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Abstract. We develop a new combinatorial method to deal with de-
gree estimate for two-generated subalgebras in different environments.
We obtain a lower degree bound for elements in two-generated subal-
gebras of a free associative algebra over a field of zero characteristic.
We also reproduce a somewhat refined degree estimate of Shestakov
and Umirbaev for the polynomial algebra, that plays an essential role
in recent celebrated solution of the Nagata conjecture and the strong
Nagata conjecture.

1. Introduction and main results

Suppose A is an algebra on which a degree function deg with usual
properties is defined. Let B be a subalgebra of A which is generated
by two elements f and g.

The question what are the possible degrees for the elements of B seems
to be both natural and interesting. To be more specific, regarding
P ∈ B as a polynomial in f and g what can we say about the degree of
P (f, g) through degrees of P relative to f and g? It is rather clear that
the upper bound of deg(P (f, g)) can be easily found, but is it possible
to find a meaningful lower bound?

The question is motivated by a result in [7] where a lower bound is dis-
covered when A is a polynomial ring over a field of zero characteristic,
and f, g are algebraically independent. This result plays a crucial rule
in the recent celebrated solution of the Nagata conjecture [8] and the
Strong Nagata conjecture [10].
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The cases when f and g are algebraically dependent and algebraically
independent are apparently quite different. Say, even when A is the
polynomial algebra in one variable (then, of course f and g are alge-
braically dependent) there is no useful estimate known to us of the
smallest degree of non-constant polynomials in B and this question
is very interesting indeed. For instance the well-known AMS The-
orem (Abhyankar’s high-school lemma, [1, 9]), is equivalent to the
statement that this degree is one implies min{deg(f), deg(g)} divides
max{deg(f), deg(g)}.
From now on we assume that f and g are algebraically independent.

The degree estimate in [7] depends linearly on degf (P ) and it seems
that with right assumptions it should be so in far greater generality.
We replace degf (P ) by the ‘weighted degree’ wdeg(f), deg(g)(P ) (As the
reader will see it is more natural to use wdeg(f), deg(g)(P ) instead of
degf (P )). In this paper we develop a new combinatorial method based
on Lemma on radicals, that can be used in different environments.
In particular, by this method we obtain a sharp degree estimate for
the “free” case, namely when A is either a free associative algebra
or a polynomial algebra over a field of zero characteristic. For a free
associate algebra our degree estimate is new. We also reproduce the
degree estimate for polynomial case with some improvement (see [7])
by somewhat simpler means.

Here is our main result:

Theorem 1.1. Let A = F 〈x1, . . . , xk〉 be a free associative algebra over
an arbitrary field F of zero characteristic, f, g ∈ A be algebraically
independent, f+ and g+ are algebraically independent, or f+ and g+

are algebraically dependent and neither deg(f) - deg(g) nor deg(g) -
deg(f), P ∈ F 〈x, y〉. Then

deg(P (f, g)) ≥ deg([f, g])

deg(fg)
wdeg(f), deg(g)(P ).

Here deg is the homogeneous (total) degree of the corresponding el-
ement, wdeg(f), deg(g)(P ) is the weighted degree of P when the weight
of the first variable is deg(f) and the weight of the second variable
is deg(g), f+ and g+ are the highest homogeneous forms of f and g
respectively, and [f, g] = fg − gf is the commutator of f and g.

We also reproduce the degree estimate obtained in [7].
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Proposition 1.2. Let A = F [x1, . . . , xk] be a polynomial algebra over
a field F of zero characteristic, f, g ∈ A be algebraically independent,
P ∈ F [x, y]. Then

deg(P (f, g)) ≥
wdeg(f), deg(g)(P )[1− (deg(f),deg(g))(deg(f)+deg(g)−deg(J(f,g))−2)

deg(f) deg(g)
].

