
THE LINEAR COORDINATE PRESERVING PROBLEM

SHENG-JUN GONG AND JIE-TAI YU

Abstract. We prove that every K-endomorphism of a rank two poly-
nomial algebra over an algebraically closed field K of positive charac-
teristic taking all linear coordinates to coordinates is an automorphism.
We give a new characterization of coordinates of K[t][x, y], where K is
an algebraically closed field of any characteristic. We also explore the
close connection between coordinates and permutation polynomials of
finite fields.

1. Introduction and main results

Let R be a commutative ring. Recall a polynomial p ∈ R[x1, . . . , xn]
is a coordinate if there exists an R-automorphism ψ of R[x1, . . . , xn]
taking x1 to p. A linear coordinate is a polynomial p with deg(p) = 1.

In [6], van den Essen and Shpilrain raised the following natural

Problem 1.1 (Coordinate preserving problem). Let Pn be the
polynomial algebra of rank n over a field K. Is every K-endomorphism
φ of Pn taking all coordinates of Pn to coordinates an automorphism ?

Problem 1.1 was solved affirmatively for n = 2 in [6]. Derksen (see [6])
observed that, for an algebraically closed field K, an endomorphism
φ of Pn taking all linear coordinates to coordinates, has the property
det J(φ) ∈ K∗. Based on that, Jelonek [7] gave a positive answer in
any dimension to Problem 1.1 for algebraically closed fields of zero
characteristic by means of algebraic geometry.

Motivated by Derksen’s observation, Mikhalev, J.-T.Yu and Zolotykh
[15], considered the following
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Problem 1.2 (Linear coordinate preserving problem). Is every
K-endomorphism of Pn taking all linear coordinates to coordinates an
automorphism?

By Derksen’s observation, the Jacobian conjecture (see, for instance,
[5], [14]) implies the positive answer for Problem 1.2 in zero character-
istic.

In [15] the negative solution was given to Problem 1.2 for each n > 2
and all non-algebraically closed fields. For algebraically closed fields,
Problem 1.2 remains open for n > 2.

For n = 2, the positive answer to Problem 1.2 was given in [2] for any
field of zero characteristic. In [1], a negative answer was given by S.-T.
Chan for all finite fields and n = 2. The negative solution in [1] was
extended to some special kind of infinite fields of positive characteristic
by X.-G. Liu [11].

In this paper, we give a positive solution for Problem 1.2 for all alge-
braically closed fields of positive characteristic when n = 2:

Theorem 1.3. Let K be an algebraically closed field of positive char-
acteristic, φ a K-endomorphism of K[x, y] taking all linear coordinates
to coordinates. Then φ is an automorphism.

We also give a new characterization of coordinates of K[t][x, y], where
K is an algebraically closed field, based on the methodology of C.-M.
Lam and J.-T. Yu [12]:

Theorem 1.4. Let K be an algebraically closed field and f(t, x, y) ∈
K[t][x, y]. Then f is a coordinate of K[t][x, y] if and only if the follow-
ing two conditions are satisfied:

(1) f(t, x, y) is a coordinate of K(t)[x, y]; and
(2) For every a ∈ K, f(a, x, y) is a coordinate of K[x, y].

Finally, we explore the close connection between the linear coordinate
preserving problem and permutation polynomials of finite fields and
give an alternative proof of Theorem 1.3 for the ‘purely algebraic’ case.

2. Preliminaries

Lemma 2.1. Let R ⊆ S be commutative rings and ϕ be an R-endomor-
phism of R[x, y] such that det J(ϕ) ∈ U(R). If ϕ is an S-automorphism
of S[x, y], then ϕ is also an R-automorphism of R[x, y].
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See, for instance, van den Essen [5].

In the sequel all endomorphisms (automorphisms) areK-endomorphisms
(K-automorphisms).

The following reduction result follows from the well-known theorem
of Jung [8] and van der Kulk [9]: every automorphism of K[x, y] is
a product of elementary automorphisms (that is, the automorphisms
preserving all variables except one).

Proposition 2.2. Let f be a coordinate of K[x, y]. Suppose degx f =
m and degy f = n with n ≥ m ≥ 1. Then:

d = n/m is an integer, and f (d,1) = α(x + βyd)m for some α, β ∈ K∗;
Moreover, denote by φ = (x − βyd, y), then degy(φ(f)) < degy f and
degx(φ(f)) = degx f .

