))Yy
j=1

1 n
+5 2 o (A8 + &) — Xa(AG) + xer (6))Y
j=1

2

where Fj is the vector field on G such that (Fp,&!) = (ng,d€l) for all € € g*. Tt is
shown in Proposition 4.7 of [7] that Fy = 3 (z} — 2 — 7¢(&))). Thus we have

¢ Dop = (¢", X).

It follows that ¢, X is a well-defined vector field on G/H and it is the modular vector
field of 7 with respect to p. g

- (‘I*Oé, —7a(dlog|o]) — Fo + 1(fvlr + (A&)' +“"6)> ’

Remark 4.14. Note that if x4 is a G-invariant volume form on G/H, the modular
vector field of 7w with respect to p is

1 —
X =3 (JUZL + +7TA(§(Z))) :
This formula for the special case when h° is an ideal of g* has been obtained in [7].

5. A POISSON GROUPOID OVER (G/H, )

When H is a Poisson Lie subgroup of (G, 7¢) and © = g7, where ¢ : G — G/H
is the projection, a symplectic groupoid of (G/H, ) was constructed in [25] (under
the additional assumption that (G,ns) is complete). In this section, let (G/H, )
be an arbitrary Poisson homogeneous space of (G, ) with the Drinfeld Lagrangian
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subalgebra [ = [;(.f). We assume that G is a closed subgroup of a connected Lie
group D with Lie algebra 0, H = G N L, where L is the connected subgroup of D
with Lie algebra [, and that the infinitesimal action A of [ on G in (4.12) integrates
to an action of L on G. We will show that the associated space I' = G xy (L/H) is
a Poisson groupoid over (G/H, ). We also give conditions for I' to be symplectic.
The Poisson structure on I' is obtained from reduction of a quasi-Poisson manifold
by an action of a quasi-Poisson Lie group [1].

5.1. The quasi-Poisson Lie group (G, ms 4, ). Let (G, 7¢) be a Poisson Lie group
corresponding to Manin triple (9, g,g*). Then any A € A%g (not necessarily related
to any Poisson homogeneous space of (G, 7¢) as in §4.2) can be used to twist the
Manin triple (9, g, g*) to a Manin quasi-triple (9,g,g’) [1], where

(5.1) g ={A+ €€

and thus defines a quasi-Poisson Lie group structure on GG. More precisely, let p; :
0> g:x+&—x— A& where z € g and £ € g*, be the projection from 0 = g+ ¢’
to g along g’, and define ¢ € A3g by

e ANAC) = (pi[AE+ & An+nl, AC+ (), &n.(egh
It is straightforward to check that, for any &, 7, € g*,

p(E AN AC) = (A& Anl, €) + ([An, A], &) + ([AC, A, m)
+ (AL, [, C]) + (A, [€,€]) + (A, [€,n])-

In fact ¢ = Z[A, A] +§(A). Let Al and A" be respectively the left and right invariant
bi-vector fields on G with value A at e, and define

(52) 71_011\ = Al — AT + TG,

Lemma 5.1. [1] (G, g4, ) s a quasi-Poisson Lie group corresponding to the Manin
quasi-triple (9,9,9’) in the sense that g a is multiplicative,

1

5[7TG,A7 TrG,A} = ‘Pl - SDT, and [Wc,m Spl] =0,

where " (resp. ') is the right (resp. left) invariant tri-vector field on G with value
@ at e.

Recall from [1] that a (right) quasi-Poisson action of (G, 7¢ 4, ¢) on a manifold P
with a bi-vector field mp is a right action p: P x G — P of G on P such that

1) [mp,7p] = 2p, and

2) p:(Pymp) X (G,mg ) — (P,7mp) is a bi-vector map,
where p : x + p, also denotes the Lie algebra homomorphism g — V!(P) given by

d
(53) px(p) = %|t=0PeXP(t$)a reg peP

as well as its multi-linear extension AFg — V¥(P) : X + px for any integer k > 1.
Left quasi-Poisson actions of (G, g 4, ¢) are similarly defined.