Here deg is the homogeneous (total) degree of the corresponding poly-
nomial, wdeg(f), deg(g)(P ) is the weighted degree of P when the weight
of the first variable is deg(f) and the weight of the second variable is
deg(g), (deg(f), deg(g)) is the greatest common divisor of deg(f) and
deg(g), deg(J(f, g)) is the largest degree of nonzero Jacobian determi-
nants of f and g with respect to two of x1, . . . , xk.

Remark 1.3. Note that in Proposition 1.2 there are no restrictions
for the highest homogeneous forms of f and g, unlike the estimate in
[7], where (f, g) is required to be a so-called ∗-pair, i. e. neither
f+ is a power of g+ nor g+ is a power of f+. Also the estimate in
[7] follows from the estimate above since P (f, g) contains a monomial
fdeg1(P )gj where j ≥ 0; hence wdeg(f), deg(g)(P (f, g)) ≥ deg1(P )w(f)
and replacing wdeg(f), deg(g)(P ) by deg1(P )w(f) one gets the estimate
from [7]. Therefore the estimate obtained in Proposition 1.2 can be
viewed as a refinement of the estimate in [7].

2. Reduction by Lemma on radicals

As the first step extend the algebra A to the algebra A of the Maltsev-
Neumann power series.

Here is the definition of Matlsev-Neumann power series. Let G be a
linearly ordered group (of course the order should agree with the group
operations). A is defined as the set of all sums

∑
g∈∆ cgg where g ∈ G,

cg ∈ F \ 0, and ∆ is a well-ordered subset of G. Both addition and
multiplication are naturally defined though it requires some efforts to
prove that the multiplication is well-defined.

These algebras were introduced by Maltsev and Neumann [4, 6] in order
to show that a free associative algebra of any rank can be embedded
into a ring with division.

In our context it is more convenient to have ∆′s to be well-ordered
relative to the opposite order, that is, any non-empty subset of ∆
should have the largest element.
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Let us start with polynomial algebras. In this case we take as G the
free abelian group G on generators x1, . . . , xk. The total degree can
be defined on the elements of G and it gives a partial order on G.
This partial order can be refined to a linear order on G, say by adding
lexicographic order x1 >> · · · >> xk > 1.

For a free associative algebra take the free group G on generators
x1, . . . , xk. The total degree can be defined on the elements of G and
again it gives a partial order on G. It is possible to refine (in many
different ways) this partial order to a linear order on G (so that the
order agrees with the group operations), but the description of these
orders is too involved, and the reader should consult [4, 6] for details,
if interested.

The algebra A has a valuation v(a) = max{g ∈ ∆(a)}, where ∆(a) is
the support of a, i. e. the set of all g appearing in a with non-zero
coefficients.

It is also possible to define the leading forms of elements of algebras
A introduced above. If a =

∑
g∈∆(a) cgg then a+ =

∑
g∈δ(a) cgg where

δ(a) = {g ∈ ∆(a)| deg(g) = deg(v(a)). Here deg is the total degree.

The Maltsev-Neumann algebras ([4, 6]) are, as mentioned, algebras
with division which satisfy

Lemma on radicals. If a ∈ A and the monomial v(a) has a root:
v(a) = (cm)k where c ∈ F and m is a monomial, then there exists
an α ∈ A such that a = αk if k is not divisible by characteristic of
F . (It can be shown using “approximations” relative to the valuation
function on A.)

See [2, 3] for a proof of the above lemma for the case A is a free
associative algebra. The proof is similar to the proofs given in [4, 6]
that A is a ring with division, that is, for a non-zero element of A there
exists a root of degree −1. See also [5] where further applications of
this technique are given.

In the case A is a polynomial algebra, the Lemma can be proved directly
by using Newton’s binomial theorem for general degree.

