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Abstract

Interactions between different genes become more and more important in understanding

how they collectively make cells, tissues, organisms, even form a biological system. This

gives rise to genetic regulatory networks. Mathematical models and computational methods

are widely used to analyze them recently. Probabilistic Boolean network is one proposed to

model such systems incorporating uncertainty. Evolution of the system is according to the

transition probability matrix. Steady-state (long run behavior) analysis is a key aspect in

studying the dynamics of genetic regulatory networks. In this paper, an efficient method to

construct the sparse transition probability matrix is proposed, and the power method based

on the sparse matrix-vector multiplication is applied to compute the steady-state probability

distribution. Such methods provide a tool for us to study the sensitivity of the steady-state

distribution to influence of input genes, gene connections and Boolean networks. Simulation

results based on a real network are given to illustrate the method and to demonstrate the

steady-state analysis.
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1 Introduction

The interactions among different genes make the complexity of a living cell. The study of the

genes collectively act to make cells, tissues and organisms is an importaint topics in bioinformat-

ics. The advent of high-density cDNA microarrays and oligonucleotide chips opens a new era

for this kind of research [6][14][22][23][27]. Instead of looking at one single gene, the global or

holistic behavior perspectives become more and more important in understanding the manner

in which genes and molecules collectively form a biological system. This gives rise to genetic

regulatory networks structured by networks of regulatory interactions among DNA, RNA, pro-

teins and small molecules. Based on microarray data generated, a number of genes and their

regulatory sites have been found. In addition, the proteins involved in the control of the gene

expressions have been identified. Since the amount of microarray data is huge, it is very expen-

sive to analyze such data in order to understand and extract more useful biological information.

Thus the development of mathematical models and computational methods for the construction

of formalisms to model the gene interactions is an effective and efficient alternative.

There have been many formalisms proposed in the literature to study genetic regulatory

networks, such as directed graphs, Bayesian networks, Boolean networks (BNs) and probabilistic

Boolean networks (PBNs), ordinary and partial differential equations, qualitative differential

equations and other mathematical models [16]. Differential equations can model and capture

the biochemical reactions within genetic networks accurately, but it is required to employ a huge

amount of data for model inference. In the biophysics community, BN models, later extended

to PBN models have received much attention. BN model is originally introduced by Kauffman

[9][17][18][19]. Reviews of BN models can be found in [13][20][35]. In a BN model, gene expression

states are quantized to only two levels: on and off (represented as 1 and 0). Even though

most biological phenomena manifest them in continuous domain, the binary expression shows

promising and useful results [28]. For instance, in cDNA microarrays, the binary gene expression

data can be generated by using the Hamming distance as a similarity metric to separate the

type of gliomas and the type of sarcomas. Such binary expression data can retain meaningful

biological information contained in the real continuous-domain gene expression profiles.

Using BN models, qualitative rather than quantitative relationships underlying genetic reg-

ulation and control can be discovered. Furthermore, with this model, many questions about

the complex dynamic behavior of large genetic networks in the realistic biological system can

be studied and answered [36][37]. In a BN, the target gene is predicted by several genes via a

Boolean function. The genes that predict a certain gene are called its input genes. Once the

input genes and the Boolean functions are determined, the BN model becomes deterministic.

Since the biological system is stochastic in nature and microarray data sets used to infer the

model may not be accurate due to experimental noise in the complex measurement processes, a

deterministic model is not favorable to such real situations. To develop a model incorporating

with uncertainty is necessary. Probabilistic Boolean networks are recently developed and studied
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in the literature. It is a generalization of BN from a deterministic format to a stochastic one.

Detailed explanations of extending BN to PBN can be found in [30].

A PBN contains a family of BNs. In a PBN model, Boolean networks are allowed to switch

from one to another with certain probabilities during state transitions. A state can transit into a

number of states according to the realization of all Boolean networks at that moment. Thus the

dynamics (transitions) of the system can be described by Markov chains. The theory of Markov

chains can then be applied to the study of such systems. Once the PBN model is determined, the

system will evolve toward its steady-state. In the theory of Markov chains, if a Markov chain is

irreducible (reducible), the steady-state probability distribution is independent (dependent) on

the initial state probability distribution of a PBN. A Boolean network will settle into a collection

of state cycles called attractors. The states that can lead the system to a specific attractor is

called the basin of attractors. Recently, a theoretical analysis of steady-state probabilities for

attractors in both BN and PBN are studied and derived [5]. The steady-state probability

distribution provides a first-order statistical information of a PBN. Using such information of

a PBN, we can understand a genetic network, and identify the influence of different genes in a

network. We can further figure out how to control some genes in a network such that the whole

system can evolve into a target or desired steady-state probability distribution. Therapeutic

gene intervention or gene control policy [7][8][24][31] can be developed and studied according to

them. It is obvious that the steady-state probability distribution of a PBN is a very important

information to be computed.

