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Abstract. Some time ago, Shpilrain and Yu reported an algorithm for decid-
ing whether or not a polynomial p ∈ K[x, y] is a coordinate, or, equivalently,
whether or not a plane curve p(x, y) = 0 is isomorphic to a line. Here K is
any constructible field of characteristic 0. In this paper, we show that their
algorithm requires O(n2 log2 n) field operations, where n is the degree of a
given polynomial. We also show how their algorithm can be used to find a
polynomial parametrization of a plane curve p(x, y) = 0 which is isomorphic
to a line (or, equivalently, has no affine singularities). This requires O(n3) field
operations.

1. Introduction

Let K[x, y] be the polynomial algebra in 2 variables over a field K of charac-

teristic 0. We say that a polynomial p ∈ K[x, y] is a coordinate if there is an

automorphism of K[x, y] that takes x to p. By the famous theorem of Abhyankar

and Moh [1], this is equivalent to saying that the curve p(x, y) = 0 in the affine

plane K2 is isomorphic to a line.

By the well known result of Jung [5] and van der Kulk [7], every coordinate of

K[x, y] is tame, where K is any field. That means, every coordinate of K[x, y]

can be obtained from x by applying a sequence of affine transformations and

triangular automorphisms of the following types:

(i) (x, y) −→ (x + h(y), y) for some h(y) ∈ K[y], degy h(y) ≥ 2;

(ii) (x, y) −→ (x, y + h(x)) for some h(x) ∈ K[x], degx h(x) ≥ 2.

By now, many algorithms for recognizing coordinates of K[x, y] are known; see

e.g. [4], [9], [10], or monographs [3], [8] and references thereto. With so many

algorithms around, it becomes natural to ask for the one which is faster and/or

consumes less resources than other ones.
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Recently, Gutierrez, Rubio and Schicho [4] have addressed the question of the

time complexity of one of the algorithms for recognizing coordinates of K[x, y]

as well as of the auxiliary algorithm for finding a polynomial parametrization of

a plane curve p(x, y) = 0 which is isomorphic to a line (or, equivalently, has no

affine singularities). They showed that the time complexity of either algorithm

is O(n3 log2 n), where n is the degree of a given polynomial p(x, y).

The purpose of the present paper is to estimate the time complexity of the

algorithm for recognizing coordinates of K[x, y] given by Shpilrain and Yu [9].

This complexity turns out to be O(n2 log2 n), which makes us believe that this

algorithm is actually the fastest possible. It also requires very little computer

memory since (1) the complexity of the output decreases with every recursion

step of the algorithm, and (2) at every recursion step, the algorithm only utilizes

the output of the immediately preceding step. A brief description of the algorithm

is given in Section 2, and in Section 3, we estimate the time complexity of this

and the auxiliary algorithm for finding a polynomial parametrization of a plane

curve p(x, y) = 0 which is isomorphic to a line. As pointed out in [4], parametric

representations of curves are important for geometric modeling; in particular, they

are industrial standard in CAD systems. We show that one of the algorithms in

[9] yields a parametrization algorithm of the time complexity O(n3). The most

time-consuming part of the latter algorithm is evaluating the image of a given

polynomial under a triangular automorphism of K[x, y]. It seems that this kind of

computation cannot be avoided by any known algorithm, which makes us believe

that the O(n3) estimate cannot be improved.

Finally, we note that the degree of a polynomial p does not seem to be the

most adequate measure of its complexity as far as most real-life applications are

concerned. A more adequate measure appears to be the number of monomials

that occur in p with non-zero coefficients, together with the set of exponents and

the set of coefficients; this more accurately reflects the amount of information

one has to input in order to describe a polynomial. For example, to describe a

polynomial of the form xN , we only need log2 N bits of information, not N . This

kind of “informational complexity” was introduced by Kolmogorov and is now

called Kolmogorov complexity, see [6].
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2. The algorithms

Let > be the lexicographic ordering on the set of monomials in x and y, with

x > y. For any p ∈ K[x, y], we use lm(p) to denote the leading monomial of p

with respect to >.

We start by reproducing the algorithm for recognizing coordinate of K[x, y]

given by Shpilrain and Yu in [9].

Algorithm 2.1. Let p := p(x, y) be a polynomial of K[x, y].

Step 1: Take q1 := px =
∂p
∂x

and q2 := py =
∂p
∂y

.

Step 2: If lm(q1) is not divisible by lm(q2) or vice versa, then p is not a coordinate.

If lm(q1) = h · lm(q2) (respectively lm(q2) = h · lm(q1)) for a monomial h, then

go to Step 3.