See, for instance, Drensky [3], for a proof.

In the sequel we denote by p a prime number, q a power of p, Fq the
finite field with q elements, Γp the algebraic closure of Fp.

Let K ⊆ L be a field extension. By the definition, it is obvious that
a coordinate of K[x, y] is also a coordinate of L[x, y]. In general, the
converse is not true. For example, xp + typ + x ∈ Fp(t)[x, y] is a coor-

dinate of Fp(t
1
p )[x, y], but not a coordinate of Fp(t)[x, y]. However, if

K is perfect, this is indeed the case. Recall that a field K is perfect if
char(K) = 0 or K = Kp when char(K) = p.

Lemma 2.3. Let K ⊆ L be perfect fields, f ∈ K[x, y] a coordinate of
L[x, y]. Then f is also a coordinate of K[x, y].

Proof. Let degy f = n and degx f = m. The case n = 0 or m = 0 is
trivial. Say, n ≥ m ≥ 1. By Proposition 2.2, d = n/m is an integer and
f (d,1) = α(x + βyd)m for some α, β ∈ L∗. The condition f ∈ K[x, y]
implies that α(x+ βyd)m ∈ K[x, y]. Now there are two cases:

(1) If char(K) = 0, then we have β ∈ K and α ∈ K;

(2) If char(K) = p > 0, suppose m = pks for some k, p - s, we have

βpk ∈ K and α ∈ K. As K is perfect, we conclude β ∈ K.

Therefore one gets x by acting a sequence of elementary automorphisms
of K[x, y] to f inductively. Hence, f is a coordinate of K[x, y]. �

Lemma 2.4. Let L be a field of char(L) = p, f ∈ L[x, y] a coordinate
of L[x, y]. Then there exists a field K, finitely generated over the prime
field Fp, such that f is a coordinate over any field containing K.
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Proof. Let K be the field generated over Fp by all the coefficients of the
polynomials appearing in the sequence of elementary automorphisms
taking f to x. Of course K is finitely generated. The same argument in
the proof of Lemma 2.3 concludes that f is a coordinate of K[x, y]. �

Remark 2.5. In particular, let L = Γp, the algebraic closure of Fp,
since every subfield of Γp is perfect, by Lemma 2.3, we can choose K
to be generated by all the coefficients of f . Apparently K is a finite
field.

Recall the derivation ∆f : K[x, y] → K[x, y], associated with a poly-
nomial f(x, y) ∈ K[x, y] is defined by: ∆f (g) = fxgy − fygx.

Lemma 2.6. Let K be a field, ϕ = (f(x, y), g(x, y)) an automorphism
of K[x, y]. Then
(1) If char(K) = 0, Ker(∆f ) = K[f ].
(2) If char(K) = p, Ker(∆f ) = K[f, gp].

Proof. Let a := det J(ϕ) ∈ K∗. Direct calculation shows that ∆f (h) =
a∆ϕ−1(f)(ϕ

−1(h)) for any h ∈ K[x, y]. Hence Ker(∆f )=ϕ (Ker(∆ϕ−1(f))).
On the other hand, it is easy to see that ∆x(h) = hy. Hence Ker∆x =
K[x] if char(K) = 0 and Ker(∆x) = K[x, yp] if char(K) = p > 0. Then
the conclusion follows from that ϕ−1(f) = x and ϕ−1(g) = y. �

Let A be an algebra over K. Denote by CA(a) the algebraic closure of
a in A, i.e. the subalgebra of all elements algebraically dependent with
a over K.

Lemma 2.7. Let f be a coordinate of K[x, y]. Then for any g ∈
K[f ]\K, CK[x,y](g) = K[f ]. In particular, for any h(x) ∈ K[x]\K, we
have CK[x,y](h) = K[x].

In the sequel we fix K(t) to be a rational field over K. Let f(x, y) ∈
K(t)[x, y] and write

f(x, y) =
∑
i,j

aij(t)

bij(t)
xiyj

where aij(t), bij(t) ∈ K[t] and bij(t) 6= 0. We also assume that for any
i, j, (aij(t), bij(t)) = 1.