The main aim of this paper is to develop an efficient method to compute the steady-state

probability distribution of a PBN and then use it to analyze the sensitivity of the steady-state

probability distribution in a PBN to the change of input genes, connections between genes and

Boolean functions. Markov chain Monte-Carlo (MCMC) method has been proposed in [34] to

calculate the steady-state probability distribution of a PBN. This method considers PBN as

a Markov chain. By simulating the underlying Markov chain for a sufficiently long time until

it converges to the steady-state, one can get the approximation of the steady-state probability

distribution. Although it has been shown that MCMC method can perform well in a small PBN,

it can be successfully used only if we are sufficiently confident that the system has evolved to

its steady-state. Theoretically, a priori bound on the number of iterations is too large to be

useful even for a moderate size network [26]. Thus in practice, only empirical determination

methods can be used to stop the chain and get the estimate of the steady-state probability

distribution [34]. Matrix-based method (as a deterministic method) can obtain the steady-

state probability more accurately than MCMC method (as a probabilistic method). Once the

transition probability matrix is constructed, all the analysis based on the matrix will become

very simple. Hence approaches based on transition probability matrix are more powerful and

are still of great importance.

The rest of the paper is organized as follows. In Section 2, a brief review of both BN model
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and PBN model based on the mathematical expressions is given. In Section 3, the methodology

to compute the steady-state probability is introduced. Then, we simulate a system based on a

real regulatory network with the PBN model and examine the steady-state probabilities that

are influenced by the input genes, the connectivity between genes and the Boolean function in

section 4. Finally, in the last section, we make a brief conclusion and address some possible

future research issues.

2 Probabilistic Boolean Networks

PBN is a generalization of the BN. Let us first give a brief review on BN. A BN G(V, F ) consists

of a set of nodes V and Boolean functions F , where

V = {x1, x2, . . . , xn}

and

F = {f1, f2, . . . , fn}.

Let xi(t) represents the state of xi at time t, where xi = 0 represents that gene is unexpressed

and xi = 1 means it is expressed. In the following, we may use Gene i to refer the gene xi, and

xi refer to the state of it. The overall expression levels of all the genes in the network at time

step t is given by the following column vector

x(t) = [x1(t), x2(t), . . . , xn(t)]T .

This vector is referred to the Gene Activity Profile (GAP) of the network at time t. For x(t)

ranging from [0, 0, . . . , 0]T (all entries are 0) to [1, 1, . . . , 1]T (all entries are 1), it takes on all the

2n possible states of the n genes. The list of Boolean functions represents rules of regulatory

interactions among the nodes (genes):

xi(t + 1) = fi(x(t)), i = 1, 2, . . . , n.

The state of gene i can be predicted by ki genes, where ki is the connectivity of gene i. The

maximum connectivity of a Boolean network is defined as

K = max{ki}.

In general, ki may not be equal to n, but without loss of generality, we allow the unnecessary

variables to be fictitious. The states of all genes can be updated synchronously according to the

output of their corresponding Boolean functions. Table 1 is an artificial truth table of a BN.

Here each gene will update its state according to the states of other genes in the previous step.

The state transition of this BN can be described as in Figure 1. The system will eventually

evolve into the state 000 or 111 depending on the initial state.
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Table 1: The Truth Table of Boolean Functions in the BN

x1 x2 x3 f (1) f (2) f (3)

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 0 0 1

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 1 1

000 001

010

011

100

101

110

111

Figure 1: Evolution of the BN in Table 1
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To build a BN model, the first step is to identify the network structure (i.e., G(V, F )) from

real experimental data. A lot of recent works have been focused on this problem [1] [2] [3] [4] [12]

[15] [25] [29]. Among all the methods, coefficient of determination (COD) is a general statistical

approach to uncover the associations among the genes [21]. The coefficient measures the degree

to which the input gene set can be used to improve the prediction accuracy of a target gene

relative to the best possible prediction in absence of this input gene set. Let xi be a target gene

that we want to predict, and assume all genes can be used to predict it. The problem is how to

estimate the state of xi from the observed genes. Let f be an optimal prediction function of xi.

The COD is defined as follows:

θ =
ǫi − ǫopt

ǫi

,

where ǫi is the error for the best prediction function in the absence of the observations and ǫopt

is optimal error in the presence of the observations achieved by f . Since ǫopt < ǫi, the COD

must be less than one. For example, if the error is the Mean-Square Error (MSE):

E[(xipred
− xi)

2],

then the best prediction xipred
of xi in absence of other observed variables is its mean, and the

error is the variance, i.e.