Example 5.2. Let 7y = Al + 7. It is easy to see that the action of (G, 7g 4, ) on
(G, 7a) by right multiplication is a right quasi-Poisson action. For another example,
assume that D is a connected Lie group with Lie algebra 0 and that G is a closed
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subgroup of D. For d € D, let d = dG € D/G, and for z 4+ £ € 0 with € g and
£ € g%, let o,4¢ be the vector field on D/G given by

(5.4) Goreld) = %hzo exp(t( +€))d € Ty(D/@), de D,

Let 0 : AF0 — V¥(D/G) : X + ox also denote the multi-linear extension of o. Let
{z;}7'_ be a basis of g and let {¢;}7 | be its dual basis of g*. Define the bi-vector
fields 7p,¢ and 7p,q.4 on D/G respectively by

1 1
(5.5) Tpe = 3 ngi Nog, and  Tpaa = B ZUA§i+5i N Oy, =Tpja — OA.
i i

Then [1] 75, is Poisson and the action
(G)ﬂ-G,Avso) X (D/Ga 7TD/G,A) — (D/G7 7-‘-D/G,A) : (gvd) L — gdv g € G)d € -Dv
is a left quasi-Poisson action of (G, 7., ). In particular,

(56) [T‘—D/G,Aa WD/G,A] = —20—4‘0.

Moreover, let 6y : g’ — A?g’ be defined by
(Og(AE+&), zny) = AL+ [y]) = (& [,y]), E€g”,myeq

Then one can check that
(57) [O’Aé’+£, WD/G,A] = —059/(A£+£) + 0’1’5907 Vf S g*

5.2. The bivector field 7p on P = G x (D/G). Let the assumptions be as in §5.1.
In particular, assume that D is a connected Lie group with Lie algebra d and that
G is a closed subgroup of D. Let P = G x (D/G). For any integer k > 1 and for a
k-vector field V' on G, let (V,0) be the corresponding k-vector field on P. Similarly a
k-vector field U on D /G gives rise to the k-vector field (0,U) on P. For x € g, recall
that o' is the left invariant vector field on G with 2!(e) = 2. Define the bi-vector
field mp on P by

n

(5.8) Tp = (77, 0) = (0, 7p/6.) + Z(O7UA§i+§i) A (xiv 0).
i=1

Lemma 5.3. The right action
p: (Pmp) X (G moa,9) — (Pomp) s (9,d) g1 = (991, 97'd), 9,91 €G,de D,
is a quasi-Poisson action of (G, Ta.a,@).

Proof. To show that [7p,mp] = 2py, let ¢ = >, ar Abk Acy, where ag, by, ¢, € g, and
let

oo =D ((0,00,) A (B A €k 0) + (0,03,) A (e A, 0) + (0,00,) A (af, A 8], 0))

= ((ak, 0) A (0, Gnee) + (B, 0) A (0, 5pna,) + (chy 0) A (0, Tagr))
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It is easy to see that p, = (¢,0) — (0,0,) — Py + plp- On the other hand, let

o = > i 1(0,0061¢,) A (24,0), so that mp = (74, 0) — (0, 7p)c.4) + 7o, and

[7p, mp] = ([T, A}, 0) + (0, [Tp/c.as Tosc.al) + 2[m0, (7, 0) — (0,7p/c.4)] + [70, o]
=2(¢',0) = 2(0,0,) + 2[mo, (74,0) = (0,7p/c.0)] + [mo, mo].

It is easy to see that [mg, mo] = 71 + w2, where

n

1 l
m=- Z (0’ U[A£i+§iaA§j+£j]) A (."L‘Z A L 0)7
3,j=1
n

m = ([zi,25)',0) A (0,0(ne 1) n0e +¢,))-
ij—=1

Thus [p, 7p] = 2(¢!,0) — 2(0,0,) + 2[m0, (74, 0)] + m1 — 2[70, (0, 7p/c.4)] + T2. Now
2[mo, (ma,0)] =2 Z(O’ UAfH—&) A (([wi, A] + 5(:&))[7 0).
i=1

Recall that p; : 0 — g is the projection along g’. Let p’ : 9 — g’ be the projection
along g. It is easy to check that

D PING+ & AG Gl @ai Ay =2 (A& + &) @ ([, A] + ()

ij=1 i=1

n
Z pi[A& + &, A&+ & @z ANy = 29,
ij=1
where ¢ = Y, (arp @by Ack+bp @cp Aag+cp®ar Aby). Thus 2[mg, (ma,0)]+m1 = _2[):0_
Similarly, by (5.7),

n n

[0, 7rD/G,A] = Z(xiv 0) A (0, _[UA&+5H 7TD/G7A]) = Z('%é? 0) A (0, 05,0 (A&+€) — U%isﬂ)'
i=1 i=1