We say an element t0 ∈ K is a regular point of f(x, y) if t0 is not a zero
of any bij(t), otherwise it is irregular. Moreover, we call t0 is a regular
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point of an endomorphism ϕ = (f(x, y), g(x, y)) ∈ Aut(K(t)[x, y]) if
it is a regular point of both f(x, y) and g(x, y), otherwise it is called
irregular.

Let t0 be a regular point of a polynomial f(x, y) ∈ K(t)[x, y], we use
f(t0;x, y), or simply f(t0), to denote the substitution of f(x, y) with
t = t0, which is a polynomial in K[x, y]. Similarly, denoted by ϕ(t0)
for the endomorphism (f(t0;x, y), g(t0;x, y)) of K[x, y] provided t0 is a
regular point of the endomorphism ϕ = (f(x, y), g(x, y)).

3. Technical lemmas

In this section, we prove several technical lemmas for coordinate sub-
stitution, which play crucial roles in the proofs of the main results.

Lemma 3.1. Let K be an infinite perfect field and f(x, y) ∈ K(t)[x, y],
f(a) a coordinate of K[x, y] for infinitely many a ∈ K.
(1) If char(K) = 0, then f(x, y) is a coordinate of K(t)[x, y].
(2) If char(K) = p, then there exists some non-negative integer s such

that f(x, y) is a coordinate of K(t
1

ps )[x, y].

Proof. Let degy f = n and degx f = m. The case n = 0 or m = 0
is trivial. So we may assume, say, n ≥ m ≥ 1. By the hypothesis,
viewing f(x, y) as a polynomial of x and y only, the leading coefficients
belong to K(t). And there are only finite possible values for a in which
these two coefficients vanish or make no sense. So for infinitely many
a ∈ K, f(a) is a coordinate of K[x, y] with degy f(a) = degy f and
degx f(a) = degx f . Denote by S the set of all the elements for a such
that the substitution t = a satisfies the above property. Clearly, S is
an infinite set. Hence, by Proposition 2.2, d = n/m is an integer and
for all a ∈ S, f(a)(d,1) = α(x+ βyd)m with some α, β ∈ K∗.

On the other hand, by the above arguments, we may write

f (d,1) = a0(t)(x
m +

m∑
i=1

bi(t)x
m−iydi)

where a0(t), bm(t) ∈ K(t)\ {0} and bi(t) ∈ K(t), 1 ≤ i ≤ m. Compar-
ing the coefficients of f(a)(d,1), a ∈ S, we get

a0(a) = α, bi(a) =

(
m

i

)
βi, 1 ≤ i ≤ m.
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Observing for any 1 ≤ i ≤ m,(
m

1

)i

bi(a) =

(
m

i

)
(b1(a))

i.

Since S is infinite, this implies, as elements in K(t),(
m

1

)i

bi(t) =

(
m

i

)
(b1(t))

i

for any 0 ≤ i ≤ m. Consider the following two cases:

(1) b1(t) 6= 0. Since
(

m
1

)m
bm(t) = (b1(t))

m, then we must have
(

m
1

)
6= 0

and thus, bi(t) = (b1(t))
i
(

m
i

)
/
(

m
1

)i
, 0 ≤ i ≤ m. Hence f (d,1) = a0(t)(x+

b1(t)/
(

m
1

)
yd)m, where a0(t), b1(t) ∈ K(t)\ {0}.

(2) b1(t) = 0. This can only happen when char(K) = p > 0 and p | m
since

(
m
1

)m
bm(t) = (b1(t))

m. Write m = plm1, where l > 0 and p - m1.

Then for any a ∈ S, f(a)(d,1) = α(x + βyd)m = α(xpl
+ βpl

ydpl
)m1 .

Using the same arguments, we obtain that

bi(t) = 0 for any pl - i, and

bplk(t) = (bpl(t))k

(
m1

k

)
/

(
m1

1

)k

6= 0, 0 ≤ k ≤ m1.

Hence

f (d,1) = a0(t)(x
pl

+ bpl(t)/

(
m1

1

)
ydpl

)m1 = a0(t)(x+ b′pl(t
1

pl )yd)m,

where b′
pl(t) ∈ K(t)\ {0} satisfies (b′

pl(t
1

pl ))pl
= bpl(t)/

(
m1

1

)
. Note here

we need to use the condition that K is prefect (hence Kp = K).

