A mean square formula for central values of
twisted automorphic L-functions

Yuk-Kam Lau and Kai-Man Tsang

1. Introduction. Let k be an even positive integer and Si(I'(1)) be
the space of all holomorphic cusp forms of weight k£ with respect to the
full modular group. It is known that Si(I'(1)) has a basis By consisting of
normalized cusp forms f which are simultaneously eigenforms for all Hecke
operators T,. To be specific, T,,f = )\f(n)n(kfl)ﬂf, and f has the Fourier
series

Z)\ pk=1)/2 e(nz)

where e(a) = e*™®. Note that A¢(1) = 1 and each A\f(n) is real.
Let x (mod D) be a primitive Dirichlet character. Associated with each
f, the twisted L-function is defined as

(1.1) L(f @ X, 5) ix (Res > 1).

This L-function possesses the usual properties of classical L-functions. De-
fine

(12) A @ xos) = (%)SP(H%)w@X,S).

We have from [Iw, Theorem 7.6] that A(f ® x,s) can be holomorphically
continued to the whole of C, bounded on any vertical strip, and satisfies the
functional equation

where the root factor e(x) = i*7(x)?/D. (7(x) is the Gaussian sum.)

The central values L(f ® x, 1/2) are of particular importance and inter-
ests; indeed, the nonvanishing nature of these values are linked to different
arithmetic problems (see [IS]). An interesting result about the central value
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is the non-negativity of L(f ® x, 1/2) for any real character y. To get non-
vanishing results, we investigate the first and the second moments (with
mollifiers). It is not hard to derive the formula for the first moment below
for large k by using (1.3),

(1.4) > wiL(f @ x,1/2) = 1+ ex(x) + O™,
feBy

where
I'(k—1) log k
(4m) =t £ k
by [HL] or [KS, (4)]. (The O-constant is independent of k£ and x (mod D).)

In addition, for quadratic character x (mod D), Kohnen and Sengupta [KS]
proved that for any ¢ > 0,

ZL(f@X,l/Q) <p k't as k — oo.
feBy

In particular, assuming the Lindel6f hypothesis L(f ® x,1/2) <p k®, they
showed that

1—¢g

as k — o0.

(10)  #{f € Bs L@ 12 20} 0

Aiming at the problem of non-existence of Landau-Siegel zeros, Iwaniec
and Sarnak [IS] investigated the moments (averaging over k)

AxlXf] = h(,'ZjQ > weX;

fEBk

k even

where Xy = L(f ®x,1/2) or L(f ® x,1/2)? (x is real), and h € Cg°(R") is
a test function. The role of h is to localize the weight k£ within an interval of
length of order K. They got asymptotic results [IS, Theorem 1] as K — oc:
let H = [°h(t)dt and D be the modulus of the real character y, then

Ax[L(f @ x,1/2)] ~ HK and Ag[L(f ® x,1/2)%] ~ @2}”{ log DK

where the asymptotics are uniform for D < K?° for some positive constant
. (But this is not sufficient for their purpose and they considered mollified
moments. )



In this paper, we establish an asymptotic formula for the second moment
of L(f®x,1/2) for all large even k for both real and complex primitive char-
acters. As a consequence, we prove unconditionally the better lower bound
k/(log? k) in (1.6). Moreover, our result here can be viewed as a supplement
to giving an asymptotic formula for individual (large) k. Without the extra
smoothing process over k, we cannot make use of the tool in [Sa, Section 3]
or [Iw, Section 5.5].

Theorem 1. Let k > ko be any sufficiently large even integer. Suppose
that x is a primitive Dirichlet character of conductor D, where 1 < D <
k/(16logk). We have the following.

(a) If D =1 (i.e. x is the trivial character) and k =0 (4),

(F’(k/2)
I'(k/2)

> wpL(f,1/2)° =4

+ v —log 27r) + Ou(k™),
JeBy

where A > 1 is arbitrary, and the O-constant depends on A.

(b) If x is real,

> wil(f @x,1/2)°

fEBy
_ ko 2P (1. F D log p
= 2(1+4"x(-1)) D (10g2 +’V+log27r +Z|L;p_1>
p
+ O(D3k~Y2(log k)*).
(c) If x is complez,
> wiL(f ® x,1/2)°
feBy
(D) k D logp
2 log — log —
ex(x) 5~ (log 5 +7 +log - +Zp_1)

p|D
+(L(1,x%) + & (0)*L(L, X)) + O(D’k ™ (log k)*).

The O-constants are independent of D.



Theorem 2. Suppose that x1 and xo are primitive Dirichlet characters
of conductors Dy and Dy respectively, and 1 < DyDy < k/(16logk). If

X1 7 X2 and X1 # X, then
> wiL(f @ x1,1/2)L(f @ X2, 1/2)
feBy
= L(L,xax2) + ex(xa)en(x2) L(1, X1 X2)
+ ex (1) L1, Xy x2) + ex(x2) (1, X1X2) + O((D1D9)*/2 k=2 (log k)*).

Here L(s,1)) denotes the Dirichlet L-function for the character .
Remark 1. For trivial character y and £ =2 mod 4, the central value
L(f,1/2) is zero by the functional equation (1.3).

Remark 2. A character is said to be complex when it is not a real
character.

Remark 3. The error terms in the last three asymptotic formulas be-
come prominent when D; Dy > k'/3/(logk)?. (D, = Dy = D in (b) and
(c).)

Remark 4. Let Ry be the positively oriented rectangular contour with
vertices at £2 4+ ¢7". Taking ' — oo and using (1.3), we have

(1.7) A(f®x,1/2)

1 dw
= — A 1/2 —
1 dw
= 3. (Q)A(f®x71/2+w)g
_ ) = 1/9— )
1 dw
T (2) w

It is apparent that A(f ® x,s) = A(f ® X, 5) for Res > 1. Hence
Af@x,1/2) = Mf @ X, 1/2).
Using (1.3), we see that

(A @ x,1/2)* = [A(f @ x, 1/2)F,
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or equivalently, e, (X)L(f ® x,1/2)? = |L(f ® x,1/2)|>. Thus, for complex
X, Theorem 1 (c) is equivalent to

18) S wilL(f @ x.1/2)P

feBy
o(D)

logp)
D

p—1

= 2

k D
p|D
+ 2%Re (e () L(1,%?)) + O(D3k_1/2(log k).

since, for even k, ex(X)er(x) = |ex(X)]? = 1.

Remark 5. Our proof is based on the Petersson trace formula, which
is different from [KS]. The approach of using this trace formula and investi-
gating the contributions from the so-called diagonal and off-diagonal terms
is explored in various articles, for example, [Du], [IS], [MV] and [Sa]. (Note
that these papers do not deal with the situation of large individual weight.)

Finally we give a direct application of Theorem 1 on the non-vanishing
of L(f ®x,1/2).

