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Abstract. A well-known cancellation problem of Zariski asks when, for two
given domains (fields) K1 and K2 over a field k, a k-isomorphism of K1[t]
(K1(t)) and K2[t] (K2(t)) implies a k-isomorphism of K1 and K2. The main
results of this article give affirmative answer to the two low-dimensional cases
of this problem:

1. Let K be an affine field over an algebraically closed field k of any char-
acteristic. Suppose K(t) ' k(t1, t2, t3), then K ' k(t1, t2).

2. Let M be a 3-dimensional affine algebraic variety over an algebraically
closed field k of any characteristic. Let A = K[x, y, z, w]/M be the coordinate
ring of M . Suppose A[t] ' k[x1, x2, x3, x4], then frac(A) ' k(x1, x2, x3),
where frac(A) is the field of fractions of A.

In the case of zero characteristic these results were obtained by Kang in [14]
and [15]. However, the case of finite characteristic is first settled in this
article, that answered the questions proposed by Kang in [14, 15].
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1 Introduction

There are well-known cancellation problems of Zariski:

Problem 1. Let K1 and K2 be affine domains over a field k and let K1[t] '
K2[t] over k. Is it true that K1 ' K2 over k?

Problem 2. Let K1 and K2 be an affine fields over a field k and let K1(t) '
K2(t) over k. Is it true that K1 ' K2 over k? In particular, if K(t) is a
field of rational functions over k, is it true that K is also a field of rational
functions?

The answers of these problems are no in general, even if k = C. See, for
instance, [4] and references therein.

However, for some low dimensional cases Problem 2 has a positive solution.
See, for instance, [14].

Since there are well-known counterexamples for Problem 1 (See, [8] and [4]
and references therein), a special case of that problem (when K2 is a poly-
nomial ring over k) has been brought more attentions:

Cancellation Conjecture of Zariski. Let D be a domain over a field
k. If D[t] is k-isomorphic to k[x1, . . . , xn][t] where k is a field. Then D is
k-isomorphic to k[x1, . . . , xn].

The Zariski conjecture is settled for n = 1 by S. S. Abyankar, P. Eakin and
W. J. Heinzer in [1] and M. Miyanishi in [17] for an arbitrary field k and
for n = 2 by T. Fujita in the case k = C [9]. For n ≥ 3, the Conjecture
remains open, to the best of our knowledge. See [16], [18], [13], [8], [3], [21]
for cancellation conjecture and problems of Zariski and related problems.

In the sequel all rings (fields) are commutative over a field k, all ring and
field embeddings (isomorphisms) are k-embeddings (k-isomorphisms). Recall
that an affine domain is a domain of finite transcendence degree over a field
k; and an affine field is a field of finite transcendence degree over a field k.

For an affine field of transcendence degree two over a field k of characteristics
zero, Problem 2 was solved in the positive by Kang [14].
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In this article we shall prove the following new results for low dimensional
cases of the Cancellation Problem, that answer a question of Kang in [14]
positively.

Theorem 1.1 Let K be an affine field over an algebraically closed field k of
arbitrary characteristic. Suppose K(t) ' k(t1, t2, t3), then K ' k(t1, t2).

Theorem 1.1 has the following generalization.

Theorem 1.1’ Let K be an affine field over an algebraically closed field
k of arbitrary characteristic. Suppose K(t1, . . . , tn+2) ' k(t1, . . . , tn), then
K ' k(t1, t2).

In the case of zero characteristic (e.g. for k = C) both Theorem 1.1 and
Theorem 1.1’ were proved by Kang [14]. The following examples show that
there is no much room left for any possible improvement of both Theorem
1.1 and Theorem 1.1’.

Example 1.1 ([5], Theorem 1 and Theorem 2) Let k be a nonalgebraic
closed field with char(k) 6= 2. Consider the field extension K over k,

K = k(x, y, z) where x2 − ay2 = f(z)

where x, y are independent indeterminates over k, such that

• f(z) ∈ k[z] is irreducible of degree three, and

• a = disc(f(z)) ∈ k\{0} is square-free.

Then K is not isomorphic to k(t3, t4, t5) over k, but K(t1, t2) is isomorphic
to k(t1, t2, t3, t4, t5) over k.

Example 1.2 ([5], Theorem 1’ and Theorem 3) Let k be an algebraic
closed field with char(k) 6= 2. Consider the field extension K over k,

K = k(x, y, z, w) where x2 − a(w)y2 = f(w, z)

where x, y, z are independent indeterminates over k, such that

• f(w, z) ∈ k[w, z] is irreducible of degree three in z, and
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• a(w) = discz(f(w, z)) ∈ k[w]\{0} is square-free of degree ≥ 5.