Combining the above two cases, f (d,1) is of the form A(t)(x+B(t)yd)m

or A(t)(x + B(t
1

pl )yd)m for some l ≥ 0 and A(t), B(t) ∈ K(t)\ {0}.
Denote by φ = (x−B(t)yd, y) or (x−B(t

1

pl )yd, y) and we consider the
polynomial φ(f) instead. Repeating the same arguments, eventually we
will get x after a sequence of elementary automorphisms. This implies

that f(x, y) is a coordinate of K(t)[x, y] or K(t
1

ps )[x, y] for some non-
negative integer s. �

For R = K, K(t), K[t], denote by R0[x, y] the augmentation ideal of
R[x, y], i.e., the sets of polynomials without constant terms. Similarly,
we use Aut0R[x, y] to denote the subgroup of augmentation preserving
automorphisms of Aut(R[x, y]), that is, automorphisms of the form
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(f(x, y), g(x, y)) where the polynomials f(x, y) and g(x, y) have zero
constant terms. It is easy to see that every automorphism ψ of R[x, y]
can be decomposed as τ ◦ϕ, where τ = (x+ a, y+ b) for some a, b ∈ R
and ϕ = (f, g) ∈ Aut0R[x, y]. Hence, it is sufficient to study the
automorphisms and coordinates in this form.

Recall that a polynomial 0 6= f(x, y) ∈ K[t]0[x, y] is primitive if the
coefficients of f are relatively prime in K[t].

In the sequel we call f(x, y) ∈ K[t]0[x, y] a primitive coordinate of
K(t)[x, y] if it is a coordinate in K(t)0[x, y] and a primitive polynomial
inK[t]0[x, y]. Moreover, we call an automorphism ϕ = (f(x, y), g(x, y))
a primitive automorphism if both f(x, y) and g(x, y) ∈ K[t]0[x, y] are
primitive coordinates.

Lemma 3.2. Let K be a field, ϕ = (f(x, y), g(x, y)) a primitive auto-
morphism of K(t)0[x, y], t0 an element in K such that det J(f, g)(t0)
= 0. Then f(t0) and g(t0) are algebraically dependent over K.

Proof. We may assume t0 = 0 and det J(f, g) ∈ K[t]\ {0}. Let the
inverse automorphism of ϕ = (f, g) be ψ = (p(x, y), q(x, y)) with

p(x, y) = (
∑

i≥1 bi(x, y)t
i + b0(x, y))/(t

ah(t))

for some a ≥ 0, where bi(x, y) ∈ K0[x, y], i ≥ 0 and p(t) ∈ K[t],
p(0) 6= 0. We may assume the right side of the above equality is
reduced, hence a is uniquely determined. Now we have two cases:

(a) a = 0, then 0 is a regular point of p(x, y);

(b) a > 0, since (p, q) ◦ (f, g) = (x, y), b0(f, g)(0) = b0(f(0), g(0)) = 0.
We claim that b0(x, y) involves both x and y: If b0(x, y) ∈ K[x], then
b0(f, g)(0) = b0(f(0)) 6= 0, by reducibility it forces a = 0. Similarly
b0(x, y) /∈ K[y]. Therefore b0(f(0), g(0)) = 0 implies that f(0) and g(0)
are algebraically dependent.
Similarly, we write q(x, y) = (

∑
i≥1 b

′
i(x, y)t

i + b′0(x, y))/(t
bh′(t)) as

above. Note that, if a = b = 0, then 0 is a regular point of both
p(x, y) and q(x, y). Therefore (p(0), (q(0)) and (f(0), g(0)) are both
automorphisms of K[x, y]. If det J(f, g)(0) = 0, then obviously ϕ(0) =
(f(0), g(0)) is not an automorphism. So we must have a > 0 or b > 0.
Without loss of generality, we may assume that a > 0. Then the poly-
nomial b0 ∈ K[x, y] gives an algebraic dependence of f(0) and g(0).
Hence f(0) and g(0) are algebraically dependent. �
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Lemma 3.3. Let K be an arbitrary field, f ∈ K[x, y] such that f+tmx
is a coordinate of K[t][x, y] for some positive integer m. Then (f, x) is
an automorphism of K[x, y].