ǫi = σ2
xi

.

The optimal prediction of xi based on the other observed data is the conditional expectation:

f = E(xi|x). The optimal predicting function f can be determined by using neural networks

[21]. With the COD method, the genes that can yield the highest COD will be chosen to be

the input genes. But since in practice, some different input gene sets can give high COD, and

we cannot constraint the number of sets, a natural way is to incorporate all the input gene sets

with some probabilities, which also leads to the PBN.

We recall that PBN is an extension of BN. For each target gene, it allows many Boolean

functions that have equivalent prediction abilities. All these Boolean functions can be selected

randomly with some probabilities. We assume that for the ith gene, there corresponds l(i)

possible Boolean functions:
{

f
(i)
j : for j = 1, . . . , l(i)

}

and the probability of selecting function f
(i)
j is c

(i)
j , where f

(i)
j is a function with respect to the

activity levels of n genes. Here c
(i)
j can be computed from COD, and it is proportional to its

COD. Since c
(i)
j are probabilities, they must satisfy the following

l(i)
∑

j=1

c
(i)
j = 1.
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Thus one can compute it as follows:

c
(i)
j =

θi
j

∑l(i)
j=1 θi

j

,

where θi
j is the COD for Gene i with respect to the prediction function f

(i)
j . For a PBN with n

genes, there are at most

N =

n
∏

i=1

l(i)

different possible BNs among these n genes. This means that there are totally N possible

realizations of the genetic networks. Let fj be the jth possible realization,

fj = [f
(1)
j1

, f
(2)
j2

, . . . , f
(n)
jn

], 1 ≤ ji ≤ l(i), i = 1, 2, . . . , n.

Suppose that Pj is the probability of choosing the jth BN,

Pj =
n

∏

i=1

c
(i)
ji

, j = 1, 2, . . . , N, (1)

and let a and b be any two column vectors with n entries being either 0 or 1. Then

Prob {x(k + 1) = a | x(k) = b}

=

N
∑

j=1

Prob {x(k + 1) = a | x(k) = b, where jth network is selected } · Pj . (2)

By letting a and b ranging from [0, 0, . . . , 0]T to [1, 1, . . . , 1]T independently, we can get the

transition probability matrix A. For the ease of presentation, we first transform the n-digit

binary number vector, as discussed in [33], into a decimal number by the following formula:

y(k) = 1 +
n

∑

i=1

2n−ixi(k).

As x(k) ranges from [0, 0, . . . , 0]T to [1, 1, . . . , 1]T , y(k) will cover all the values from 1 to 2n.

Since the mapping from x(k) to y(k) is one-to-one, we can just equivalently work with y(k).

Let w(k) be the probability distribution vector at time k, i.e.,

wi(k) = Prob {y(k) = i}, i = 1, 2, 3, . . . , 2n.

It is straightforward to check that

w(k + 1) = Aw(k) (3)

where A satisfies
2n
∑

i=1

[A]ij = 1
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Table 2: The Truth Table of Boolean Functions in the PBN

x1 x2 x3 f
(1)
1 f

(1)
2 f

(2)
1 f

(3)
1 f

(3)
2

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 0 1 1 1 0 0

0 1 1 1 0 0 1 0

1 0 0 0 0 1 0 0

1 0 1 1 1 1 1 0

1 1 0 1 1 0 1 0

1 1 1 1 1 1 1 1

c
(i)
j 0.6 0.4 1 0.5 0.5

and it has at most N ·2n non-zero entries of the 2n-by-2n transition probability matrix. Interested

readers can consult [33] for more details about PBNs.

In the above BN example, if there is more than one Boolean function for at least one gene, it

will construct a PBN model. Table 2 is an example of PBN discussed in [33]. It can be seen as an

extension from the above BN model. There are two Boolean functions f
(1)
1 , f

(1)
2 associated with

x1, one Boolean function f
(2)
1 associated with x2, and two Boolean functions f

(3)
1 , f

(3)
2 associated

with x3. There are totally 2× 1× 2 = 4 BNs in this example. The transition probability matrix

can be constructed according to the above description. For example, if we want to know where

a given a state [0, 1, 1] will go, from the table, one can see that there are four states that [0, 1, 1]

can go into: [1, 0, 1], [1, 0, 0], [0, 0, 1], [0, 0, 0], and the probabilities are given respectively by

[0, 1, 1] → [1, 0, 1] : 0.6 × 1 × 0.5 = 0.3,

[0, 1, 1] → [1, 0, 0] : 0.6 × 1 × 0.5 = 0.3,

[0, 1, 1] → [0, 0, 1] : 0.4 × 1 × 0.5 = 0.2,

[0, 1, 1] → [0, 0, 0] : 0.4 × 1 × 0.5 = 0.2.