Then K is not isomorphic to k(t3, t4, t5, t6) over k, but K(t1, t2) is isomorphic
to k(t1, t2, t3, t4, t5, t6) over k.

The examples give a negative answer to an analog of the Concellation Conjec-
ture of Zariski (for rational fields) orginally proposed also by Zariski. Based
on the above examples, the general mathematical community believe that
there should be a counterexample also for the Cancellation Conjecture of
Zariski for polynomial rings whenever n ≥ 3, although it is still an open
problem, to the best of our knowledge.

However, if we replace equivalence by a weaker condition of birational equiva-
lence, we can obtain the following new positive result that answers a question
of Kang in [15] positively:

Theorem 1.2 Let M be a 3-dimensional affine algebraic variety over al-
gebraically closed field k of any characteristic. Let A = K[x, y, z, w]/M be
the coordinate ring of M . Suppose R[t] ' k[x1, x2, x3, x4], then frac(R) '
k(x1, x2, x3), where frac(A) is the field of fractions of A.

In the case k = C, Theorem 1.2 was also established by Kang [15].

2 Proofs of Main Results

In [4] the following main results was obtained by the authors of this article
together with Makar-Limanov:

Proposition 2.1 Let K1 and K2 be affine domains over an arbitrary field k
and K1[t] can be embedded into K2[t]. Then K1 can be embedded into K2.

Proposition 2.2 Let K1 and K2 be affine fields over an arbitrary field k
and K1(t) can be embedded into K2(t). Then K1 can be embedded into K2.

Let K1 = k(x1, x2), where k is an algebraically closed field of characteristic
zero. Then any subfield of K1 with transcendence degree two over k is iso-
morphic to K1 (It is a variation of Lüroth’s Theorem. See, for example, [20]).
Suppose K(t1, t2) ' k(x1, x2, x3, x4). Then by Proposition 2.2, K can be em-
bedded into k(x1, x2) so using the Lüroth theorem obtained by Castelnuovo
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in 1894 (all references can be found in [20]) we conclude that K ' k(x1, x2).
Similarly Kang’s previous results (the zero characteristic case of Theorem
1.1) can also be deduced this way.

Unfortunately, Lüroth’s Theorem does not hold in general (See [20]), hence
we are not able to conclude that unirationally equivalence implies isomor-
phism in general. Therefore, we cannot answer Problem 2 affirmatively in
general. From our discussion, it is obvious that the Cancellation type of
problems are closely related to Lüroth’s Theorem.

We recall that Lüroth theorem holds in two dimensional case for an algebraic
closed field k of any characteristic if field K2 is separable over ϕ(K1) (Namely,
if φ : K1 → K2 and ψ : K2 → K1 are both k-embeddings between fields K1

and K2 over k, the transcendental degree of Ki over k is two, K2 is a separable
extension over φ(K1) then K1 is isomorphic to K2 over k, see [20]). Hence
in order to obtain 2-dimensional cancellation theorem for any characteristic,
we need establish the main results in [4] for separable embeddings.

Definition Let A and B be two affine domains over a field k. We call
an embedding ϕ : A → B good if B is a separable extension of a pure
transcendental extension of image of A under ϕ. Two affine k-fields K and
L are good unirationally equivalent if there exists two good embedings ϕ :
K → L and ψ : L → K. A transcendence basis z1, . . . , zl of A is good if A is
a pure separable algebraic extension of k[z1, . . . , zl].

Every affine domain has a good transcendence basis. (This is because every
affine domain of transcendence degree d has d differentials with non-zero
internal product. See, [22]).

Remarks.

1. An equivalent definition: an embedding ϕ : A → B is good if there exist
for some s an extension map ϕ̂ : A[t1, . . . , ts] such that B is a separable
extension of image of the embedding ϕ̂.

2. An embedding ϕ : A → B may be not good but the fractional field of B
may not contain proper non separable extension of fraction field of A (this
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is because there exists a pure inseparable extension of Zp[x] which is not
generated by one element, but any algebraic extension of Zp is separable.
3. Certainly an isomorphism is a good embedding.

4. A composition of good embeddings is a good embedding.

The following two theorems are similar to the main results in [4]:

Theorem 2.1 Suppose there exists a good k-embedding ϕ : A[t] → B[τ ].
Then there exist a good k-embedding ψ : A → B.