Proof. We may assume that f(x, y) ∈ K0[x, y]. Let ψ be a primitive
automorphism of K[t]0[x, y] such that ψ(x) = f(x, y) + tmx. Write

ψ(y) = g0(x, y) + g1(x, y)t+ · · ·+ gn(x, y)tn,

where gi(x, y) ∈ K0[x, y], 0 ≤ i ≤ n. We claim gi(x, y) ∈ K[x, f(x, y)]
for any 0 ≤ i ≤ n.

To see that, we consider the endomorphism φ = (f ′, g′), where

f ′ = tmf(x, y) + x, and
g′ = tng0(x, y) + tn−1g1(x, y) + · · ·+ tgn−1(x, y) + gn(x, y).

Observe that it is a primitive automorphism of K(t)0[x, y] (which can
be obtained by replacing t by 1/t in ψ(x), then multiplying the first co-
ordinate by tm, and the second coordinate by tn) and tn+m | det J(φ(t))
in K[t]. So det J(φ(0)) = 0 and by Lemma 3.2, f ′(0) and g′(0) are al-
gebraically dependent. By Lemma 2.7, gn(x, y) ∈ CK[x,y](x) = K[x].
Hence gn(x, y) = h(x) for some h(x) ∈ K[x] and consider the endo-

morphism φ′ = (f ′, g′−h(f ′)
t

). Write
g′−h(f ′)

t
= · · ·+ tn−1g′0(x, y) + tn−2g′1(x, y) + · · ·+ g′n−1(x, y).

Here the first ‘ · · · ’ denote the terms whose degrees, respect to t, are
greater than (n−1). Similarly g′n−1(x, y) ∈ CK[x,y](x) = K[x]. Observe
that

g′n−1(x, y)− gn−1(x, y) = { [g′−h(f ′)]−[g′−h(x)]
t

}(t = 0)

= h(x)−h(f ′)
t

(t = 0) ∈ K[x, f(x, y)].

Hence gn−1(x, y) ∈ K[x, f(x, y)]. By inductive arguments, eventu-
ally we obtain that gi(x, y) ∈ K[x, f(x, y)] for all 0 ≤ i ≤ n. In
particular, g0(x, y) ∈ K[x, f(x, y)]. On the other hand, as ψ is an
automorphism of K[t][x, y], ψ(0) = (f(x, y), g0(x, y)) is an automor-
phism of K[x, y]. Therefore K[f(x, y), g0(x, y)] = K[x, y]. We have
K[x, y] = K[f(x, y), g0(x, y)] ⊆ K[x, f(x, y)] ⊆ K[x, y]. It follows that
K[x, f(x, y)] = K[x, y]. Therefore, (f(x, y), x) is an automorphism of
K[x, y]. �

Remark 3.4. The above proof, as well as the proof of Theorem 1.4
in the next section, is motivated by the methodology of C.-M. Lam
and J.-T.Yu [12] where it is used to produce an algorithm to determine
coordinates of Z[x, y].
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4. Proof of the main results

Proof of Theorem 1.4. The ‘only if’ part is obvious. For the ‘if’
part, we may assume that f(x, y) ∈ K[t]0[x, y] is primitive. Since
f(x, y) is a coordinate of K(t)[x, y], then there exists a polynomial
g(x, y) ∈ K[t]0[x, y] to be a coordinate mate of f(x, y).

If det J(f, g) ∈ K∗. By Lemma 2.1, (f, g) is an automorphism of
K[t][x, y] and hence, f is a coordinate of K[t][x, y]. So we may assume
∆f (g) = det J(f, g) ∈ K[t]\K.

As K is algebraically closed, there exists a zero t0 ∈ K, of ∆f (g). We
claim that there exists a polynomial h(x) ∈ K[x] such that g(t0) =
h(f(t0)). The hypothesis implies that f(t0) is a coordinate of K[x, y].
Let v(x, y) ∈ K[x, y] be a coordinate mate of f(t0). Since ∆f(t0)(g(t0)) =
det J(f(t0), g(t0)) = 0, by Lemma 2.6, we have g(t0) = h(f(t0), v(x, y)

p)
for some polynomial h(x, y) ∈ K[x, y]. On the other hand, by Lemma
3.2, f(t0) and g(t0) are algebraically dependent. This forces that
g(t0) = h(f(t0)) for some h(x) ∈ K[x].