The state transition of this PBN can be found in [33].

3 Computation of the Steady-state Probability Distributions

In this section, we first discuss the method of generating the transition probability matrix and

then present the power method for computing the steady-state probability distribution.
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3.1 Generation of Transition Probability Matrix

In the paper by Shmulevich et al. [33], the matrix A is constructed by computing all the entries

one by one. It is based on the index of all the entries. For each entry, all the BNs should

be considered to determine whether the network contributes to it or not. For example, if we

want to compute A(i, j), we need to consider if the first BN is applied, whether the state j will

transition into state i. We then consider the second BN, and so on. After this, we need to

consider A(i, j + 1) or A(i + 1, j) depending on the choice of row index or column index. Even

the entry is zero, the process is still necessary to compute it. The value of A(i, j) is the sum of

probabilities of the BNs that can lead j to i. Since the transition probability matrix is sparse

in practice, much time are spent to compute the zero entries. This involves many unnecessary

computations and therefore it is inefficient.

One way to save time in computing the zero entries is that we only consider the nonzero

entries. The method is based on the state space. Given a state i, if a specific Boolean function

can lead it to state j, then A(j, i) will have value corresponding to the probability of this BN.

If another BN also can lead i to j, then the probability will be greater by the probability

corresponding to the BN. Although this is only an improvement in computing the transition

probability matrix, it can save much time and makes significant progress in computing the

steady-state probability.

In Shmulevich’s method, every entry and every BN should be considered, the complexity

of the method is about O(N22n). For our proposed method, only the states and the BNs will

be considered and it is of O(N2n). As the number the genes increases, the time saved will be

significant.

3.2 Computation of the Steady-state Probability Distribution

To obtain the steady-state probability distribution of a PBN, power method is a good choice. It

is an iterative method for solving the largest eigenvalue in modulus (the dominant eigenvalue)

and its corresponding eigenvector [11]. If we assume the underlying Markov chain of the PBN

is irreducible, then the maximum eigenvalue of the transition probability matrix is one and the

modulus of the other eigenvalues are less than one. Moreover, the eigenvector corresponding

to the maximum eigenvalue is the steady-state probability distribution. Given an initial vector

x(0), one can compute

x(k) = Ax(k−1)

until

‖x(k) − x(k−1)‖∞ < ǫ

satisfies some tolerance ǫ. Here x(k) is the eigenvector corresponding to eigenvalue one, i.e.

the steady-state of the system with transition probability matrix A. The main computational

cost of this method comes from the matrix-vector multiplications. Here, since the matrix A is
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sparse, the sparse matrix multiplication is applied. The convergence rate of the power method

depends on the ratio of |λ2/λ1| where λ1 and λ2 are respectively the largest and the second

largest eigenvalue of the matrix A. Our computational results indicate that even when there are

16 genes, the steady-state probability distribution can be obtained within a minute within 100

iterations with the tolerance ǫ = 10−10. In the next section, we will present more results on the

computational time required by our proposed method.

4 Simulation Study

All the simulation results are described based on the real network in [34]. Since Gene (TOP2A)

is only the input gene of Gene ((SCYB10);(INP10);IP10) and the indegree of Gene (TOP2A) is

zero, this gene is not considered in the simulation study. The total number of genes studied in

the network is 14. The total number of possible states in the network is therefore equal to 214,

i.e., 16384. For the ease of the presentation, we refer these fourteen genes to be the numbers 1

up to 14 in the following description, their corresponding names can be found in Table 3. Figure

2 describes the structure of the network. If two genes are the input gene of each other, the edge

in the graph is undirected.

In the simulation study, the number of Boolean functions and input genes in a Boolean

network are set to be no more than three. The input genes in a Boolean function are randomly

selected from the input gene set of the target gene. The Boolean functions are generated

randomly. In the following discussion we present the simulation results based on a particular

setting. Detailed information of Boolean functions and input genes for such setting can be found

in Tables 13, 14 and 15 of the Appendix. However, we have simulated a number of cases, and

we would like to mention that similar phenomenon is observed in other simulation cases for the

real genetic network in Figure 2.

In the following, we may use decimal number to describe the n-digit binary state. The

method of transferring a binary state to a decimal number has been described in Section 2.

For example, state 596 represents the state [0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1]. From the left to the

right, it represents the state from Gene 1 to Gene 14.