Corollary 3. Let k be any sufficiently large even integer. Suppose that
either

(i) x is a real primitive character mod D where 1 < D < k'/6/(log k)?,
or

log k
(i) x is a complex primitive character mod D with log D < o O{g k
og log
for some suitable positive constant cq. Then we have
B € B LT® X, 1/2) £ 0} 3 [+ ()P o

where the implied constant is independent of D but depends on cqy in case (ii).
(As e (x) = i*x(=1) for real x, both sides will equal zero if i*x(—1) = —1.)

Proof. In view of Theorem 1 (b) and (1.8) (for real and complex char-
acters respectively), we obtain, by using the bound L(1,%?) < log D (as
is nonprincipal) for case (ii), that

Z we|L(f ® x,1/2)]* < @logk

FeBy



for D in the specified ranges. By the Cauchy-Schwarz inequality and (1.4),
2

1+ e () > wiL(f @ x,1/2)
feB
log k
L 1/2)|?
< YuwllgexipP Y 2
feBk fGBk

L(f®x,1/2)7#0

by (1.5). The result follows.

2. Some Preparation. The idea of our proof is to express the central
value of L(f ® x1,8)L(f ® x2,s) in terms of infinite sums via an integral
analogous to (1.7). For Res > 1, we deduce from (1.1) and the relation

Ar(m)Af (1) = 3 4y Af(mn/d?) that

Ll o)Ll ®xws) = 3 Xl S
m,n=1 d\ m,n)
— X X d 2s Xl (mn)
Z o m;I
(21) = L(257 X1X2) Z )‘f(n):icshxz (n)

n=1

where L(+, x1x2) is the Dirichlet L-function for the character x;x2 and

Taae(m) = D xa(a)xa(b)

ab=n

It turns out that the central value is represented by a sum of two rapidly
convergent series. Averaging the series over all f € By with the Petersson
trace formula, the sum will consist of two types of terms: those coming
from the Kronecker delta, called the diagonal terms, and those which involve
the Kloosterman sums, the off-diagonal terms. The diagonal terms can be
easily handled while for the off-diagonal terms, we open the Kloosterman
sums and insert the Mellin transform for the Bessel function J,_;. After
rearrangements, one can find among all factors the (twisted) Dirichlet series
associated with 7,, ,,(n),

E\, x,(s,a/c) = ZTXl w(n)e(an/c)n™ (Res > 1),



where (a,c) = 1. This series will play a crucial role in our investigation. In
fact, the main contribution of the off-diagonal terms comes from its pole.

The series E,, y,(s,a/c) can be viewed as a generalization of E(s,a/c)
investigated by Estermann [Es] (or see [Ju]). Like E(s,a/c), it possesses
nice properties,; as stated in Lemma 2.1 below. (The proof of this will be
given in the last section.)

Lemma 2.1 The function E,, ,,(s,a/c) can be analytically continued to a
meromorphic function, which is holomorphic on C except possibly at s = 1.
The Laurent expansion of E, \,(s,a/c) at s =1 is of the form

EXLXz(Sv (I/C) = Axl,XQ (Cl, C)(S — 1)_2 + BX17X2 (a, c)(s — 1)_1 + ...

When x1 = x2, we put x = x1 = X2 and D = Dy = Dy. For ¢ = Dk with
(D, k) =1,

Alard) = roxan) A2 ana
Bus(0) = 27 (0@ — g+ 3 228

pID

In all other cases Ay, y,(a,c) =0, and we have (for x1 # x2)

Bya(a:0) = da(e r(u)T(a)xal o)LL xaX)
+0n (e 00 Ta(a)0(5)L(L 1)

where 6;5(c) =1 if Di|c and (5-, D;) =1, and 6;5(c) = 0 otherwise.

In addition, E\, ,,(s,a/c) satisfies the functional equation

EX1,X2 (57 a/c)
= alD,d 7 [Da, 7m0 = 9)* ) xa(u)xa(v)e(

u (D1)
v (Dg2)

uvag

)

X ((1 + Xle(—l))gpj;c(l — s;u, —v)

— (e3) + xixa(=De(=3) Jero(1 = siu,v))



where ¢; divides ¢ and aq is an integral multiple of a. When Re s > 1, the
functions ¢f .(s;u,v), abbreviated for pF ., p,(s;u,v), are given by

or(s3u,v) Zn TJFTLUU(:F%)
c

for some integer ai. Also, we have |77 (n;u,v)| < d(n). (d(n) =3_,, 1 is
the divisor function.)

Remark. The constants ag and a; depend only on a, ¢, Dy and Dy,
and the functions 7.7 (n;u,v) also depend on Dy, Dy. When Dy = Dy = 1,
we have ¢; = ¢, hg =0 mod c and @] (s;1,1) = > n=*d(n)e(Fan/c) =
E(s,Fa/c) for Res > 1. Hence, the functional equation reduces to [Ju,
Lemma 1]

E(s,a/c) = 2c'7%(2m)* 2T (1 — 5)*(E(1 — s,a/c) — cos(ns)E(1 — s, —a/c)).

Following from Lemma 2.1 and the Phragmén-Lindeléf Theorem, the
function E,, ,, (s, h/k) satisfies the convexity bound

(22) EXI,XZ (O’ -+ ’it, h/]i]) <<D1,D2,k,C,e (’t| -+ 1)a(0)+6 for any € > 0,

where C' > 0 is an arbitrary constant, «(c) =0 for 0 > 1, a(0) =1 — o for
0<o<land a(c)=1-20 for —C <o <0.

In addition we need a few lemmas. We start with some results on the
Bessel functions J,(z) and Yy(x), which will be used later. These two Bessel
functions can be defined, for x > 0, as

23)  J(z) — i_oj'(_—l)l_@)”“l (h=01,---),

24)  Yolx) = %Jo(@logf—%z:(—l)l%<§>2l'

For all z > 1, [Le, (5.11.6) and (5.11.7)]

(2.5) Yol = \/ZS1 (x—7/4) + 0™,
Jn(x) — 2 COS(Z,U_TL’]T/2—7T/4>+O( 3/2>7

™



where the O-term in the second formula depends on n. Furthermore [Le,
(5.10.8)], for any positive integer n,

T w/2
(2.6) Ju(z) = l/ cos(zsinf — nf) df = l/ Re f.(0,x)db,
0 T Jo

™

where f,(0,1) = (e7" 4 (—=1)"e™M?)ei*sin0 . Also, [Le, (5.10.2)]

Jale) = ﬁr(k;l— 1/2) (g)k_l /_11(1_#)]63/%08(“) «

(2.7) < (%)k_l,

with an absolute implied constant. Finally, we notice that the functions
Jr_1(x) and 2°7'T((k — 1 + 8)/2)/T((k + 1 — s)/2) are Mellin transform
pairs; that is,

_ 1 D((k+9)/2) 55 51
(2.8) Je—1(z) = %/(_1) QO ds,

(2.9) % = /000 Jp—1(x) (g)s dr (—k <Res < —1/2).