It is easy to check that Y ;" | x; ® tg; o = ¢ and that

n

2> @i @0y (MG + &) = D i, 15] © (AL + &) A (A + &)

i=1 ij=1
Thus —2[m0, Tp/c.a] + 72 = 2p,. Hence [7p, 7p] = 2p,. The proof that p is a bi-vector
map is straightforward and we omit the details. O

We now study when 7p on P = G x (D/G) is nondegenerate. For d € D, the
linear map 0 — T4(D/G) : © + &§ — 044¢(d), where z € g and § € g*, induces an
isomorphism 0/Adgg — T4(D/G). For y € g and 0 € g*, let ayyy(d) € T;(D/G) be
such that N
(59) (O‘y+n(d)a a$+£(d)) = <y + 777 x + £>7 HAS g?é. € g*

Then we have the isomorphism

(5.10) Adgg — T3(D/G): y+nr— ayin(d), y€g neF, y+ne Adg.
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Note that when y+7 € Adgug, 0y1y(d) =0, so 0,(d) = —0,(d). The proof of the first
identity in the following Lemma 5.4 is straightforward and is omitted. The second
identity follows from (4.13).

Lemma 5.4. Forge G,de D, £ € g" andy+n € Adgg withy € g and n € g*,

Folly16, ayin(d)) = (Felly-16) + (g)oly + AE = An), oapiy-ne-e(d)
= ()‘y—An+A§+§ (g)v —Oy—An+AE+E (d))

Lemma 5.5. The bi-vector field m7p on P = G x (D/QG) is nondegenerate at (g,d),
where g € G and d € D, if

(5.11) g NAdyg=0 and g*NAdyug=0.
In particular, wp is nondegenerate at (g, e) for any g € G, where e € D is the identity.

Proof. Assume that (5.11) holds at (g,d) € P. Suppose that £ € g* and y+n € Adyg
are such that ﬁp(l;,lf, aytn(d)) = 0. Then oppty—ac—¢(d) = 0 by Lemma 5.4, so
An+n—A&—€ € g¢NAdyg = 0. Thus ¢ = 7. By (4.1), ﬁG(l;_lﬁ) = (rg)«pgAdg€, where
Pg : 0 — g is the projection along g*. Thus Lemma 5.4 implies that pgAd,(y+§) =0,
so Adg(y+ &) € g NAdggg =0. Thusy =0 and £ =n =0. O

Remark 5.6. Let N(g*) be the normalizer subgroup of g* in D. Suppose that
D = N(g*)G and that A =0 (so m(eH) = 0). Then (5.11) holds for all (¢g,d) € Gx D,
and 7p is nondegenerate everywhere on P. See Example 5.14 for an example.

5.3. The Poisson structure Il on G x g (L/H). Let the notation be as in §5.1 and
§5.2, but assume now that (G/H,7) is a Poisson homogeneous space of (G, 7) and
that A € A%g is such that q(A) = w(eH) € A*T.y(G/H) = A%*(g/h), where g denotes
both projections G — G/H and g — g/h. Let (G, g, ) be the quasi-Poisson Lie
group defined using A as in §5.1.

Lemma 5.7. Let P be any manifold with a bi-vector field wp. Suppose that p :
(P,mp) X (G, mga,p) — (P,mp) is a right quasi-Poisson action of (G,mga, ) and
that p restricts to a free and proper action of H. Let j : P — P/H be the projection.
Then jymp is a well-defined Poisson structure on P/H.

Proof. By 1) in Lemma 4.3, ¢, mg A (h) = 0 for all h € H. It follows from the fact that
p is a bi-vector map that j.mp is well-defined. Since ¢ € h A g A g by 2) of Lemma
4.3, (4«7 p, JuTp] = Julmp, Tp| = 2jspy, = 0, s0 jump is Poisson. O

We now state a lemma from linear algebra.

Lemma 5.8. Let (V,m) be a Poisson vector space. Suppose that U and W are
subspaces of V such that #(U°) C W C U, where UY = {¢ € V*|{|y = 0}. Let
¢V — V/W be the projection. Then U/W is a Poisson subspace of (V/W, ¢()).

The following Lemma 5.9 follows immediately from Lemma 5.8.