4.1 Classification of States in a Network

The states can be divided into three different types: unreachable state, transient state and

recurrent state. Unreachable state is the state that the system will never get into. In the

transition probability matrix, there are many zero rows. Each zero row corresponds to a zero

entry in the steady-state probability distribution. If the jth row in the transition matrix is full

of zero entries, the jth entry in the steady-state probability distribution must be zero. These

states are the unreachable states. A transient state is the state that the system can get into

before a certain time, but after that time, the system will never re-visit it. When a row in
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Figure 2: The Real Genetic Regulatory Network

Table 3: Names of 14 Genes in the Real Network

1 Tie-2

2 TGF-beta3; TGFB3

3 ERCC1

4 (HSP40); (HDJ1; DNAJ1)

5 (TDPX2); (PAG); (NKEFA)

6 (GSTP1); GST3; (FAEES3)

7 GNB1

8 (NDP kinase B; NDKB); (NME2);(PUF);NM23B

9 (SCYB10); (INP10); IP10

10 PDGFA; PDGFI

11 (NKEFB); (TSA); (TDPXI)

12 Beta Actin

13 NFKB1; KBF1

14 (BCL2A1); BFL1 protein; GRS protein
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the transition probability matrix has nonzero entries, and the corresponding probability in the

steady-state probability distribution is zero, then this row corresponds to a transient state in

the system. The remaining states are the recurrent states.

Since the zero rows can be identified from the transition probability matrix, the unreachable

states can be determined. Some of the unreachable states can be identified from the Boolean

functions directly. Given two target genes which are predicted by the same gene, when this

particular gene is in one certain state on or off, and the two target genes can be in only one

state on or off, then the rows involving the state that the two target genes cannot get into at

the same time will be zero. For example, in the real network structure, both Gene 4 and Gene

5 are predicted by Gene 3. Given the Boolean functions

x4 =

{

f4 = 0, if x3 = 0;

f4 = 1, if x3 = 1,

and

x5 =

{

f5 = 1, if x3 = 0;

f5 = 0, if x3 = 1,

the rows corresponding to the states x4 = x5 are all zeros. Then the system cannot evolve into

the states corresponding to those rows. Figure 3 shows the steady-state probability distribution

corresponding to the above Boolean functions for genes 4 and 5, all the other Boolean functions

are set according to Tables 13, 14 and 15 of the Appendix. In the steady-state probability

distribution, all the entries containing (x4 = 0, x5 = 0) and (x4 = 1, x5 = 1) are zero.

Some genes are not connected directly in the network, but they can influence each other

through some other genes during the evolution process. So many unreachable states cannot be

identified only from the Boolean functions themselves. Figure 4 presents a part of the steady-

state probability distribution from State 513 to State 640 of Figure 3. Some other zero entries

appear, which indicates that some particular states of the genes cannot coexist at the same time.

In the figure, from State 577 to State 596 the probabilities are all zeros, these states correspond

to the following situations

[·, ·, ·, 0, 1, ·, ·, 1, ·, 0, ·, 0, ·, ·]

[·, ·, ·, 0, 1, ·, ·, 1, ·, 0, ·, 1, ·, ·]

[·, ·, ·, 0, 1, ·, ·, 1, ·, 1, ·, 0, ·, ·],

i.e., Gene 4 is off, Gene 5 and 8 are on, and either Gene 10 and 12 are off, Gene 10 is off and

Gene 12 is on, or Gene 10 is on and Gene 12 is off. From the numerical results, the probability

of all the states including these three cases are zero.

Transient states and recurrent states must be determined from the steady-state probability

distribution. Figure 5 is all the transient states in the system. The number of the transient

states is 150. In the figure, the number corresponding to the nonzero values is the transient state.
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Figure 3: Steady-state Probability Distribution of the Genetic Network
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Figure 4: Steady-state Probability Distribution from State 513 to State 640
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Figure 5: Transient States in the Genetic Network

We remark that the possible states that can transit to the transient states are all unreachable

states. If the initial state is an unreachable state, transient states will be visited.

Recurrent states are the states that the system will revisit with certain probabilities. One

interpretation of recurrent states is that the cellular types are characterized by stable recurrent

patterns of gene expression. Another interpretation is that in a Boolean network, the steady

states specify distinct cell states defined by patterns of gene activity. Each realization of a PBN

can induce many attractors. During the evolution process, after certain time, the system will

transition within the states of all the attractors in the whole PBN with some probabilities. We

note that the total number of recurrent states is 4450, which is only about 25% of all the 214

states.

4.2 Sensitivity and Robustness of Steady-state Probability Distribution in a

PBN

In this section, the sensitivity of the steady-state probability distribution to the influence of

gene connections, Boolean functions and input genes is studied.