The similar fact is true for fields:

Theorem 2.2 Suppose there exists a good k-embedding ϕ : K1(t) → K2(τ).
Then there exist a good k-embedding ψ : K1 → K2.

Now, we shall prove the main results of this paper by using the above two
theorems first, then prove the above two theorems, as the latter proofs are
quite long.

By repeatly using Theorem 2.2 first, then applying the 2-dimensional Lüroth
theorem we obtain the following

Theorem 2.3 Let K1 be an extension field of an algebraically closed field k
and let K2 be a pure transcendental extension field of k with tr.degk(K2) = 2.
Then K1(t1, . . . , tn) ' K2(τ1, . . . , τn) implies K1 ' K2.

Proof of Theorem 1.1 and Theorem 1.1’
Both theorems are direct consequences of the above theorem. 2

Proof of Theorem 1.2
We identify A[t] with k[x1, x2, x3, x4] and A with a subring of k[x1, x2, x3, x4].
Let B = k[x1, x2, x3], KA and KB be the fields of fractions of A and B
respectively. Recall Proposition 7.4 in [1]:

Proposition 2.3 Let A be an integral domain and suppose A is of finite
transcendence degree over the subring Au generated by units of A (in par-
ticular, affine ring). Suppose that A[x] = B[y] and let K and L denote the
fields of fractions of A and B, respectively. If A 6= B, then K and L are
both ruled over the quotient field k of Ru — i.e., K and L are both simple
transcendental extensions of fields containing k.
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If A = B in our case then of course KA = KB is a field of rational functions,
therefore my may assume that A 6= B. By Proposition 2.3 KR is ruled,
i.e. KA = K ′(τ) is a simple transcendental extension of some field K ′ of
transcendence degree 2. Hence K ′(τ, t) = L(x3, x4) where L = k(x1, x2). By
Theorem 2.4 the fields K ′ and L are good unirationally equivalent over k.
By Lüroth theorem the Proof of Theorem 1.2 is completed. 2

Proof of Theorems 2.1 and 2.2
To prove Theorem 2.1 and Theorem 2.2 we need the following two proposi-
tions:

Proposition 2.4 Let ξ1, . . . , ξs be algebraic over k[x1, . . . , xm]. Suppose that

the rational function (in particular, it could be a polynomial) Q(R, ~x, ~ξ ) 6≡ 0,

then there exists a polynomial R ∈ k[x1], such that Q(R, ~x, ~ξ ) 6≡ 0. Moreover,
if n À 1 is sufficiently large, we may assume R = xn

1 .

Proof.

Step 1. Consider a basis ξ′i of field extension k(~x)(~ξ) over k(~x). Then

Q(R, ~x, ~ξ ) can be presented in the following form:

Q(R, ~x, ~ξ ) =
∑

i

Qi(R, ~x)/Ti(R, ~x)ξ′i

Q 6≡ 0 iff ∃i : Qi 6≡ 0 and ∀i, Ti 6≡ 0. Hence it is enough to prove that
for each finite set of nonzero polynomials {Pj(R, ~x) | j = 1, . . . , l}, if n is
sufficiently large, any polynomial in the set {Pj(x

n
1 , ~x)}l

j=1 is not identically
zero.

Step 2. If we can find for each j such nj that for all n > nj polynomial
Rj(x

n
1 , ~x) 6≡ 0. Then we can choose N = max(nj) and such n satisfies

conditions of step 1. Hence we may assume l = 1 in Step 1, so we only need
to deal with one polynomial

Q(R, ~x) =

degR(Q)∑
j=0

RjSj(~x).

Step 3. Because Q(R, ~x) 6≡ 0, Sj 6≡ 0 for some j. Let N = maxj{deg(Sj)}+
1. It is easy to see that for any n ≥ N , Q(xn

1 , ~x) 6≡ 0. 2
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The above proposition has the following consequence.

Proposition 2.5 Let ξ1, . . . , ξs be algebraic and separable over k[x1, . . . , xm],
and let the external product of differentials of the polynomials

m∧
i=1

dQi(~t, ~x, ~ξ ) 6≡ 0

Then there exist a specialization of t1, . . . , ts, ti → Ri such that

m∧
i=1

dQi(~R, ~x, ~ξ ) 6≡ 0

Proof. In case char(k) = 0, as the external product of the differentials of
the polynomials is not zero if and only if the polynomials are algebraically
independent, the conclusion follows from the proofs of main results (Propo-
sition 2.1 and Proposition 2.2 in this paper) in [4]. Hence we may assume
that char(k) = p > 0. By induction it is enough to consider the case s = 1,
i.e., the case of just one parameter (denoted by t). The external product can
be presented in the following form:

m∧
i=1

dQi(~t, ~x, ~ξ ) =

= Rdx1 · · · dxm +
m∑

i=1

Tidtdx1 · · · d̂xi · · · dxn (1)

The convention d̂xi means that this factor is omitted.