Our first lemma below prepares an estimate of the Gamma function. The
second one transforms two integrals of the Gamma functions into integrals
of the Bessel functions. The third lemma gives upper bound estimates for
certain integrals of the Bessel functions, which we will make use of later.

Lemma 2.2 Let s = o + it and A > 1/2 be a fizred constant. For all
sufficiently large k (> ko(A)) and 0 < o < A, we have

Lk —s)
I'(k+s)
The implied constant depends on A only.

<a (k+[t]) 7.

Proof. Using Stirling’s formula [Le, (1.4.12)], we obtain that
Re (logI'(k — s) —log'(k + s))

1 (k—o0)?+t2
= Z(k—0o—1/2)log ——2L "
_ 20t
—010g((k+0)2+t2)—ttan 1m+0(1)

= —olog((k+0)*+*) +0(1).



Lemma 2.3 Let k > 2 be any integer and y > 0. Suppose that 0 < Rew <
k/2 —2. Then,

1 L(k/2—w—2z/2) TZ
2ri J, (k:/2—|—w—|—z/2)F( Jreos(5
= —2”2“%/ 1 (2)Yo(yx)x " du,

L/ L(k/2 - w_Z/Q)F( )2 s1n(7T22)y_Z dz

ori Jipy T(k/2+w + 2/2)

Yy Fdz

= 21+2w7r/ i1 () Jo(yx)x™ " da.
0

Proof. It can be seen that these four integrals are holomorphic in w for
0 < Rew < k/2 — 2. Thus, it suffices to show that the equalities hold in a
certain set (containing an accumulation point). Suppose that w > 1 is real.
Applying the residue theorem with (2.3) and (2.4) (or see [Ti, p.197]), we
obtain, for z > 0,

. 1 S Zﬂ'S
2 (ido(x) — Yo(x)) = %/(1/2)2 DY/ ds.
Consider the integral
1 k/2—w—2z/2
— ( / w Z/ )F( )2ez7rz/2 2 .
2mi I'(k/2+w+2/2)
Moving the line of integration to fe z = 1/2 and using (2.9), it becomes
1/2+ZT _Qw—z z 5 /2
1 I J d 1—‘ _ 1TTZ 7Zd
T£202m//2ﬁ/ k- ‘ (2)6 yoas
- / Jea@) (5) L e ey dz d
0 2 211 (1/2) 2

_ o /0 " e (@) (i olyx) — Yo(yx)) (g)w d.

This completes the proof by equating the real and imaginary parts.

Lemma 2.4 Let s =0 +it and A > 1/2 be a fized constant. We denote
By(z) = Jo(x) or Yy(x).

Then, for all sufficiently large k (> ko(A)), and 1/2 <o < A,
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(a) if a > 1,

/ kal(l’)Bo(al’)xfs dr < @7"\“/21@—
0

_ a—2'

(b) if k12 <a<1,
/ Je-1(2) Bo(az)x~* dx < (|t| + 1)a=2k=7"2(log k)2
0

Proof. (a) For a > 1, we have the formulae [Er, §6.8 (37)] and [WG,
§7.15 (8)]:

/0 T 1 (2)Yolaz)e— da

_ cos(ms/2)  k—s., ok
- Asmak—s F< 2 ) F(k) F(

/ Je—1(z)Jo(ax)z™? dx
0
sin(m(k — s)/2) — 5.y k=5 k—s 9
r k) F ik
() R P a ),
where F'is the hypergeometric function, defined as

—s k—s
2 7 2

o0

Fla, B, 2) Zf‘a+r ﬁ+r)

C(y+r) 7l
Observing that

L((k—s)/2+7r)? < I'((k—o)/2+71)*  T(k/2+7r)?

<1
riT(k +r) ril(k +r) — ril(k+r) ’
both integrals above are
2 Tk —0)/2+7)
< 20 qk—o Z riT(k+r) “

00
< 67r|t\/2aa—l<: Za—Qr < e7r|t|/2a0—k(1 - a—2)—1.
r=0

11



(b) We split the range of integration as follows:

(2.10) /OOO:/OMJF Z; /KQK.

K=2"—2k

We denote I = ;K. By (2.5), Bo(az) < (ax)~*/2 for ax > 1, so

00 1/2 2K 1/2
Iy < a'/? </ Jk,l(x)2x’1/2 d:c) (/ p201/2 d;z:) ,
0 K

for aK > 1. By the formula [WG, §7.15 (11)]

(2.11) /OO 1 ()2 dt

i T(\) T(k—1/2 - )/2)

B 2Ar(%)2 T(k—1/2+ \/2)

for 0 < A < 2k —1,

we obtain the estimate
(2.12) Ix < a YVAETVAR—oHA

Replacing By(x) by the formulae in (2.5), we can have another estimate
for I. To this end we only need to consider

2 2K ) 2K
\— / Jeo(z)eF =57 Y2 gz 4 O(a=/? / | Jo_1(z) |z~ da).

The O-term, by (2.11) and the Cauchy-Schwarz inequality, is < a=%/2k~ K~
< a V27 K—oF1/2 Taking n = 0.01-k/K, and applying the first-derivative
test for exponential integrals ([Hu, Lemma 5.1.2]), we see that (from the line

below (2.6)),

w/2
/ fe(0,7)do < K (x € [K,2K]).
w/2—n

Hence, by (2.6),

2K ]
/ Jk_l(I)eiwa_S_l/2 dr
K

2K
< k‘l/ V2 g+
K

w/2—n 2K '
/ / Re fr(0, x)eF "2 dx df)| .
0 K

12



The first summand is < k=K ~°t/2. Applying integration by parts or
bounding trivially, the z-integral in the second term is < (1 + [¢|)K—7~1/2
min(|a — sinf|7!, K). After a change of variable u = sinf, the second
summand becomes

1
(2.13) < (1+ |t|))\_1K_”_1/2/ min(ju — a| ™, K) du.
0

(Note that df < n~tdu for § € [0,7/2 — n].) Thus, (2.13) is < (|t| +
Dk ' K=°t1/2]og K and

(2.14) Ix < a Y214 [tk Ko 2 log K.

For the sum in (2.10), we apply the estimate (2.12) for K > k3 and (2.14)
for k/4 < K < k*. The overall contribution due to >, is

(2.15) < (1+|t)a Y2772 (log k)>.

(Note that the power of log k can be reduced to 1 if o > 1/2.)

The estimation of the integral fok/4 in (2.10) is easy. From (2.7) and
By(z) < |logz| by (2.3), (2.4) and (2.5),

k/4
/ <
0

<

k-1 [k/4
/ | By(ax)|z* 7" dx
0

k—1 [k/4
log ax|z* 7 dx
| log az|
0

k—1 ak/4
a’ " / |log |z" =7 da
0

1 (@) log(ah/4)
4 k—o

4 (e
E) log k.