4.2.1 Influence of Gene Connections

Connections between genes describe whether the genes are predicted by other genes or they

predict others. Genetic regulatory network can be seen as a directed graph and the direction is

towards the target gene from the input genes. If the connection between some genes is broken,

the state of the target gene will not be related to the broken gene directly. In practice, this can
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Figure 6: Steady-state Probability Distribution When Gene 2 Is Not Applied to Predict Gene 6

Table 4: Influence of Gene Connections: Number of Recurrent States, Where the Original

Number of Recurrent States Is 4450.

Connections Broken 14→1 13→2 4→3 2→6 10→11 11→13 13 →14

Recurrent States 4450 4264 4375 4420 4450 4457 2269

be done by using some drugs or therapeutic methods. The target gene will evolve according

to the states of the rest input genes. In our tests, when a connection is broken, the Boolean

function is chosen such that the difference of output between the new Boolean function and the

previous one is as small as possible.

Table 4 shows the number of recurrent states when some connections are broken. After one

connection is broken, the number is changed. The number can be greater than or less than the

original number of recurrent states. Connections among genes not only change the number of

recurrent states, but also change their probabilities. Since a state in a system is a combination

of the status of all genes, the connection can in fact make an influence on some genes in the

whole genetic network.

Genes that are influenced greatly by breaking the connection can be identified from the

setting of the Boolean functions. If we can break a connection for a certain gene and the break

can make this gene evolve towards a state with higher probability from the setting of the Boolean

functions, this gene can follow the rule in practice. Some other genes that are predicted by this

gene can also be affected according to the change of its probability. For example, we may cut

the connection from Gene 2 to Gene 6. Figure 6 shows the steady-state probability distribution.

15



Table 5: Influence of Gene Connection: 2 → 6 Is Broken

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7

Original 0.5331 0.4397 0.3671 0.3671 0.6329 0.4638 0.5362

2 → 6 is broken 0.5406 0.4347 0.4009 0.4009 0.5991 0.5626 0.4374

Gene 8 Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14

Original 0.6888 0.4400 0.7561 0.4718 0.5282 0.4563 0.4581

2 → 6 is broken 0.6804 0.4774 0.7317 0.4778 0.5222 0.4576 0.4476

Here, the Boolean function f6
1 is set to be

x6 =

{

f6
1 = 1, if x1 = 0;

f6
1 = 0, if x1 = 1.

Compared to previous f6
1 , Gene 6 will have a larger probability to be off. Since Gene 7 is only

predicted by Gene 6, and when x6 = 0, it is always on, thus the probability that Gene 7 is on

becomes larger.

Table 5 shows the total probability that each gene is off for both the original system and the

present system. It is consistent with the analysis above. The probabilities of Gene 6 and Gene

7 change most. Since other genes can be predicted by Gene 6 and Gene 7, their probabilities

also change some. We choose the first 200 states with largest probability, compare them with

those states when there is the connection, and we also find this phenomenon. But this does

not mean that given any two states with all the genes having the same state except Gene 6 or

Gene 7, the state with x6 = 0 or x7 = 1 will have larger probability. As mentioned before, one

state of the system is a combination of all genes, it is possible that x6 = 0 or x7 = 1 can make

the probability of all other genes less than that when x6 = 1 or x7 = 0. In our setting, most

states with large probability in the original system remain large. Among the first 500 states

with largest probability, more than 400 are among those in the original steady-state probability

distribution.

4.2.2 Influence of Boolean Functions

Regarding the Boolean functions, if one can make a certain Boolean function inactive, and the

selecting probabilities of other Boolean functions for the same target gene are re-scaled such that

they are proportional to their previous probabilities, then the effect is similar to breaking some

connections between genes. The number of recurrent states can be changed and the probabilities

of the recurrent states can change too. To a certain extent, making a Boolean function inactive

can be seen as breaking the connections between the target gene and all the input genes in a

certain Boolean function.
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Table 6: Influence of Boolean Functions: Number of Recurrent States

Inactive functions f1
2 f2

1 f3
1 f6

3 f11
1 f13

1 f14
2

Recurrent States 4424 3803 2229 4334 4272 4445 3815

Table 7: Influence of Boolean Function: f2
1 Is Inactive

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7

Original 0.5331 0.4397 0.3671 0.3671 0.6329 0.4638 0.5362

f2
1 inactive 0.5268 0.3525 0.3515 0.3515 0.6485 0.4800 0.5200

Gene 8 Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14

Original 0.6888 0.4400 0.7561 0.4718 0.5282 0.4563 0.4581

f2
1 inactive 0.6876 0.4490 0.7534 0.4723 0.5277 0.4798 0.4628

The number of recurrent states is presented in Table 6. Inactive functions are the Boolean

functions that we set to be inactive. Setting one Boolean function to be inactive can make the

predicted gene have less connections. In this PBN setting, most of the number of recurrent

states become smaller. If one Boolean function of a gene is inactive, how the probability of this

gene (on or off) will be changed can be determined from the setting of the Boolean functions.