Consider two cases.

Case 1. R 6≡ 0. Then we can substitute xk·p
1 → t. dt goes to 0 and apply

Proposition 2.4 to R.

Case 2. R ≡ 0. Then Ti 6≡ 0 for some i. Due to renumeration we can
assume that T1 6≡ 0. Let k 6≡ 0mod p. Substitute xk

1 → t. Then all terms of

sum
∑m

i=1 Tidtdx1 · · · d̂xi · · · dxn except first one vanishes and we get

T1|xk→t · k ·
m∧

i=1

dxi.
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According to Proposition 2.4, T1|xk→t 6≡ 0 for sufficiently large k.

Now, we continue Proof of Theorem 2.1 and Theorem 2.2.

In the sequel we proceed only for rings. The case of fields is similar, i.e.,
we only need to replace rings of polynomials by fields of rational functions.
First of all we deduce the proof to the case when Trdeg(A) = Trdeg(B). If
Trdeg(A) < Trdeg(B), then Trdeg(A[t]) < Trdeg(B[τ ]). Hence there exists
a good embedding A[y, t] → B[τ ] sending y to some element in a good tran-
scendence basis, by additing this element to a completes good transcendence
basis of Im(A[t]), we obtain a good transcendence basis of B[τ ]. Now we may
replace A′ = A[z] and conclude by induction on Trdeg(B)−Trdeg(A). There-
foe without of loss of generality, we may assume that Trdeg(A) = Trdeg(B).

There exists a transcendence basis {x1, . . . , xm} of A such that A is a sep-
arable extension of k[x1, . . . , xm]. (Indeed every affine field has a separable
transcendence basis {Ti = Pi/Qi}, see p.57-77 in [22]). Hence

∧
i dTi 6= 0.

It implies that for some sequence {Ri} such that for each i either Ri = Pi

or Ri = Qi the external product
∧

i dRi 6= 0. Therefore A[t] is a sepa-
rable extension of k[t, x1, . . . , xm]. Hence B[τ ] is a separable extension of
ϕ(k[t, x1, . . . , xm]). According to [22], this means that the external product

dϕ(t) ∧ dϕ(x1) ∧ · · · ∧ dϕ(xm) 6= 0.

In particular,
m∧

i=1

dϕ(xi) 6= 0.

By Proposition 2.5, there exists a specialization of t → xq
i for some q, such

that

m∧
i=1

dϕ(xi)
′ 6= 0 (2)

where ϕ(xi)
′ ∈ B, the element corresponding to ϕ(xi) after this specializa-

tion. The equality (2) means that B is a separable extension of image of
k[x1, . . . , xm] under ϕ′. Hence B is separable over ϕ′(A). 2
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Remark. The following theorem generalizes Proposition 2.4. It is very
useful because it allows to find an ‘elements of general position’ in case of
finite fields and it is very important in the dimension theory (Proposition 2.4
corresponds to the case r = 0 of this theorem).

Theorem 2.4 Let ξ1, . . . , ξs be algebraic over k[x1, . . . , xm], the polynomials

Qi(~t, ~x, ~ξ ); i = 1, . . . , n are algebraically independent for some value of set
of parameter ~t = (t1, . . . , tr) in some extension field k1 of the ground field k.

Then there exist polynomials Ri ∈ Φ[x1]; i = 1, . . . , r, ~R = (R1, . . . , Rr) such
that the set of polynomials

{Q1(~R, ~x, ~ξ ), . . . , Qn(~R, ~x, ~ξ )}

is algebraically independent.

Moreover, if the growth of the sequence n1 ¿ n2 ¿ · · · ¿ nr is sufficiently
fast, we may be assumed Ri = xni

1 .

The similar fact is hold for fields and rational functions Qi. In this case we
also can put Ri = x−ni

1 (as well as xni
1 ).

Instead of x1 one can take any other variable xi; Φ = Zp if Char(k) = p and
Φ = Z if Char(k) = 0.

Because we do not use this theorem in full generality (for our purpose Propo-
sition 2.4 is enough), we omit the proof.
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