2.10) and (2.15).

2o Rl Rl

Eol ' ~— ——

<

<

ol o N|®
— =

|

—
VR

The proof is complete wit

=
—

3. Proof of Theorems 1 and 2. Assume throughout k£ to be a
sufficiently large even integer. Let
F2(A—w)I'2(A+w)) 1
['(24)2 w’

(3.1) K(w) =

13



where A > 2 is an arbitrary but fixed constant. Then K is an odd function
and has only a simple pole with residue 1 at w = 0 inside the strip —A <
Rew < A. Following the argument in (1.7), we apply the residue theorem
to A(f@x1,1/24+w)A(f ®@x2,1/24+w)K(w) over Ry. After taking T — oo
and using (1.3), we get

1

1

= 5 A(f @ x1,1/2 + w)A(f ® x2,1/2 + w) K (w) dw
T (2)

+ ek(m)ek(;@)% /(2) A ®%,,1/2 + WA © Xy, 1/2 + w) K (w) duw.

With (1.2) and (2.1),

_ i Ar(n) Ty xe (R) v (DlDz)
B Jn xixe\ o

+e(xi)en(x2)) —Af(n)g%’m ) mm(%)
where B
(32) Vi(y) = % /(2) (%) L(1+ 2w, ) K (w)y" duw.

Here we have used V, (y) = Vi (y), due to the observation that

(2mi)~1 /(2) G(w)dw = (27rz')_1/(2) G(w) dw.

By Petersson’s trace formula

Z Wi (N)Af (M) = S + 270" Z c1S(m,m, ) Jp_1(

feBy c>1

4m/mn

C

)

(Om,n is the Kronecker delta and S(m,n,c) is the Kloosterman sum) and
Af(l) =1,

(3.3) > wiL(f @ x1,1/2)L(f @ x2,1/2)

feBy

= S(x1,x2) + ex(x1)ex(x2)S(x1, X2)

14



where

S(X17X2)
T D1D2
= Z X1, X2 Vi o= Z weAp(n
feEBy
D1D2
- VXle(ﬁ)
,1, 4 DD
+ ok Z Z Tx1, X2 S(n,1,c) Jkl(M)VXU@(ﬁ)
c>1 n>1 ¢ ™n
DD,

(34) = Viyo(——=2) 421" M, say.

47 2

1° Treatment of V,,,,(D1Dy/(47?)). Moving the line of integration to
w = —A/2, we have

D1 D
VX1X2 (4—7]_2)

B e

n % o (ig?)w (%)3(1 + 2w, x1x2) K (w) dw

by (3.2). The last integral is <4 (D1 D3)“~1/2k=4, which can be seen as
follows.

Let the conductor of x1x2 be D, which divides DyDy. Then for w =
—A/2 +it,

L(1+2w,x1x2) = L(1—A+2it,x1x2)
< (D(Jtf+1)A
< (DiDy(Jt] + 1)) 12
As [D(k/2 +w)| < T(k/2 + Rew) < kA% (k/2) by Stirling’s formula, we
have

/ < (D1D2)<A—1>/2k—A/ (Jt| + 1AV K (= A/2 + it)| dt
(-4/2) 0

< (D1D2)(A—1)/2k—A/ (|t|+1)5(A—1/2)6—2ﬂ|t| dt
0

& (DyDy) A D24,
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To evaluate the residue, we compute the following series expansions:

Kw) = wl4cw+- -,

D1Dy\ " DD
( ! 2) = l+wlog 4122+~~,
T

472
T(k/2+w)? I (k/2)
ra2e PTG

and if y;x2 is the principal character, then Dy = Dy = D and

_ log p 1
L(1+2 :||1— D1 +2 o8 L) (——
(142w, x1X2) D( p )1+ 2w Dp_1+ )(2w+7+ )i
p p

otherwise (i.e. x1 # X3), L(1+2w, x1x2) = L(1, x1x2) +2L (1, x1x2)w+ - -
Hence, for x1 # Xs,

Dy D, (A-1)/27.—A
(3.5) me(ﬁ) = L(1,x1x2) + O((D1D2) k),

and for y = x1 =X, (D = Dy = D»),
e vy _ oD [T

D logp
1 I
pE= D\ Tz TOHlesy +ZD — 7

+ O(DA R,

2° Treatment of M. Opening the Kloostermann sum, and interchang-
ing the sum (over n) and the integral in M (in (3.4)),

- LY <><Z£z>w(r<§{2/+z>w))2

e>1 a(c)

% Z Txa, X2 an/c> Jk_1(4ﬂ-\/ﬁ
C

n1/2+w VL(1 + 2w, x1x2) K (w) dw.

n>1

Using the Mellin transform formula (2.8), we deduce that

B _ZZ) (2m>2/<2>(af;?)w(r(f‘g/;)w))Q

X L(l + 2U), X1X2)K< )

c\sT((k+s)/2) s a
X /(1) (3:) (k= s)2) hana(l w5, D) dsdw
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We can move the line of integration of the inner integral from Res = —1 to
Res = —7 by Lemma 2.2 and (2.2). This yields from the possible pole of
EX17X2 ('7 CI,/C) that

where
1 v oa. 1 DiD,\" (T(k/2+w)\’
8) M= — “)—
(38) M 47r; ~ ) 2m /(2)< Ar? ) ( T(k/2)

X L(1 4 2w, x1x2) K (w

)
<Reseoan ((57) Figr o) Bl #0559 o
and
oo e w330 () [, () ()
x L(1+ K(w)

3° Treatment of M; We divide into two cases according as y; = x2 or
not.
Case 1. x1 = x2 = x. The residue inside M; can be written as

(%)41” Res,—g ((i)z EEZ;; _; :UU t Z;iEx,x(l + g’ %)) '

By Lemma 2.1, the residue appears only when Dlc and (D,c¢/D) = 1; and
it equals

310) 10T A2 (£)
) {11“’(1{/2 — )T (k)2 + w) + T(k/2 — w)T (k)2 + w)
> T(k/2 1 w)?
D(k/2 — w)
I'(k/2+w)

+

D logp
log ~— }
(v + 0g2W+Z|D:p_1)
p

17



Therefore, we have from (3.8) and (3.10),

(3.11) M, = @% > Z*Y(G)X(C)e(i)

% 1 2w (/2 4+ w) ? w. v2 w
2mi Joy ( T (k/2) ) L 42w, ) K (w)
1I(k/2 —w)l'(k/2 +w) +T'(k/2 —w)[V(k/2 + w)
X{z (k/2+w)2
(k)2 — w)

— log p
—_— log — dw.
+F(l{:/2—|—w)<7+ og2 +Z 1} w

Interchanging the sums and the integral, we get the sum

P

2 CD>)1 . a(cD)

_ Z 120y ()2 Z* e(%) Z X(n)e(%)

(CCE>1:1 m (c) n (D)

= (0 D " u(ex(e)® = T() L1 + 2w, X)) 7,
(e D)=t

by firstly replacing @ by a and then a by mD + nc where (m,¢) = (n, D) =
1. (This is valid since (¢, D) = 1.) Inserting this into (3.11), M; is now
expressed as

7(x)? ¢(D) 1 '
T e (k) 5 /(2) [P(k/2 — w)T(k/2 4 w)

+T(k/2 —w)T"(k/2 4+ w)

4 OT(k/2 — w)T (k/2+w)(v+1og2—+zlogﬁ )}
p|D

(3.12) M, =

x K(w) dw

T(x)?¢(D) [ T'(k/2)
= o D2 r(k/z)”*logz_*;

logp
1 )

by residue theorem and the observation that the integrand is an odd func-
tion.