Call an element a ∈ A homogeneous if all monomials of a have the same
total degree. We are going to use the following obvious observation:
If a, b ∈ A are algebraically dependent and homogeneous then one is
a fractional power of another (with a coefficient from F ). Indeed, if a

and b are algebraically dependent then v(a) and v(b) are algebraically
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dependent. Since these are just monomials with coefficients they are
powers of a third monomial (with coefficients from F ). We can assume

that v(a) = αq, v(b) = αp. Let a1 = aq−1
. Then b = ap

1 + b1. If b1 6= 0
then v(b1) is algebraically independent with v(b) since v(b1) < v(b).
In this case a1 and b1 generate a free subalgebra of A and P (a, b) =
P (aq

1, a
p
1 + b1) 6= 0 if P is a non-zero polynomial.

Now we can reduce f and g. Let v(f) = α and v(g) = β. If α

and β are algebraically independent then obviously deg(P (f, g)) =
wdeg(f), deg(g)(P ). Also then deg([f, g]) = deg(fg) in the free case and
deg(J(f, g))+2 = deg(fg) in the commutative case and both estimates
have wdeg(f), deg(g)(P ) in the right sides.
So from now on let us assume that α and β are algebraically dependent.
Then α = γq, β = γp where γ is a monomial without a root. (As above,
we are assuming without loss of generality that the coefficients of α and
β are equal to 1.)

If F has zero characteristic, we can by the Lemma on radicals put
f = τ q and g = τ p +

∑p−1
i=l ciτ

i + s, ci ∈ F , where v(τ) and v(s) are
algebraically independent. Note that in the sum i can be less than
zero.

Now we can find deg(s). Indeed, in the free case [f, g] = [f, s] and
deg([f, s]) = deg(f) + deg(s). So deg(s) = deg([f, g]) − deg(f). Sim-
ilarly in commutative case take derivations ∂i on A which are given
by ∂i(xj) = δi,j (where δi,j is the Kronecker delta). Then ∂i(f)∂j(g)−
∂j(f)∂i(g) = ∂i(f)∂j(s)− ∂j(f)∂i(s) by elementary calculus rules. It is
also clear that

v(∂i(f)∂j(s)− ∂j(f)∂i(s)) = ∂i(v(f))∂j(v(s))− ∂j(v(f))∂i(v(s))
if ∂i(v(f))∂j(v(s))−∂j(v(f))∂i(v(s)) 6= 0 and that if ∂i(v(f))∂j(v(s))−
∂j(v(f))∂i(v(s)) = 0 for all i, j then v(f) and v(s) are algebraically
dependent. Since it is not the case, deg(s) = D + 2− deg(f), where D

is the largest degree of Ji,j(f, g) i. e. the Jacobians with respect to xi,
xj.

Consider subalgebra B of A which is generated by τ , τ−1, and s.
Clearly f, g ∈ B. Take the weight degree function on B given by
w(τ) = 1, w(s) = p. Then w(f) = q, w(g) = p and we can write

P (f, g) =
∑N

i=M Pi(f, g) where Pi are homogeneous polynomials rela-
tive to these weights and w(Pi) = i. Let a+ be the leading form of
the element a ∈ A relative to w. Then f+ = τ q and g+ = τ p + s.
Since these forms are algebraically independent, we can conclude that
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(Pi(f, g))+ = Pi(f
+, g+). All monomials of Pi(f

+, g+) have weight
i. Therefore monomials in Pi(f

+, g+) and Pj(f
+, g+) are different if

i 6= j. This implies that deg(P (f, g)) ≥ deg(PN(f+, g+)) where PN is
“the heaviest” homogeneous component of P .

We have reduced our main problem to the following

Set-up. Estimate deg(P (f, g)) for an n,m-homogeneous polynomial P
and f = tn1 , g = tm1 +s where t and s generate either a free associative
algebra or a polynomial algebra. Here n1 = n/d, m1 = m/d where d =
(n, m). Function deg is given by deg(f) = n, deg(g) = m. So deg(t) =
d. In the free case deg(s) = deg([f, g])− deg(f) and in the polynomial
case deg(s) = D + 2 − deg(f), where D = max(deg(Ji,j(f, g))). Since
mq = np element t ∈ A is a power of τ . We replaced τ by t since it is
more convenient for further computations to have degt(f) and degt(g)
relatively prime.