Step 3: Set q′1 = q1 − h · q2 (respectively q′2 = q2 − h · q1). If lm(q′1) (respectively

lm(q′2)) is in K∗, then p is a coordinate. If lm(q′1) = 0 (respectively lm(q′2) = 0),

then p is a coordinate if and only if lm(q2) = 1 (respectively lm(q1) = 1). If

lm(q′1) 6∈ K, replace (q1, q2) by (q′1, q2). (Respectively, if lm(q′2) 6∈ K, replace

(q1, q2) by (q1, q
′
2)). Then go to Step 2.

We note that if p = p(x, y) is a coordinate polynomial, then, by [2, Theorem

6.8.5] and [9, Theorem 1.4], at Step 3 of Algorithm 2.1 one can choose a poly-

nomial (not necessarily a monomial) h such that either h = h(y) ∈ K[y] and

lm(q1 − h(y) · q2) < lm(q2) or h = h(x) ∈ K[x] and lm(q2 − h(x) · q1) < lm(q1).

Thus, Algorithm 2.1 is very similar to the familiar Euclidean algorithm for finding

the g.c.d.

The next algorithm applies to a given coordinate polynomial p = p(x, y) and

outputs a sequence of elementary (i.e., triangular or affine) automorphisms that

takes p to x. This algorithm can be also considered a refinement of Algorithm

2.1, i.e., it can be also used for recognizing coordinates because if the input is not

a coordinate, then Step 2 will eventually fail.

Algorithm 2.2. Input. p := p(x, y), a coordinate of K[x, y]. Let ϕ := (x, y) (i.

e., the identical automorphism).

Output. A sequence of elementary automorphisms of K[x, y] that takes p(x, y)

to x.

Step 1 (Initialization): Let (q1, q2) := (px, py). Let S = ∅ (this is going to be a

collector of elementary automorphisms).
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Step 2: From [2, Theorem 6.8.5] and [9, Theorem 1.4], we know that there is

either h = h(y) ∈ K[y] or h = h(x) ∈ K[x] such that lm(q1 − h(y) · q2) < lm(q2)

(respectively lm(q2 − h(x) · q1) < lm(q1)). Find such h (see the observation (3)

below), then go to Step 3.

Step 3: Define the automorphism ψ := (x − ∫
h(y)dy, y) (respectively, ψ :=

(x, y − ∫
h(x)dx). Set q′1 = q1 − h(y) · q2 (respectively, q′2 = q2 − h(x) · q1). If

lm(q′1) (respectively, lm(q′2)) is in K∗, then ψφ(p) = x. If lm(q′1) = 0 (respectively

lm(q′2) = 0), then πψφ(p) = x where π = (y, x), the permutation automorphism.

Otherwise, replace p = p(x, y) by p = p(x − ∫
h(y)dy, y) (respectively, by p =

p(x, y − ∫
h(x)dx)), denote ψφ by φ, and add ψ into S. Then go to Step 2.

The output of Algorithm 2.2 (i.e., the sequence of elementary automorphisms

that takes p(x, y) to x) can be used to obtain a parametrization of the curve

p(x, y) = 0 if we apply this sequence to the pair (0, t) (which is a parametrization

of the line x = 0) instead of the pair (x, y). For example, a parametrization

of the curve x + y2 = 0 would be (0 − t2, t) = (−t2, t). It corresponds to the

automorphism ϕ : x → x− y2, y → y that takes x + y2 to x.

We now make three observations relevant to Algorithm 2.2.

(1) h(y) may be a constant only if p(x, y) is linear. Therefore, at all recursion

steps of Algorithm 2.2 except, perhaps, the last one, we have degy h(y) ≥
1.

(2) Suppose h(y) is in K[y] with degy h(y) = m. To evaluate
∫

h(y)dy, it

takes m+1 divisions. More specifically, if h(y) = amym + · · ·+a0, we may

denote by h(y) the (m + 1)−tuple h = (am, · · · , a0). Then integration of

h(y) is equivalent to the following transformation of tuples:

(am, . . . , ai, . . . , a0) → (
am

m
, · · · ,

ai

i
, · · · ,

a0

1
, 0).

(3) Suppose there is h(y) = a0y
m + · · ·+ am in K[y] such that lm(px(x, y)−

h(y)py(x, y)) < lm(py(x, y)). To find h(y), consider the process of division

of px(0, y) by py(0, y).