18



Case 2. x1 # x2. In this case, the residue in (3.8) is, by Lemma 2.1
again,

2(Srafe)e” 70T (@)xel 5 ) LAL Tie)
e T L) () T
We obtain from (3.8) that
(3.13)
o), o 1 T'(k/2+w)(k/2 — w) Dy\"
My = 2nD1L(1’X1X2)%/(2) T(k/2)2 K(w) (E)
XL+ 2w x0e) D e () D Tl g du
(672)22;:1 a(cD1)
() g oy L[ D2+ w02 —w) o Di\"
* 50, L XXe) /(2) T(k/2)? K( _)(Dg)
XL+ 2wx00) D ¢ (o) Y Kl ) du.
(e,51)=1 a(eD2)
The sum over ¢ equals
Do) 3 e )
c>1 a(cDr)
= D) X ) Y n@el )
e>1 dleDy a(;lfzn
= Y@ Y sdn Y )
e>1 d|eD; a(cDy/d)
= Yt ald X s Y g 3 e
e>1 (d,g'f)zl v=1 u(c/d)
= D@0 3 adg)
c>1 v (D7)

= 7(x1)L(1 + 2w, X1X2)_1.
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Similar argument works for the second sum on the right hand side of (3.13).
We put these into (3.13) to get

(3.14)
- 1(x1)? 1 Do\ T(k/2 +w)T'(k/2 —w)
M, = 2D L(1,X1x2) 5 — /) (Dl) T (/2)? K (w) dw
(x2)? 1 D \" T(k/2 + w)T(k/2 — w)
ot [ () TP o

4° Treatment of M, Changing the variable s = —(z 4 2w), we have
from (3.9),

M

C>la,c

X (%)2/@) (D:fQ)w <F(§{Z/ﬂ;)w>>2L(1 + 2w, x1x2) K (w)
< Gr) Ry o Bl ~ 3 ded

To bound M,, we shall use the functional equation of E, ,,(-,a/c) in
Lemma 2.1, and split M5 into two parts

(3.15) My = My + My

according to the functions o7, and ¢, .. It follows that

(316) My = (1) 3 er([Ds,dl[D ) Z*e@

c>1 a(c)
X Z X1 (u )e(uvag/c) Z (l;u,v)e(—lay/c)
u(Dy) 1>1
v (Dg)
1 D1D2 Y F(l{/Q + ’U})2
— L(1+2 K
" omi ()( 2 ) TiejzE LU+ 2w i) K(w)

1 / ['(k/2 —w—z/2)

— r(Z)?

z

> c2 —z/2
<=3t xal-0e) (pgpg) e

20



where ¢; divides c. Writing

Al

©= 10, Dy e

for short, the inner integral over z, by Lemma 2.3, is equal to

xZ

2mxa(-D) [ Iea@ileV@) - Yoo/ Q) (3) T da

— o /0 N Jioo1(2) (iJo(2/Q) + Yo(z1/Q)) (g)zw dz
= 47 /000 Jo1(2)By(z/Q) (g) o dzx,

where By(-) = Yy(+) if x1x2(—1) = 1 and By(:) = iYo(:) if x1x2(—1) = —1.
Hence by moving the line of integration to 1/2 < Rew = A, < A where A,
depends on ¢, we have

(317) My < DiDy»  *([Dy,d|[Da, )™ > d(l)

c>1 >

L(k/2 +w)?
X /(AC) WL<1 + 2w, x1x2) K (w) (
X

/OO Ji—1(2)By(z1/Q) (§>_2w dx

0

[y

Dng)w

c2

|dw].

Now we choose A. = 1 for ¢ > k and A. = 1/2 for ¢ < k. Then applying
Lemma 2.4 (b), the contribution from those terms satisfying @ <1 is

< (D1Dy)*?k(log k)® Y e([Dy,c][Da,]) ™

1<c<k

< s ()

c21<[D1,c][D2,c]

) / T (k)2 + w)?
a2 | T(k/2)?

L+ 2w,x1x2>K<w>\ (1 + w]) du]
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+(D1D2)*k**(log k)* > ([D1,¢|[Da, )™

c>k

< s (e

c21<[D1,c]|[D2,c]

y / T'(k/2 + w)?
| T(k/2)?

< (D1Dy)*?E~Y2(log k)?log(D1 D)

<ch DD21/QZ 2)

1<c<Lk c>k

(3.18) < (D1Dy)*?k~%(log k)®log(DyDs).

L(1 + 2w, X1X2>K(w>' (14 |w]) |dw]|

When D; = Dy = 1, we only consider that k is divisible by 4. The
condition ¢?l < [Dy,c][Dy,¢] is reduced to [ = 1. In this case, ¢; = ¢ and
Toc(Li 1, 1)e(—a1/c) = e(—a/c) (see the remark after Lemma 2.1). Thus, by
Lemma 2.3, the contribution of M, is, by (3.16),

(3.19) —; 'ole)5 - /( 22wc_2w%4(1+2w)[((w)

X / Ji1(2)Yo(z)z ™% d dw
0

11 L(k/2 —w)?
—5 /(2) WC(QU))K(U}) cos(mw) dw.

The last line follows from [Er, §6.8 (36)]

I'(k/2 — w)?

/0 J1(2)Yo(z)z Y do = —27 27! cos(ﬁw)m.

Moving the line of integration to Rew = A/2, it is apparent that the left
side in (3.19) is < k=4

Now, we investigate the contribution from ¢?l > [Dy, c][Ds, | in (3.17).
We have ¢?l > [Dy, c|[Ds, c|+c? as 2|[Dy, c|[ Dy, |, and thus ¢l /([ Dy, ¢|[Da, c]) >
1+(DyDy)~ . Taking A. = 1, the contribution of this part is, by Lemma 2.4
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(a) and (3.1),
< (D1D2)2ZCQ([DlaCHDQaCD_l

c>1

2 1-k/2
x> 1d(1)(Pl— [Dy, ][ Dy, ]) (W)

c21>[D1,c|[Da,c]

L(k/2+ w)?
) /m T(k/2)?