Lemma 5.9. Let the notation be as in Lemma 5.7. Suppose that Q) is an H-invariant
submanifold of P such that ﬁp(TqOQ) C Ty(qH) for every q € Q, where T(?Q =
{a € T; Plalr,g = 0} and qH is the H-orbit through q. Then Q/H is a Poisson
submanifold of (P/H, j.«mp).



A NOTE ON POISSON HOMOGENEOUS SPACES 21

We now apply Lemma 5.7 to P = G x (D/G) as in §5.2, 7p as in (5.8), and the
action p as in Lemma 5.3. Denote by G xpg (D/G) the quotient of P by H with
the projection j : P — G xg (D/G). By Lemma 5.7, j.7p is a well-defined Poisson
structure on G x g (D/G). Set [g,d] = j(g,d) for g € G and d € D.

Notation 5.10. The Poisson structure j,mp on G X (D/G) will be denoted by II.

Recall that [ = [(c) is the Drinfeld Lie subalgebra of 0 associated to m(eH ). Let
L be the connected Lie subgroup of D with Lie algebra [ and assume that H = GN L.
Let O be the L-orbit in D/G through e € D/G, where e is the identity element of
D. Identify L/H with O and regard G xpg (L/H) as a submanifold of G x g (D/G).

Lemma 5.11. G xg (L/H) is a Poisson submanifold of (G xg (D/G), 1), and 11
is nondegenerate at [g,d] for all g € G and d € L such that (5.11) holds.

Proof. Let Q@ = G x O C P. Then @ is H-invariant. To see that QQ/H is a Poisson
submanifold of (P/H, II), it suffices, by Lemma 5.9, to show that 7»(T)Q) C Ty(¢H)
for every ¢ = (g9,d) € Q, where g € G and d € L. Using the isomorphism in (5.10),
T[?Q = {(0, ay4y(d)) |y +n € IN Adgg}, and by Lemma 5.4,

To(TYQ) = {((lg)+(y — An), oan—y(d)) |y +n € [N Adgg}.

By (4.7), y +n € limplies that y — An € h. Thus 7p(T7Q) C T,(¢H).

By Lemma 5.5, mp is nondegenerate at (g,d) for all ¢ € G and d € D such that
(5.11) holds. At such a point (g,d) where d € L, [N Adgg = Ady(INg) = Adgh, and
the map [N Adgg — b :y+n+— y— An is an isomorphism, so ﬁP(TgQ) =T,(¢H).
It follows from a linear algebra argument that II is nondegenerate at [g, d]. U

5.4. The Poisson groupoid (G xpg (L/H),II). Let the notation be as in §5.3.
Recall that A : 0 — V1(Q) is the infinitesimal action of @ on G given in (4.12).
Assume in addition that the restriction of X to [ integrates to a right action of L on
G, denoted by (g,1) — ¢' for g € G and | € L, such that ¢" = gh for g € G and
h € H. Then G is a (9, L)-space (see Definition 2.2).

Let I' = G xpg (L/H). Tt is straightforward to show (we omit the proof) that the
following is a groupoid structure on I' over G/H: for g,g1,92 € G and [, 1,15 € L,

1) source map s : I' — G/H : [g, [H| — gH;

2) target map t: I' — G/H : [g, I[H] — ¢'H;

3) multiplication -p: [g1, L1 H] v [g2, loH] = [g1, l1hlaH]| when glfH = goH, where
h=(g1") g2

4) inverse 7: T — T : [g, [H] = [¢, I H];

5) identity section € : G/H — I': gH — [g, eH].
Theorem 5.12. With the groupoid structure described above, (G x g (L/H),II) is a
Poisson groupoid over (G/H, ).

The proof of Theorem 5.12 will be given in §5.5.
Remark 5.13. Assume that m(eH) = 0, so that we can take A = 0. Recall that G*
is the connected subgroup of D with Lie algebra g*. Assume further that the map
G*x G — D : (u,g) — ug is a diffeomorphism. Identify G with G*\D. Then the
restriction to L of the right action of D on G = G*\D integrates the infinitesimal