Set g1 := g−h(f)
t−t0

. Then g1 ∈ K[t][x, y] and det J(f, g1) =
∆f (g)

t−t0
. Re-

peating the same process inductively, eventually we would obtain some
gm ∈ K[t][x, y] such that det J(f, gm) ∈ K∗ and hence, by Lemma 2.1,
(f, gm) is an automorphism. Therefore f is a coordinate of K[t][x, y] �.

Remark 4.1. The condition that ‘K is algebraically closed’ is essential
for the above theorem since the conclusion no longer holds for non-
algebraically closed fields. For example, let R be the real number field,
then x2 + (t2 + 1)y is coordinate of R(t)[x, y] and for any a ∈ R,
x2 +(a2 +1)y is a coordinate of R[x, y]. However, it is not a coordinate
of R[t][x, y].

Note that for char(K) = 0, Drensky and J.-T.Yu ([4]) obtained another
characterization for the coordinates of K[t][x, y].

Proof of Theorem 1.3. Let ϕ = (f, g) be an endomorphism of
K[x, y] taking each linear coordinate to a coordinate. After acting an
automorphism, we may assume that g = x.

Since algebraically closed fields are infinite and perfect, by Lemma 3.1,

f(x, y) + tx is a coordinate of K(t
1

ps )[x, y] for some s ≥ 0. Hence
f(x, y)+ tp

s
x is a coordinate of K(t)[x, y]. As K is algebraically closed,

and f(x, y)+cp
s
x is a coordinate of K[x, y] for all c ∈ K by hypothesis,
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by Theorem 1.4, f(x, y) + tp
s
x is a coordinate of K[t][x, y]. By Lemma

3.3, ϕ = (f(x, y), x) is an automorphism of K[x, y] �.

5. Coordinates and permutation polynomials

In this section, we explore the close connection between coordinate
preserving problem and permutation polynomials of finite fields, and
give an alternative proof of Theorem 1.3 for the ‘purely algebraic’ case.
First we need some backgrounds about permutation polynomials. We
follow the standard reference Lidl and Niederreiter [10].

A polynomial f ∈ Fq[x] is called a permutation polynomial of Fq if
the associated polynomial function f : c 7→ f(c) from Fq into Fq is
a permutation of Fq. Obviously, if f is a permutation polynomial of
Fq, then the equation f(x) = a has exactly one solution in Fq for each
a ∈ Fq. Thus we are led to the following definition of permutation
polynomials in several variables:

Definition 5.1. Let n ≥ 1 and Fq[x1, · · · , xn] be the ring of poly-
nomials in n variables over Fq. A polynomial f ∈ Fq[x1, · · · , xn] is
called a permutation polynomial in n variables over Fq if the equation
f(x1, · · · , xn) = a has qn−1 solutions in Fn

q for each a ∈ Fq.

In the case n > 1 we cannot use the interpretation that a permutation
polynomial f(x1, · · · , xn) over Fq induces a permutation of Fn

q , because
the associated mapping is not a mapping from Fn

q into itself. The next
definition, however, enables us to consider functions from Fn

q into Fn
q

induced by systems of polynomials in several variables.

Definition 5.2. A system of polynomials {f1, · · · , fn} ⊂ Fq[x1, · · · , xn],
is called orthogonal in Fq if the systems of equations
f1(x1, · · · , xn) = a1, · · · , fn(x1, · · · , xn) = an

has exact one solution in Fn
q for each (a1, · · · , an) ∈ Fn

q .

In [10] a necessary and sufficient condition for a system of polynomials
to be orthogonal is given:

Proposition 5.3. The system {f1, · · · , fn} ∈ Fq[x1, · · · , xn], is orthog-
onal in Fq if and only if for all (b1, · · · , bn) ∈ Fn

q with (b1, · · · , bn) 6=
(0, · · · , 0), the polynomial b1f1 + · · ·+bnfn is a permutation polynomial
over Fq.
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Lemma 5.4. Let {f(x1, · · · , xn), x1, · · · , xn−1} be an orthogonal sys-
tem of Fq. Then for any (a1, · · · , an−1) ∈ Fn−1

q , f(a1, · · · , an−1, y) is a
permutation polynomial in one variable in Fq.