< (D1Dy)* k(14 (D1Dy)~ 4k/220 ([Dy, c|[Ds, c])?

x Yy d)I?

c21>[D1,c|[Da,c]

L(1 + 2w, xax2) K (w)| ™17 |duw|

k
4D Dy

(3.20) < (DyDy)?k* exp(— ).

(Note that our choice of K(w) in (3.1) is sufficient to suppress the term
exp(|Imw|m).) This completes the evaluation of the left side of (3.17). In
view of (3.18)-(3.20), under the condition that Dy Dy < k/(161og k), we can

write
(3.21) My < (DyD2)*?kY?(log k) log(D,Dy) + k4.

(Note that log(D1Ds) = 0 when Dy = Dy = 1.)

The evaluation of M in (3.15) is much easier. As ¢} (s;u,v) < 1 for
Res > 1, we move Rez = 3 to Rez = 4 and then Rew = 2 to Rew = 1.
With Lemma 2.2, a crude estimate gives

M+<< (D D2 ZC Dla ][DQaC])

- k;/2—i—w I'k/2 —w—z/2)
I'(k/2)?2 T(k/2+w+ z/2)

D(5)*K (w)| |dz]|dw]
(3.22) < (D D2
Hence, for D1 Dy < k/(16logk), (3.15), (3.21) and (3.22) yield that

(3.23) M, < (DyD2)**k~1*(log k)3 log(Dy Ds) 4 k4.
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For simplicity, let us write

o0y — D {r’<k/2> o 2 4 50 ) }

T(k/2) o -1
1 [ T(k/24w)D(k/2 - w) D\
000 = 55 [, HE R (5)

and put E(1,k) = k=4 and E(D,k) = D3?k~'2(logk)* for D > 1. One
can see that by residue theorem,

(3.24) [(Dy, Ds) + I(Ds, Dy) = 1.

We now conclude our result. From (3.4), (3.7) and (3.23), we have

DD,y
42

1. When x is real. Using 7(x) = x(—1)7(x) (for real x), we have from
(3.7) and (3.12) that

S(x,x) = (1 +i"x(=1))®(k, D) + O(E(D*, k).
From (3.3) and €;(x)? = 1, parts (a) and (b) of Theorem 1 follow.

S(x1:X2) = Vaixa(—5) + 2mi* My + O(E(D: Dy, k).

2. When y is complex. From (3.5) and (3.12),
SO x) = L(1,X%) + ex(x)®(k, D) + O(E(D?, k).

This completes part (c) with (3.3).

3. When x; # x2 and x; # Xo. Then, by (3.5) and (3.14),
Sxi:x2) = L(L xaxe) + ex(x1)L(1, Xy x2) I (D2, Dy)
+ ex(x2) L(L, xaXo) L (D1, D2) + O(E(D1 D, k).
By (3.3) and using I(+,-) = I(+,-), we deduce that
> wiL(f @ x1,1/2) L(f ® x2,1/2)

feBy

= L(1, x1x2) + ex(x1)en(x2) L(1, X1 X>2)
+ (a0 20 Xxe) + @)L aX) ) (1(Dy, Da) + (D2, D))
+ O(E(D1Ds, k)).

This completes part (d) with (3.24).
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4. Properties of E,, ,,(s,a/c). This section is independent of the
previous parts. It is devoted to the study of the generalized Estermann
function which is defined, for Re s > 1, as

(4.1) By (s, h/k) = Z Tyaxe (n)e(nh/k)n”

where £ > 1 and (h, k) = 1, and 7, ,(n) = >, X1(a)x2(b). (x1 and x-
are primitive characters.) We change here the notation a/c into h/k and
clearly no confusion will be caused. To begin with, let us fix our notations:
(m,n) and [m,n] denote respectively the greatest common divisor and the
least common multiple of the two natural numbers m and n. We also denote
by (+,-) an ordered pair when no confusion will occur. Given h, k and Dy,
Dy (the moduli of y; and x3), we write

0 = (D1, k), k = 01k1, D1 = 01dy, Ay = (01, Ka), 01 = D15, k1 = Ak,

4.2
( ) 52 = (DQ, k’), k’ = 52/{12,D2 = 52d2,A2 = (52, Hl),52 = AQ(S, Rog = Alli.

Moreover, for any two coprime integers m and n, we define m™ and 7™
to be a pair of integers satisfying mm™ + nn(™ = 1.

Theorem A The function E,, ,,(s,h/k) can be analytically continued to a
meromorphic function, which is holomorphic on C except possibly at s = 1.
The order of the pole is at most two. Suppose the Laurent expansion of

Evixo(s,h/k) at s =1 is
By o5, h/k) = Ay (b k)(s —1)2+ By, (b k) (s — 1) 4 -+ .

When x1 = x2, we put x = x1 = X2 and D = Dy = Dy. For k = Dk with
(D,k) =1,

Ay (h k) = kj_lT(X)y(h)X(/{)T7 and
Byx(h.k) = Qk_lT(X)Y(h)X(“)@(V — log Kk + Z 2190%]1)

In all other cases, we have Ay, y,(h,k) =0. When x1 # Xa,

By, (hk) = d12(k)k™ 7 (x)X1 (h)xa (k1) L(L, Xx2X1)
+ 021 (k)k™' 7 (x2)Xa (h)x1 (K2) L(L, X1 %)
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where 0;;(k) = 1 if k = D;k; and (k;, D;) = 1, and 6;;(k) = 0 otherwise.
Here ¢(-) is the Euler phi function and L( V) is the Dirichlet L-function
for the character 1.

In addition, let ho = ho(6, %) = h(1 — 63 hR"™) and
Co = Co(6, dy, da, K, i, hiz) = 600y Vel "™
E.\, x,(s,h/k) satisfies the functional equation
Eyix:(8,h/k)

abh
= Allil[Dh k}]_s[D27 k?] (27'(' 28 QF %:) Xl 2 0)
a 1
b(D2)

X {(1 + X1X2<—1)>(10;’k(1 — s;a,—Db)

— (e3) + xixa(=De(=3) ol = sia.b) .