action A of [ on G. By Remark 5.6 and Lemma 5.11, II is nondegenerate everywhere
on G xg (L/H). Thus (G xg (L/H),II) is a symplectic groupoid over (G/H, ).
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Example 5.14. Let G be a connected and simply connected Lie group and let X
be the variety of Borel subgroups of G. Let G be a real form of G and K a compact
real form of GG such that Ky := GNK is a maximal compact subgroup of Gy. Choose
an Iwasawa decomposition G = KAN of G such that the Borel subgroup B of G
containing AN lies in the unique closed Gp-orbit in X. This choice of B gives rise to a
Poisson Lie group (K, 7, ) with AN as a dual Poisson Lie group. Although K is not
a Poisson Lie subgroup of (K, mx), it is shown in [10] that the projection 7 of 7, is a
well-defined Poisson structure on K/Kj, making (K/Ky, ) a Poisson homogeneous
space of (K, ), and the Drinfeld Lagrangian subalgebra associated to 7w(eKy) is go,
the Lie algebra of Gy. Let T'= K N B, a maximal torus of K. The set of T-orbits of
symplectic leaves of 7 in K/Kj is shown in [10] to be in one to one correspondence
with the set of Gg-orbits in X. Due to the importance in representation theory of
Go-orbits in X, the Poisson geometrical properties of (K/Ky, ) are worth further
study. Since m(eKp) = 0 and since G = KAN = ANK, the conditions in Remark 5.6
are satisfied. By Remark 5.13 and Theorem 5.12, K X, (Go/Kp) has the structure
of a symplectic groupoid over K /K. More details of this example, in particular, the
generalized Poisson cohomology of (K/Ky, ), will be studied in a future paper.

5.5. Proof of Theorem 5.12. Let the assumptions be as in §5.4. We need two
lemmas. Recall that G* is the connected subgroup of D with Lie algebra g*.

Lemma 5.15. For any g € G andl € L, ¢l 'g™ ' € G*.

Proof. Fix g € G and | € L. To avoid confusion with the notation set up in §1.1 for
left and right translations on G, if v € T;G, we let g~ v € g and vg~! € g be the left
and right translation of v by g~!.

Let [(t) be a smooth curve in L such that [(0) = e and (1) = [, and let
ut) = ¢Wit)'g~" € D. Let ¥/(t) € TysD and I'(t) € Tjp)L be respectively

the derivatives of w(t) and [(t) at t. Let z(t) = I(t)~''(t) € I. Then, for every t,

(1) = Ay (9N T g™ = gDz (B)i(t) g

so by (4.13), o/ (t)u(t)~! = —Ad i x(t) +pgAd i x(t) = —pgrAd py x(t) € g%, where
pg and pg« are projections from ? to g and g* with respect to the decomposition
0 = g+ g*. It follows from u(0) = e that u(t) € G* for all t. In particular,
g g7t =u(l) € G*. O

The following Lemma 5.16 is equivalent to 1) in Lemma 4.3, and we omit its proof.

Lemma 5.16. One has Ady A& + pgAdpé — AAd; & € b for all € € h° and h € H.

We can now start the proof of Theorem 5.12.

Let Gr = {(71,72,73) €T X T x T'|t(71) = s(72), 73 = 71 'r 72} By the definition
of Poisson groupoids [24], we need to show that Gr is coisotropic in I' x I' x T’
with the Poisson structure II @ IT @ (—II). Let (P, 7p) be as in §5.2 and recall that
j: P — P/H is the projection. Since (I',II) is a Poisson submanifold of (P/H,II),
and since j : (P,mp) — (P/H,II) is a bi-vector map, it is enough [22, Corollary 2.2.5]
to show that Gp := (j x j x j)~1(Gr) is coisotropic in (P x P x P, mp & 7p ® (—7p)).
Recall that O is the L-orbit in D/G through e € D/G and that Q@ = G x O C P.
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IdentifyL/H with O by identifying [H € L/H with l =G € D/G for | € L. Then
Gp ={((g1, LH), (g2, l2H), (g1h3, h3'l1hloH)) |
91.92,92 € G, I, 1y € L, hg € H, g H = goH, h = (') "2} CQ x Q x Q.

We will first describe the tangent bundle of Gp and then the co-normal bundle of Gp
in Px P x P.

Let G2 = {((g1, W H), (g2, 12H)) | g1,92 € G, li,l2 € L, ' H = g, H} C Q x Q.
We now compute T4, 4,)G2 for (q1,q2) = ((91, l1H), (g2, [2H)) € G2. Define ¢,5 :
Q — G/H by t(g,1H) = ¢'H and 5(g,lH) = gH for g € G and | € L. Then

Tiq1,g2)92 = {(v1,v2) [v1 € Ty, Q, v € T, Q, te(v1) = 34(v2)}.
Recall that o : 0 — VY(D/G) is given in (5.4). Let x : g — VY (G/H) : * — £, be
the Lie algebra anti-homomorphism given by

d
(5.12) ke(gH) = %]tzo exp(tx)gH, x€g,9€G.