We will also use another degree function w given by w(t) = 1, w(s) =
m1. So w(f) = n1, w(g) = m1, and P is w-homogeneous.

3. Degree estimate for free associative algebras

In this section we assume that F 〈t, s〉 is a free associative algebra of
rank two. In view of the hypothesis of Theorem 1.1 we add one more
condition that m1 > n1 > 1 (When n1 = 1 the pair f, g can be replaced
by a ‘smaller’ pair f, g − cfm1 which generates the same algebra).

Assume w(P ) = N . We will show that Q(t, s) = P (tn1 , tm1+s) contains
a monomial with s-degree not exceeding N

n1+m1
.

We can write P (f, g) =
∑

PI,J(f, g) where all monomials of PI,J have
the same total degrees I and J relative to f and g correspondingly. Of
course N = n1I + m1J .

Denote the integral part of N
n1+m1

by q. Let R be the non-zero PI,J(f, g)

where J is the largest possible. If J = degg(R) ≤ q our claim is
obviously correct since all monomials of Q(t, s) will have s-degree at
most degg(R). So assume that degg(R) > q and that all monomials of
Q(t, s) have s-degree larger than q.

Let µ = f i1gj1 . . . f ikgjk be one of the monomials of R. After the
substitution f → tn1 , g → tm1 + s the image of monomial µ will be a
sum of monomials obtained by multiplication of tn1 , tm1 , and s. Among
these monomials we consider only monomials with the total degree q

relative to s and denote this set of monomials by ϕ(µ).
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Suppose that I + J ≥ 2q + 2. Then N = n1I + m1J = n1(I + J) +
(m1 − n1)J ≥ n1(2q + 2) + (m1 − n1)(q + 1) = (n1 + m1)(q + 1) and

N
n1+m1

≥ q + 1 which is impossible since q is the integer part of N
n1+m1

.
So I + J ≤ 2q + 1.

If µ = f IgJ and 2q − J ≥ 0 take ν = tIn1(stm1)J−qs2q−J ∈ ϕ(f IgJ).
Since I + J ≤ 2q + 1 if 2q− J < 0 then J = 2q + 1, I = 0. In this case
µ = gJ and we take ν = tm1(stm1)q.

It is clear that if ϕ(ξ) 3 tm1(stm1)q then ξ = gJ , since neither s nor tm1

can be in the image of f i because n1 does not divide m1. Similarly if
tIn1(stm1)J−qs2q−J ∈ ϕ(ξ) then ξ = ξ1g

J since neither s nor tm1 cannot
be in the image of f i. If ξ1 6= f I then ξ1 contains g and degg(ξ) >
J . But by assumption on R such a monomial does not belong to P .
So ν cannot cancel out and belongs to Q with a non-zero coefficient.
Therefore by our assumption on monomials of Q neither gJ nor f IgJ

belong to R (with a non-zero coefficient).

Suppose now that µ is the largest monomial of R in a lexicographic
ordering given by f >> g. As above, let µ = f i1gj1 . . . f ikgjk . If jr = 2σ
replace gjr → (stm1)σ, if jr = 2σ + 1 replace gjr → (stm1)σs, replace
f → tn1 . The s-degree of obtained monomial π is

∑
r[

jr+1
2

] ≤ J+k
2

.
Since i1 ≥ 0 and ir > 0 if r > 1 it is clear that I ≥ k − 1. So
J + k ≤ J + I + 1 ≤ 2q + 2. Therefore degs(π) ≤ q + 1.

If degs(π) = q take ν = π ∈ ϕ(µ).