The functions ;i ,.(+; a,b) are given by the analytic continuation of the Dirich-
let series

—(K)
Lh
(43) wik(‘s;a’ b) Qoth1 D2 5@, b Zl SThk l % b (:F k CO)

for Res > 1, of the arithmetical functions T,fk(l; a,b). These functions are
defined by

am
(@4) Tab) =i ab) = Y e(FCit 202)

mn=l
(m,n)eS(a,b,F)

where
(4.5) S(a,b,F) ={(m,n) € Nx N:m = Fbhd, (As), n = Fahdy (A1)},
and
_ _ <(x), 7(r) ; (k1)
Cl = C1(h, 5, K, dl, Kl) =1—90 "hh d1d1 s
Cg = CQ(h, 5, K, dg, KZQ) =1- 5S(H)hﬁ(ﬁ)d2d_2(52)
Here and in the sequel, the summation Zm(n):z runs over all positive integer

pairs (m,n) with mn =1 and satisfying the constraint ().
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Proof of Theorem A. From (4.1),
(4.6) Ey,xo(s, h/k)

= S xlm)xa(m)elmnh/k)mn)~
m,n=1
O[ﬁh —s —s
= 2oal@e®) Y =) . omT ) m
a(Dy) , (k) m>1 n>1
b (D2) m=a (D1), m=a (k) n=b(Dg),n=p (k)

for fte s > 1. The pair of congruence equations m = a (D;) and m = « (k)
is solvable if and only if §; = (Di,k)|a — a. When §;|a — a, m lies on

the arithmetic progression {D;k1l + ad1d1 w) + arkRi@) 2 ] e Z}. Define
A% € (o, 1] such that

adidy"™ + arFr®)

4. A = d1
( 7) «,a Dl/{/l mo
(i.e. the fractional part of the right side). We have
(4.8) EXLXQ(S’h/k) = [Dla D2a Z X1(a)x2(b

a(Dy)

b(D3)

afh

XD el AL, AG))
o (k)

a=a (81) B=b(d2)

where ((s,a) =Y (n+a)~* (for Re s > 1) is the Hurwitz’s zeta function.
It is known that ((s, a) is meromorphic on C with a simple pole at s = 1
of residue 1, and satisfies the functional equation

(4.9) ¢(s,a)

= i T(1—s)(2m) (e(s/4)¢(1 — s,a) — e(—s/4)p(1 — 5, —a))
where for Res > 1, ¢(s,a) = > ~_ e(ma)m™°. From (4.8), the order of the
possible pole of E,, ,,(s, h/k) at s = 1 is at most two. Hence, E,, ,,(s, h/k)

is holomorphic except possibly at s = 1. Moreover, for 0 < Rew < €, we
have when o = a (41),

(4.10) Yoo omTY = DR T+ w, AL

m>1
m=a (D7), m=«a (k)

= [Dl,k'] w— +01(CY a)+
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and when = b (ds),
S ot = [Dy ke Co(B0)

n>1
n=b(Dg), n=p (k)

Inserting these into (4.6) then yields
(4.11) Ay, o (b, F)

= DD Y laet) Y (U,
a(Dy) a,B (k)
b(D2) a=a (61) B=b(82)

(412) By (h.h)
0

a(D1)
b(D3)

X a;m 6(%%) ([Dz, k]*lCl(a, a) + [Dy, k]ilcz(ﬁ, b))
a=a (1) B=b(52)

Denote the sum in A, ,,(h, k) by X4, ie.

Ba= Y et Y (O,

a(D1) a,B (k)
b(D2) a=a (81) B=b(d2)

Noting the condition (h, k) = 1, we have

Sa= Y ailahe®) Y elat )b+ o))

a(Dq) u (k1)
b(D3) v (Kk2)
abh avh h
= Z X1(G)X2(b)€(7) Z e(ﬁ—) Z e(u(b + 52”);)
a (D) v (k2) 2 u (K1) !
b(D3)
abh avh
(4.13) = K1Yy Xl(a)X2(b)€(7) > e</<_2)'
biop) N

The last sum is zero if (k1,02) > 1 (as then (b, D) > 1). Applying the same
argument with the role of u and v reversed, we get

abh

auh

(4.14) Ya o= m2 ) xlaxabe(==) Y e(=)
o) ooty
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Thus, X4 = 0 except possibly for (d1, k2) = (02, k1) = 1. When (d1, ko) =
(09,k1) = 1, we have, in view of (4.2), k1 = Ky = K, § = 0y = ¢ and
(0,k) = 1. From (4.13) and (4.14), we have

K)
abh 1 — 66
EAZHZM a)xz(b (57)

a(D1)
b(D3)
3 1— 66" B
= AT(X2)Xz d2hT ZXI(Q)XQ(G)7
a(D1)

—=(k)
_ 00
Ya = rT(x1)Xa (dl ) Z x2(0)X; (b

by using the primitivity of x; and x.. Hence Y, is non-zero only when
di = dy =1, x1 = x2 (so Dy = D) and k = Dk with (D,k) = 1.
In this case, ¥4 = 7(x)X(h)x(k)o(D). This completes the evaluation of
Ay, v (B k) with (4.11).

X1:X2
In view of (4.12), we shall evaluate the sum Xg(x1, x2), given by
@15 Sshue) = Y a@u® Y L),
a(Dy) o6 (k) K
b(Dg) a=a (61) B=b(d2)

and we have

(4.16) By, xa(hy k) = [Da, k] S(x1, x2) + [D1, k] (X2, x1)-
We define, for Res > 1,
afh

F(s;x1,X2) = E x1(a)x2(b) E 6(_k ) E m-e.
a(Dy) o, (k) m>1
b(Dg) a=a (61) B=b(d2) m=a (D7) m=a (k)

From (4.10) and (4.15), X5 (x1, x2) equals the constant term in the series
expansion of F'(s; x1, x2) at s = 1. This function F(-; x1, x2) can be written
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as

F(s;x1,X2)
S U SRS SRS ST SRIC
a(D1) alk)  om>1 b(D2) B (k)
a=a(61) m=a(Dy) m=a (k) B=b (62)
_ Z Xl Z Z m- Z X2 Z ha(b+ 252))
a(D1) a (k) m>1 b(D2) z (Kk2) k

a=a (61) m=a(D1) m=a (k)

S A SR S s

D (k) m>1 Dy)
a( 1) aza(éf) a=0(kg) m=a (D7) m=a (k) b( 2

= (T Y @ Y ) Y m

K9 -
a(Dy) o (k) Cme
a=a (61) a=0(kg) m=a (D7) m=a (k)

Thus, if dy # 1 or (ke,d1) > 1, F(s;x1,x2) = 0; otherwise from (4.2), we
have that 0o = Do, Ay =1 (so k = Dyky = Dok, 6; = 6) and

F(s;x1,x2) = KT(x2)Xa(h Z x1(a Z Xo(b) Z m~*

b(D2) m>1

rb=a (8) m=a (D7) m=rb(kD3)
— ~ —S8
= T(x2)X2(h E X1 ) Yo b)) m-?
b(D3) m>1
kb=a (8) km=a (D1) m=b(Dg)

after replacing m by km. Therefore, F(s; x1,x2) = 0 as well if (k, Dy) > 1.
When (k,Dy) = 1, we see that 6 = 0, = (D, Dek) = (D1, Ds), and by
replacing a by ka,
(4.17)  F(s;ix1:x2)

= HTMxak) Yol D x®) Y, m*

a(D1) b(Dg) m>1
b=a (D1,D3)

= T Xe(h)xa (R) L(s, xaXa).