Suppose p(x, y) is a coordinate with deg(p) = n. Then py(0, y) has

at most n − 1 monomials. To find a0, we need a division. Once a0 is

found, we can evaluate a1 by comparing the leading terms of px(0, y) −
a0y

mpy(0, y) and py(0, y). It requires at most n− 1 multiplications, n− 1

subtractions, and a division. Inductively, suppose a0, . . . , ai are found. To

find ai+1, we need at most n− 1 multiplications, n− 1 subtractions, and
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a division. Hence, at each step, there are at most n − 1 multiplications,

n− 1 subtractions, and a division. The number of steps is at most m + 1.

Therefore, to find h(y), one needs at most (m + 1)(1 + 2(n − 1)) field

operations.

3. The complexity of recognizing and parametrizing coordinates

In this section, we estimate the time complexity of Algorithm 2.2 for finding

an automorphism ϕ (if it exists) of K[x, y] such that ϕ(p) = x. As we have

mentioned in the previous section, finding such an automorphism immediately

leads to a parametrization of the curve p(x, y) = 0. The estimate will be given

with respect to the degree deg p of a given polynomial p. First, we will find an

upper bound for the number of field operations at each recursion step of Algorithm

2.2. We need some preliminary observations.

Lemma 3.1. Let ϕ = σδ1τ1τ2 · · · τs be an automorphism of K[x, y], where δ1 = 0

or 1, σ and τi are affine and triangular automorphisms respectively. Let τi =

(x + fi(y), y) (“type 1”) or (x, y + fi(x)) (“type 2”) with di = deg fi ≥ 2, and

suppose that for every i, the automorphisms τi and τi+1 are not of the same type.

Then

deg(ϕ) = d1 · d2 · ... · ds.

Proof. We use induction by s. The basis of induction is quite obvious, so we

proceed with the induction step. Let ϕi = σδ1τ1τ2 · · · τi−1. Compose ϕi with τi,

i.e., consider the automorphism ϕiτi = ϕi(τi). In the polynomials ϕi(x), ϕi(y)

pick a monomial mi whose degree equals deg(ϕi). It is well known (see e.g. [2,

Theorem 6.8.5]) that mi = xk or yk for some k. More precisely, if τi−1 is of type

1, then mi = yk, and if τi−1 is of type 2, then mi = xk. Assume, without loss of

generality, that τi−1 is of type 1. Then τi must be of type 2; therefore, the degree

of ϕiτi equals deg(y + fi(x))k = di · k = di · deg(ϕi). The result follows. ¤

The next lemma is obvious.

Lemma 3.2. Let p be a polynomial of K[x, y] with deg p = n. Then both px and

py have at most n(n+1)
2

monomials.

We are now ready to prove the following

Lemma 3.3. Suppose p is a coordinate of K[x, y] with deg p = n. In Algo-

rithm 2.2, the time complexity of finding an elementary automorphism ϕ :=

(x− ∫
h(y)dy, y) (or ϕ := (x, y − ∫

h(x)dx)) is O(n2).
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Proof. Without loss of generality, we may assume there is h(y) in K[y] such that

lm(px(x, y) − h(y)py(x, y)) < lm(py(x, y)). Obviously, m = deg h(y) ≤ deg px =

n−1. By Observation 3, the number of field operations for finding h(y) is bounded

by

(m + 1)(1 + 2(n− 1)) ≤ n(1 + 2(n− 1)).(1)

Furthermore, to construct an elementary automorphism, integration of h(y) is

required. By Observation 2, this takes m+1 ≤ n field operations. Therefore, the

total time complexity of finding the automorphism is O(n2). ¤

Lemma 3.4. Let the polynomial p(x, y) at Step 3 of Algorithm 2.2 have degree

n. Then the number of field operations required for evaluating p(x− ∫
h(y)dy, y)

at Step 3 is bounded by C · n3 for some constant C independent of p(x, y).

Proof. It is sufficient to show that the number of field operations required for

evaluating p(x− µ · yk, y), µ ∈ K∗, 1 ≤ k ≤ n, is bounded by C · n2.

First we precompute n! and therefore also all m! for m ≤ n. This takes at

most n multiplications. Then we precompute µi, 1 ≤ i ≤ n. This, again, takes

at most n multiplications. Finally, we precompute all binomial coefficients of the

form
(

ij

)
, 1 ≤ i, j ≤ n. This will take at most 2n2 multiplications.

Now to evaluate (x − µ · yk)j, we only need j multiplications. Therefore, to

evaluate all (x− µ · yk)j, 1 ≤ j ≤ n, we need at most n2 multiplications.