Forz,z€g,(€g"withz+(el,and g=(g,lH) € Q, let

Ur,Z+§(Q) = ((lg)«, Uz+€(lH)) € T,Q.

(Recall from §1.1 that the “I” in I, denotes the left translation by g. This is not to
be confused with an element in L.) Recall that py : © — g is the projection along
g*. Using the fact that G is a (9, L)-space via the infinitesimal action A of @ and the
action of L, one sees that

: !
tVzy 246 (Q1) = KpyAd llrl(mﬁzﬁgl)(ng), forzy €g, 21+ G €L
911

Since 54vzy, z04+¢(q2) = /iAd”mz(gQH) for xo € g, 20 + (2 € [, we get

(5‘13) T(qhqz)g? = {(Ufchzﬁ—ﬁ (Q1)v Vza, zo0+C2 (QQ)) ’xla T2 €, 21+ (1,22 + G €L
To = To + AdgglpgAdglllzfl(xl + 21 + (1) for some Z9 € b}.

Define
fiG—Q: (91, lH), (g2, LH)) — (91, L) golo H).
Fix g; € G,l; € L, for i = 1,2, such that (q1,¢2) = ((91, 1 H), (92, [2H)) € Go.
Let x; € g and z; + ; € [ be such that (vg,,24¢,(q1); Vas, 20+ (92)) € Tig1,g0)@ a8
in (5.13). Let ¢1(t),11(t), and l2(t) be smooth curves in G and L respectively such
that g1(0) = g1, 91(0) = (Ig,)«@1, and 1(0) = 1, [;(0) = (ry,)«(2i + G) for i = 1,2,
where the superscript / denotes derivative at 0. Let ga(t) = g1(t)"®hexp tZo, where
h = (gil)_lgg € H. It is easy to see that g5(0) = (Ig,)«z2. Let
c(t) = ((91(t), L) H), (92(1), () H)) € Q@ x Q.

Then c(t) € Gy for all t, ¢(0) = (q1,¢2), and ¢(0) = (Vay, 214+¢,(41) Vao, 20+ (42))-
Since f(c(t)) = (g1(t), li(t)hexptzala(t)H), we have

d
f*(UI1,21+C1 (Q1)7 Vg, z0+(2 (Q2)) = %|t=0f(c(t)) = Vzy, 23+C3 (91; llhl2H))a
where z3 € g and (3 € g* are such that
(5.14) z3+ (3 =21+ + Adllh(.fg + Adbi’g + 29 + Cg) for some T3 € .
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Thus for (q1,42,q3)= (91,11 H), (g2,12H), (g1hs, h;lllhlgH)) € Gp, where hg € H,

T(q17q27q3)gP = {<vm1721+ﬁ1 (q1), U$2722+C2(q2)’ Uacg-i—Ad;;acl,—x3+Ad;31(z3+Cs)(q3)> |
T, x2 €9, x3€h, zi€g, e, u+Geli=1,23,
To = To + Adgz—lpgAdgzllll,l(:nl + 21+ (1) for some T2 € b,
23+ (3 =21 + Q1 + Adyn (T2 + Ady, T3 + 22 + (2) for some T3 € h}.
Let TO

(g1,g2,05) 9P e the co-normal subspace of T(g, g, ;9P in T( qs)(P x P x P).
Recall that for d € D/G, ayiy(d) € T;(D/G) is given in (5.9). For y € g, {,n € g,
and ¢ = (9,1H) € Q, let ag yiy(q) = (I 1€, ay4qy(IH)) € Ty P. Then for ,z € g
and ¢ € g* with z4+( €[,

(515) (aé,y+n(Q)7 Ux,z+C(Q)) = (.CC,&) + <y +1, 2+ C) = (‘T7§) + (y7 <) + (27 77)7
and the map g* x Adig — T, P : (§, y + 1) — ¢ yiy(g) is an isomorphism. Let