From the numerical results, we find that the decision made directly from the Boolean function

is consistent with the numerical results. Thus, we can determine the influence of a Boolean

function from the setting of Boolean functions later. For example, if the Boolean function f2
1 is

set inactive, then Gene 2 will have higher probability to be on. The global state of the system

with x2 = 1 will have higher probability to be evolved into compared to that when there is the

Boolean function. Table 7 shows the probability of all the genes in state 0. Gene 2 has higher

probability to go into state 1, which is consistent with the analysis from the Boolean function.

We find that in the first 100 states with largest probabilities, there are 77 states with x2 = 1,

while in the original steady-state probability distribution, there are only 58. As in the previous

subsection, this does not mean that for any two states, if all the genes have same state except

Gene 2, then the state with x2 = 1 will have higher probability. Setting f2
1 be inactive has

little influence on other genes. The change of probability for other genes is very small. Figure

7 shows the difference of the steady-state probability distribution between the present one and

the original one. The value of the vertical axis describes how much the present one changes

from the original one. From the figure, we also can see that the states with x2 = 1 have more

probability.

From many tests, we find that the influence of setting one Boolean function inactive on the

probability of all genes being in one state are not as large as the influence of gene connections.
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Figure 7: Steady-state Probability Distribution When f2
1 Is Inactive

Table 8: Influence of Boolean Function: f8
2 Is Inactive

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7

Original 0.5331 0.4397 0.3671 0.3671 0.6329 0.4638 0.5362

f8
2 is inactive 0.5536 0.4422 0.3737 0.3737 0.6263 0.4782 0.5218

Gene 8 Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14

Original 0.6888 0.4400 0.7561 0.4718 0.5282 0.4563 0.4581

f8
2 is inactive 0.7346 0.4453 0.7576 0.4794 0.5206 0.4516 0.4278
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Another example is that when Boolean function f8
2 is set inactive. From the setting of this

network, Gene 8 will have larger probability to be off(Table 8). This is consistent with the

numerical results. However, the probability of all other genes changes very little.

4.2.3 Influence of Genes

Resetting the state of a certain gene is an easily implementable method in gene control. If the

state of a certain gene is set to be fixed in the whole process of evolution, then an interesting

question will be: how will the steady-state probability distribution change? From the gene

control point of view, this problem also can be addressed as if one control is applied, how will

it affect the steady-state probability distribution of the system?

Table 9 shows the number of recurrent states when we set one of all the genes in a certain

state. In most cases, the number is much less. But this also depends on the outdegree of each

gene. For example, Gene 5 has no outdegree, when it is set in one state, it has no influence

on other genes, thus the number of recurrent states does not change. If a gene has outdegree,

the probability of its regulated gene being on or off will change. From the numerical results, we

find that the tendency of this kind of changes can be determined from the setting of Boolean

functions.

An example is that we set Gene 1 be off where Gene 1 is the input gene of Genes 2, 6, 13 and

14. Figure 8 is the steady-state probability distribution when x1 = 0. The system can only go

into the first part of all the states. Table 10 shows the probability that each gene is off in the

original steady-state distribution and in the present one. Among all the genes, Genes 6, 7 and

14 are influenced greatly. From the Boolean functions, we can see that Gene 14 will have larger

probability to get into 1 when x1 = 0. Now it has a probability of 0.6886 to be on while in the

original probability distribution, the probability is 0.5419. In the first 100 states with largest

probabilities, there are 88 states with x14 = 1. From the Boolean function, we also can see when

x1 = 0, Gene 6 will go into 0 with greater probability. Now the total probability that Gene 6 is

off is 0.5646, while it is only 0.4638 in the original steady-state probability distribution. Since

Gene 6 is the predictor of Gene 7 and Gene 7 is off when Gene 6 is on, the probability of Gene 7

being off decreases from 0.5362 to 0.4354. In the first 100 states with largest probability, there

are 15 states more with x6 = 0, and there are 25 states more for x7 = 1.

The probability of other genes also changes. Compared to the influence of BN, setting the

state of one gene has larger influences on other genes.

4.3 Computational Time

The computational time goes up with the increase of number of genes and Boolean networks.