Rewrite now our polynomial in the form p(x, y) =
∑n

i=0 fi(x)yi (this rewriting

will take linear time in n). Evaluating each fi(x − µ · yk) now takes at most n

multiplications, and so does evaluating fi(x − µ · yk)yi. Therefore, evaluating

p(x−µ · yk, y) =
∑n

i=0 fi(x−µ · yk)yi will take at most 2n2 field operations. This

completes the proof. ¤

Lemma 3.5. The number of recursion steps in Algorithm 2.2 is O(log2 n).

Proof. Each recursion step in Algorithm 2.2 corresponds to a triangular automor-

phism either of type 1 (i.e., of the form (x+fi(y), y)) or of type 2 (i.e., of the form

(x, y+fi(x))), where deg fi ≥ 2 (because deg h(y) ≥ 1, see Observation (1) in the

end of the previous section), and no two successive recursion steps correspond to

triangular automorphisms of the same type.

Thus, the output of Algorithm 2.2 is an automorphism ϕ of the form σδ1τ1τ2 · · · τs(x),

where δ1 = 0 or 1, σ and τi are affine and triangular automorphisms respectively,

and for every i, τi and τi+1 are not of the same type. Then, by Lemma 3.1,
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n = deg(ϕ(x)) = d1 · d2 · ... · ds ≥ 2s since di = deg τi ≥ 2. Therefore, log2 n ≥ s,

hence the number of recursion steps is O(log2 n). ¤

Theorem 3.6. The time complexity of Algorithm 2.1 for recognizing coordinates

is O(n2 log2 n), where n is the degree of the given polynomial p(x, y), whereas

the complexity of Algorithm 2.2 for finding a parametrization of a given curve

p(x, y) = 0 isomorphic to a line, is O(n3).

Proof. The statement about Algorithm 2.1 is fairly obvious, so we focus on the

complexity of Algorithm 2.2. As we see from Lemmas 3.3 and 3.4, the most

time-consuming part of each recursion step of Algorithm 2.2 is evaluating p(x−∫
h(y)dy, y). For a polynomial p(x, y) of degree n, this takes at most C · n3

field operations. By Lemma 3.5, the number of recursion steps in Algorithm

2.2 is O(log2 n). This may make it seem that the complexity of the algorithm

is O(n3 log2 n). However, only at the first step of the recursion is the degree of

p(x, y) equal to n; at each subsequent step (except, perhaps, the last one), the

degree of p(x, y) is reduced by at least the factor of 2, by Lemma 3.1. Therefore,

by Lemma 3.4, the complexity of the algorithm is actually bounded by C · (n3 +

(n
2
)3 + (n

4
)3 + ...) = O(n3). This completes the proof. ¤

Example 3.7. In [4], two recursion steps are required for finding a parametriza-

tion of p(x, y) = 4x2 + 8xy3 − 8xy − 2x + 4y6 − 8y4 − 2y3 + 4y2 + 3y − 1. The

parametrization itself is:

x = t− 29

64
+

59

4
t2 − 60t4 + 64t6

y =
5

4
− 4t2

Since px = 8x+8y3− 8y− 2 and py = 24xy2− 8x+24y5− 32y3− 6y2 +8y +3,

we have py − (3y2 − 1)px = 1. After integrating h(y) = 3y2 − 1, we obtain the

automorphism ϕ := (x−y3+y, y). Then evaluate: ϕ(p(x, y)) = −1−2x+4x2+y.

This latter polynomial (more formally, the corresponding curve) can already be

parametrized, just “by inspection”, as x = t, y = 1 + 2t− 4t2. Then we compute:

(t, 1 + 2t− 4t2)ϕ = (t− (1 + 2t− 4t2)3 + (1 + 2t− 4t2), 1 + 2t− 4t2)

= (−3t− 4t2 + 40t3 − 96t5 + 64t6, 1 + 2t− 4t2).
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Thus, our parametrization of p(x, y) = 0 is:

x = −3t− 4t2 + 40t3 − 96t5 + 64t6

y = 1 + 2t− 4t2

We see therefore that our parametrization is different from that of [4]. Both

parametrizations have the same degree, but our parametrization has smaller space

complexity (at least, in this particular example). Indeed, the collection of coeffi-

cients that corresponds to our parametrization is {−3,−4, 40,−96, 64, 1, 2,−4},
which takes up approximately 30 bits of memory, whereas the collection cor-

responding to the parametrization in [4] is {1,−29, 64, 59, 4,−60, 64, 5, 4,−4},
which takes up approximately 45 bits of memory.
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