I3 = hglihly € L, where h = (gil)_lgg. It follows from (5.15) that T(?h 42.09) 9P

consists of all triples
(5.16) (er,yr4m (01), Oy, yotn2(02), Qg ystns (43)) € T(y, gy 40) (P X P X P),
where &,m; € g%, y; € g and y; +n; € Ady,g for i = 1,2, 3, such that
0= (&, 21) + (&2, Adyr1pgAd 1 121) + (€3, Adys121)
+ (y1 +m, 21 + C) + (&, AdgglpgAdgilll—l(Zl +Q)) + (y3 4+ m3; Ady -1 (21 + Q1))
+ (&2, 22) + (ys + 13, Ady—1y , T2)
+ (Y2 +m2, 22+ C2) + (Y3 + 113, Adyory (22 + C2))
+ (&3, 23) — (y3 + m3, x3)
for all x1 € g, Ta,z3 € b, 31 + (1 € land 22 + (5 € [, which is equivalent to

(5.17) §1+ Ady ) A6+ Adyy s € 6

(5.18) yitm+ Ad ooy Ao+ Adpg (ys +m3) € 1
(5.19) o+ Ady vy, (Y3 +13) €9+

(5.20) Yo+ 2+ Adyoyn, (U +m3) €6

(5.21) &3—m3 e’

where recall that h° = {& € g*|(£,h) = 0}. Since g+ [ = g + h° by (4.7), (5.19)
and (5.20) imply that 1y — & € h0. Similarly, (5.17), (5.18), and (5.21) imply that
— & €h Thus

(5.22) Ani—&)+m—&el for i=1,23.
It remains to show that for any triple in (5.16) satisfying (5.17) - (5.21),

(5.23) (ﬁP(O‘Ehyﬁm(qﬁ)a 7~TP(O‘&,yzﬁm (q2)), _ﬁP(aﬁa,ngrn:s(QS))) € T(ql,qz,qs)gp'
Let g3 = g1hs. By Lemma 5.4 and (5.22),

frP(aii,yHrm (@) = Uwi,zﬂréi(%) €T,Q
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for ¢t =1,2,3, and

(5:24) @i =yi+ AL — Ani+ Ad-1pgAdy, i, zi+ Go= A — &) + 0 — &
Thus by our description of T} )Gp, to show (5.23), it suffices to show
(5.25)

(5.26) x1+ Adp,z3 € h

(5.27) Adp, (w3 + 23 + (3) + 21 + 21 + G + Adya (T2 + 22 + C2) € Adyy i, b.
By (5.24),

(5.28) itz +G=y+n — Adg{lAdZi‘lgi’ i=1,2,3.

q1,92,93
To 1= X9 — AdgglpgAdglllzfl(xl + 21+ Cl) € b,

We first prove (5.25). Since Adll—l(yl +m) € g and gllllflgfl € G* by Lemma 5.15,

Ty = y2 — A + Ay + Ad —1pgAdy, & — Ady_y—1 (y1 + 1)
Note from (5.18) that
Adyy=1(yr +m) + & — Ad-1pgAdg, & + Adyiy—1y, (y3 +m3) €1,
so by (5.20), Ad —1pgAdg,€2 — Ady_yym1(y1 +m) — &+ y2 + n2 € L It follows from
(4.7) that o € b, so (5.25) holds. To prove (5.26), note that (5.17) implies that
pG*Adll(gil)*lAd;‘l& =& — Adzglfg, so by (5.18) and (4.7),
y1+pgAd oy A&+ Adngys + pgAdngts + A& —m) +AAdy 1 (6 —m3) € b
Thus by (5.17), (5.26) is equivalent to
Adns A(&s — n3) + pgAdns(§3 —m3) — A} (§3—m3) € b

which holds because of Lemma 5.16. This proves (5.26). It remains to prove (5.27).
Using Lemma 5.15 and (5.28), one sees that the left hand side of (5.27) is equal to

Adpy(ys +113) + Adiyp(yz +112) — Adypg Adgy (& + Adpe€3) — Ady (1) AdUaEo.

91 )
By (5.17), Adg;1pg*Adg1 (&1 + Adp,&3) + Ad Adz,lfg = 0. Moreover, since
2
y2 + 12 € Adj,g and y3 + 13 € Adhéllhlzg,

Y2 + 2 + Adh—lll—lhB (yS + 773) S Adl2g Nl = Adl2b

by (5.20). Thus the left hand side of (5.27) is in Ady,p,b, so (5.27) holds.
This finishes the proof of Theorem 5.12.

l
11(911)_1
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