Proof. According to the definition of orthogonal systems, for any b ∈
Fq, the system of equations
f(x1, · · · , xn) = b , x1 = a1, · · · , xn−1 = an−1

has one solution in Fn
q . It implies that the equation f(a1, · · · , an−1, y) =

b has exactly one solution in Fq. Therefore, f(a1, · · · , an−1, y) is a
permutation polynomial in one variable over Fq. �

In terms of permutation polynomials, we have following necessary (but
not sufficient) condition for coordinates.

Lemma 5.5. Every coordinate of Fq[x1, · · · , xn] induces a permutation
polynomial of Fq.

Proof. Let f be a coordinate of Fq[x1, · · · , xn], then there exists an
automorphism ϕ such that ϕ(f) = x1. It is easy to see that ϕ, as an
induced mapping from Fn

q to itself, is bijective. For any a ∈ Fq, there is
a one-to-one corresponding between the solutions of the equation f = a
and of the equation ϕ(f) = a. Indeed, if (x1, · · · , xn) is a solution of the
equation f = a, then (ϕ−1(x1), · · · , ϕ−1(xn)) is a solution of ϕ(f) = a.
Therefore the number of the solutions of f = a in Fq equals to that
of ϕ(f) = x1 = a, which is exactly qn−1. This implies that f is a
permutation polynomial of Fq. �

Obviously, a coordinate f of Fq[x1, · · · , xn] is also a coordinate of the
polynomial algebra over any finite extension of Fq. Thus, by Lemma
5.5, we obtain the following

Lemma 5.6. A coordinate of Fq[x1, · · · , xn] induces a permutation
polynomial of every finite extension of Fq.

The polynomials of one variable over Fq that are permutation polyno-
mials of all finite extensions of Fq are characterized by the following
result in [10], which is crucial in this section.

Proposition 5.7. A polynomial f ∈ Fq[x] is a permutation polynomial
of all finite extensions of Fq if and only if it is of the form f(x) =

axph
+ b, where a 6= 0, and h is a non-negative integer.

The following lemma, which demonstrates the close connection between
permutation polynomials and the linear coordinate preserving problem,
is a consequence of Proposition 5.3 and Lemma 5.5.



12 SHENG-JUN GONG AND JIE-TAI YU

Lemma 5.8. Let ϕ = (f1, · · · , fn) be an endomorphism of Fq[x1, · · · , xn]
taking all linear coordinates to coordinates. Then {f1, · · · , fn} form an
orthogonal system of Fq.

Now we are ready to present

An alternative proof of Theorem 1.3 for the algebraic closure
Γp of Fp.

(1) Let φ = (f, g) be an endomorphism of Γp which takes all linears
coordinates to coordinates. After acting an automorphism, we may
assume that g = x.

(2) Write f = fny
n + fn−1y

n−1 + · · ·+ f1y+ f0, where fi ∈ Γp[x] for all
i and fn 6= 0. Then f + cx is a coordinate of Γp[x, y] for any c ∈ Γp.
It follows that n = degy f > 0 and by McKay and S.S.-S.Wang [13],
fn ∈ K∗.

(3) Let K0 be the finite field in Remark 2.5. We claim that:

For any c ∈ Γp, f(c, y) is a permutation polynomial
of any finite extension of the finite field K0(c).

To see this, let K1 be any finite extension of K0(c), then b1f + b2x is a
coordinate of K1[x, y] for any b1, b2 ∈ K1, (b1, b2) 6= (0, 0). By Lemma
5.8, {f, x} is an orthogonal system in K1 and thus, by Lemma 5.4,
f(c, y) is a permutation polynomial of K1. Applying Proposition 5.7,
we obtain that

f(c, y) = fny
n + fn−1(c)y

n−1 + · · ·+ f1(c)y + f0(c) = ayph

+ b,

for some a 6= 0, b ∈ K0(c) and some non-negative integer h. It implies
that
n = ph,fn = a, and fn−1(c) = · · · = f1(c) = 0

for any c ∈ Γp. Since Γp is infinite, we must have fn−1(x) = · · · =

f1(x) ≡ 0. Hence f = ayph
+f0(x). The condition f+cx is a coordinate

for any c ∈ Γp forces that h = 0 and, thus, f = ay + f0(x). Therefore,
φ = (ay + f0(x), x) is an automorphism. �
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