If degs(π) < q to obtain ν ∈ ϕ(µ) replace the corresponding number of
tm1 in π by s. The choice of the terms for replacement is arbitrary.

If degs(π) = q + 1 then I + J = 2q + 1, all js are odd, and k = I + 1.
Therefore i1 = 0, i2 = · · · = ik = 1. To obtain ν ∈ ϕ(µ) in this case
replace the image of gj1 in π by (tm1s)σtm1 .

It is easy to see that ν 6∈ ϕ(ξ) for a monomial ξ 6= µ of P (f, g) and so µ
cannot appear in R. Indeed, any s in ν as well as tm1 (surrounded by s)
comes from g in ξ. The structure of ν is such that it may contain tm1+n1

and large powers of t, which correspond to products gf and powers of f

in µ. Any tm1+n1 corresponds to gf or fg so degg(ξ) ≥ q and if any tkn1

of ν is replaced by a monomial containing g then degg(ξ) > q and so

ξ does not belong to P . So any tkn1 should be replaced by fk in order
for ξ to be a monomial in P (f, g). Finally, if any tm1+n1 is replaced by
fg the resulting monomial will be larger than µ in the lexicographic
order and again cannot belong to P (f, g).
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Estimate. Let N = w(P (f, g) = wn1, m1(P ). As we checked Q(t, s)
contains a monomial ν for which degs(ν) ≤ N

n1+m1
. Let ξ be a monomial

of Q(t, s). If i = degt(ξ) and j = degs(ξ) then N = i + jm1 and
deg(ξ) = id+j(deg([f, g])−deg(f)) since deg(s) = deg([f, g])−deg(f).
So deg(ξ) = dN + j(deg([f, g] − n − m). Therefore deg(P (f, g)) =

deg(Q(s, t)) ≥ dN + N
n1+m1

(deg([f, g]− n−m) = deg([f,g])
n1+m1

N

= deg([f,g])
n+m

wn,m(P ). Theorem 1.1 is proved.

Example 3.1. f = xn, g = xm + y, P = [x, y]k, deg(P (f, g)) =

k(n + 1) = wn,m(P )

deg(fg)
deg([f, g]) shows that the lower bound in Theorem

1.1 cannot be improved.

Remark 3.2. If n1 = 1 the estimate does not work. Take e. g. f = x,
g = xm + y, and P = g − fm. It happens because the degree drop for
gn1 − fm1 in this case is larger than the degree drop of [f, g].

4. Degree estimate for polynomial algebras

From now let us assume that F [t, s] is a polynomial algebra of rank
two. Note that unlike the noncommutative case, here we do not need
any restriction for n1.

Let f1 = fm1 − gn1 . We can write P (f, g) =
∑

ci,j,kf
igjfk

1 where
0 ≤ i < m1. Since P is w-homogeneous in1+jm1+kn1m1 = w(P ) does
not depend on monomial (w(f) = n1, w(g) = m1, w(f1) = n1m1) and
we can conclude that i is the same in all monomials. So P = f i

∑
gjfk

1

where 0 ≤ i < m1.

Now deg(f1) = m(n1 − 1) + deg(s), deg(s) = D + 2 − deg(f), and
deg(f igjfk

1 ) = in + jm + k(mn1 −m − n + D + 2) = dw(P ) − k(m +
n−D − 2) and it is different for the different monomials of P . (Since
i is fixed different monomials have different k.) The maximal possible

value of k is [ w(P )
n1m1

] (the integral part of the corresponding fraction)

and the minimal value of deg(P (tn, tm + s)) is w(P )(d − m+n−D−2
n1m1

) =

wdeg(f), deg(g)(P )[1 − (deg(f),deg(g))(deg(f)+deg(g)−deg(J(f,g))−2
deg(f) deg(g)

]. Proposition

1.2 (a) is proved.

Example 1 in [7] shows the lower bound in Proposition 1.2 cannot be
improved.
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