The complexity of the algorithm is about O(N2n). All the experiments are done in a PC with

CPU Pentium 4 and RAM 1G using MATLAB. Table 11 shows the time required for different

number of Boolean networks when the number of genes is 14. The increase of computational
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Figure 8: Steady-state Probability Distribution When x1 = 0

Table 9: Influence of Genes: Recurrent States

State of Genes x1 = 0 x2 = 1 x3 = 1 x4 = 0 x5 = 0 x6 = 1 x7 = 1

Recurrent States 2036 2068 768 4450 4450 928 2288

State of Genes x8 = 0 x9 = 0 x10 = 1 x11 = 1 x12 = 1 x13 = 0 x14 = 0

Recurrent States 1664 1920 1752 824 2302 2145 2269

Table 10: Influence of Genes: x1 = 0

Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8

Original 0.4397 0.3671 0.3671 0.6329 0.4638 0.5362 0.6888

x1 = 0 0.4542 0.4031 0.4031 0.5969 0.5646 0.4354 0.6731

Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14

Original 0.4400 0.7561 0.4718 0.5282 0.4563 0.4581

x1 = 0 0.4799 0.7355 0.4762 0.5238 0.4990 0.3114
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Table 11: Computational Time When n = 14

N 192 384 1024 1536

Computational Time in Minutes 10 20 54 82

Table 12: Computational Time When N = 1024

n 12 13 14 15

Computational Time in Minutes 5 10 21 43

time with respect to the total number of Boolean networks is linear. Table 12 shows the time

required when the number of Boolean networks is fixed to 1024, and the number of genes varies.

The increase of computational time is about twice when the number of genes increases by 1.

Since the number of predictors for one gene cannot be very large (93% of genes are between 1

and 4 [10]), the expected number of Boolean functions for each gene also cannot be large. For

a regulatory network of 20 genes, 10 of them have 2 Boolean functions, and the variables in

each Boolean function are no more than 3, the computational time required to get the transition

probability matrix is about 58 hours.

In all the tests, the power method can be used successfully. It can compute the steady-

state probability distribution in a minute within 100 steps. Thus the computational cost for

computing the steady-state probability distribution depends mainly on the generation of the

transition probability matrix.

5 Concluding Remarks

In this paper, an efficient method to construct the transition matrix of probabilistic Boolean

network was presented. The complexity of the algorithm to compute the transition probability

matrix decreases from O(N22n) to O(N2n). And then the power method was used to get the

steady-state probability distribution. With this method, we studied the influence of Boolean

functions, gene connections and genes to the steady-state distribution. Since the goal to study

gene regulatory network is to find some intervention or control strategies so that the system can

evolve into the desirable states, this study is a necessary step before determining how to make

controls.

Since a BN with small probability in the gene evolution process is rarely been chosen, if these

networks can be removed during the analysis process, much time can be saved. Furthermore the

problem whether these BNs can be removed directly or not and how to determine the proportion
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of BNs that can be removed will be studied in our future research.

Appendix: Settings of Numerical Experiments

Number of genes studied in the network: 14 genes

The names of all genes: Table 3

Number of Boolean functions for each gene: From Gene 1 to Gene 14: 2 2 2 1 1 3 1 2 1 1 2 1 2 2

Number of input genes in each Boolean function: Table 13

Predictors in each Boolean function: Table 14. Entries in each column are the variables in the

Boolean functions.

Truth table of all Boolean functions: Table 15. Let f i
j be the jth function of Gene i. Since

the length of the truth table may vary between different functions, only the first 2nv(f i
j ) bits are

relevant to the f i
j column of F , where nv(f i

j) is the number of variables in function f i
j . Assume

f i
j is a function of three variables xu, xv, and xw (variables are defined in Table 14). Then,

f i
j(1)(the first row of f i

j) defines the output for the input vector (000). Correspondingly, f i
j(2)

defines the output for the input vector (001), where xu = xv = 0 and xw = 1, i.e., where the

third input variable is equal to one. As another example, f i
j(5) defines the output for the input

vector (100), where xu = 1, xv = xw = 0.

Table 13: Number of Input Genes in Each Boolean Function

f1
1 f1

2 f2
1 f2

2 f3
1 f3

2 f4 f5 f6
1 f6

2 f6
3 f7 f8

1 f8
2 f9

2 2 3 2 2 3 1 1 2 1 3 1 2 3 3

f10 f11
1 f11

2 f12 f13
1 f13

2 f14
1 f14

2

3 2 1 1 3 2 2 3
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Table 14: Input Genes in Each Boolean Function

f1
1 f1

2 f2
1 f2

2 f3
1 f3

2 f4 f5 f6
1 f6

2 f6
3 f7 f8

1 f8
2 f9

2 7 1 10 2 4 3 3 1 3 9 6 6 9 6

13 14 11 13 6 10 2 10 7 10 10

12 11 8 11 8

f10 f11
1 f11

2 f12 f13
1 f13

2 f14
1 f14

2

9 8 12 11 1 12 1 12

3 10 2 14 4 8

11 11 13
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