When y; = x2(= x) and k = Dk with (k, D) = 1, we have

F(s;x,x) = £ m00x(x(R)¢(s) [ [(1 = p7)

p|D
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and hence the constant term in its series expansion at s = 1 is

Sa(X1,X2) = T(X)Y(@X(”)@(W —logr+» ;Ofﬁ)-
p|D

When k = Dsk, (k, D) =1 but x1 # X2, we have from (4.17),

L (X1 x2) = 7)) X2 (h)xa (#) L(1, X1Xa)-

By (4.16), the evaluation of By, ,,(h, k) is complete.
We proceed now to show the functional equation. Applying (4.9) to

(4.8), we get that

(4.18)  Ey, (s, h/k)
—[Dy, K] *[Da, K] (2m)* T (1 = 5)° > xa(a)xa(b)

a(Dy)
b (Do)
afh S
Y AT (el — s AR — 522
a=a (?1”)8 (ﬁk;b (62)
©)

s
+ e(—§)g0(1 —8,—A ll)go(l — 8, = Agp)

- 30<1 -5 AS,ZL)SO(l -5 _)‘(ﬁ%;))
— e 5 =A0)e(1 — . A0)).

Our task is then to simplify the last four sums which we write accordingly

aBh
(419> § , 6(%%0(87 :t)\al’gl)QO(S, j:)‘(;,l))) = E , (mn)_sTh,k(:tma +n;a, b)
m,n>1

a,f (k)
a=al(dy)
B =b(d2)

for e s > 1. For simplicity, we write T'(m,n;a,b) for T} x(m, n;a,b), that

is,
h
(4.20) T(m,n;a,b) =T r(m,n;a,b) = Z e(% + m)\gjl + n)\(;?))
aD;Ba((ktgl)
B =b(d2)

31



Let us take a = a + xd; and § = b + yd, where x and y run over
residue classes mod k; and mod k9 respectively. From (4.7) and (4.20), a
rearrangement of terms gives that

(4.21) T(m,n;a,b)
——(r2)
B abh  am bn y(ah 4+ ndy ™)
a 6( k + Dllil + DQKJQ) Z e< )
y (k2)
— (K1)
h(b + yo d
xZe(x<<+y2>+m1 ))
(k1

) i

—(r2)
B abh  am bn Z y(ah +ndy ™)
Kle( k + Dllil + DQHJQ) v () e( ) )

h(b+82y)+md; "1 =0 (=)

(Recall the definition of ™ under (4.2).) The congruence h(b + dyy) +

md_l(m) = 0 (k1) is solvable if and only if Ay|bh + md_l(m). Subject to this
condition, we have

() 7-(x) (—bh + md, "

y=-9 h A, ) (mod k),

so that the sum in (4.21) equals

<(K)7(%) —(k2) (k1)
0 "h " ah+ ndg bh + md1 z —(k2)
— g —(ah + nd .
e( 4 A = > (A)€<A1(a tnd )
z (A1

Hence, T'(m,n; a,b) is non-zero only if Aq|ah + nd_g(m and Ay|bh + md_l('ﬂ).

In this case, these two conditions can be expressed as
(4.22) m = —bhd; (mod Ay) and n=—ahdy; (mod A;),
and then

(4.23)  T(m,n;a,b)

A e(abh n am n bn B E(H)E(H) ah + nd_g(@) bh + md_l(ﬁl)>
— TNk T Diky | Dok K A, A,
()
ab am bn mnh
— A (—h C Cy — C )
e l{? 0 + Dllil ! + D2/€2 2 k 0
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where ho = h(1 — 63 BR"™), ¢1 = 1 — "™, ¢y = 1 -
53(H)hﬁ(ﬂ)d2d—2(f’»2) and Cy = 55(H)d_1(m)d_2(”2).
In view of (4.4), (4.5), (4.22) and (4.23), we have

abhg n" )

I + (F)——Co

S T(Em,£niab) = Amnﬁ)(l;:&a,:{:b)e( -

mn=l

corresponding to the four cases in (4.19). The + signs attached to a and b
are chosen to be the same as the pair of £ signs in +m, £n; while (F) = —
if both signs taken are equal, and (F) = + otherwise. From (4.19) and
(4.3), we obtain that

afh
(4.24) D el — s, EAL (1 - 5, £AT)
a(;ﬁa((’?l)
8 =b(5s)
bh
— Alﬁle(a O)QOE;FIC)(S; *a, :l:b)

Here, again (F) takes the — or + sign according as whether the two signs

taken from £A(), j:/\(;}) are the same or not. Inserting (4.24) into (4.18) we
see that E, ,,(s, h/k) consists of four multiple sums corresponding to the
possible £ signs in the right side of (4.24). It is apparent that the left side of
(4.24) is, by (4.7), independent of the choices of representatives a (mod D)
and b (mod D,). Replacing a, b by —a and —b in the two cases (—, —) and
(—,+), we deduce the desired functional equation.

References

[Du] W. Duke, The critical order of vanishing of automorphic L-functions
with large level, Invent. Math. 119 (1995), 165-174.

[Er] A. Erdélyi, Tables of Integral Transforms, Vol. I, McGraw-Hill, 1954.

[Es] T. Estermann, On the representation of a number as the sum of two
products, Proc. London Math. Soc. (2) 31 (1930), 123-133.

[HL] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the
Siegel zero.  With an appendixz by Dorian Goldfeld, Hoffstein and
Daniel Lieman, Ann. Math. 140 (1994), 161-181.

33



[Hu

[Tw]
[15]

[Le]
[MV]

[Sal

[T1]

(WG]

M.N. Huxley, Area, Lattice Points and Exponential Sums, Oxford
University Press, New York, 1996.

H. Iwaniec, Topics in Classical Automorphic Forms, AMS, 1997.

H. Iwaniec and P. Sarnak, The non-vanishing of central values of au-
tomorphic L-functions and Landau-Siegel zeros, Israel J. Math. 120
(2000), part A, 155-177.

M. Jutila, On exponential sums involving the divisor function, J. reine
angew. Math. 355 (1985), 173-190.

W. Kohnen and J. Sengupta, On quadratic character twists of Hecke
L-functions attached to cusp forms of varying weights at the central
point, Acta Arith. 99 (2001), 61-66.

N.N. Lebedev, Special Functions & Their Applications, Dover, 1972.

P. Michel and J. VanderKam, Simultaneous Non-vanishing of Twists
of Automorphic L-functions, Compositio Math. 134 (2002), 135-191.

P. Sarnak, FEstimates for Rankin-Selberg L-functions and quantum
unique ergodicity, J. Funct. Anal. 184 (2001), 419-453.

E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Ox-
ford, 1937.

Z.X. Wang and D.R. Guo, Special Functions, World Scientific, 1989.

Department of Mathematics, The University of Hong Kong,
Pokfulam Road, Hong Kong

e-mail: yklau@maths.hku.hk , kmtsang@maths.hku.hk

34



