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Abstract

In this paper, we propose a linear control model for gene intervention in a genetic

regulatory network. At each time step, finite controls are allowed to drive the

network states to some target states. The objective is to achieve a target state

probability distribution with a minimal control cost. The model can be formulated

as a minimization problem with integer variables and continuous variables. Our

experimental results show that the control model and the algorithm are efficient for

gene intervention problems in genetic networks.

1 Introduction

Probabilistic Boolean networks (PBNs) have been proposed to study the dynamic behavior

of gene regulatory networks [1]. It is a generalization of the standard Boolean networks.

A Boolean network G(V, F ) consists of a set of nodes:

V = {v1, v2, . . . , vs}

and vi(t) represents the state (0 or 1) of vi at time t. A list of Boolean functions:

F = {f1, f2, . . . , fs}

representing rules of regulatory interactions among the nodes (genes):

vi(t + 1) = fi(v(t)), i = 1, 2, . . . , s,
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where v(t) = [v1(t), v2(t), . . . , vs(t)]
T . The Boolean network is a deterministic model.

However, gene expression is stochastic in nature and there is also experimental noise due

to complex measurement process. To overcome the deterministic rigidity of a Boolean

network, extension to a probabilistic setting is necessary. In a PBN, for each node,

instead of having one Boolean function, there are a number of predictor functions f
(j)
i

for determining the state of gene vi if it is chosen. For each gene vi, l(i) is the number

of possible predictor functions and cj
i is the probability that f

(j)
i is being chosen, and

it is estimated by using Coefficient of Determination (COD)[6]. By incorporating more

possible Boolean functions into each gene, they are able to cope with the uncertainty,

which is intrinsic to biological systems. At the same time, they also share the appealing

rule-based properties of standard Boolean networks [2, 3, 4]. The dynamics of PBNs also

can be understood from the Markov chain point of view. Thus the numerous theories for

Markov chains can also be applied to analyze the PBNs.

Although a PBN allows for uncertainty of inter-gene relations during the dynamic

process, it will evolve only according to certain fixed transition probabilities. There is

no mechanism for controlling this evolution towards more desirable states. To facilitate

PBNs to evolve towards some given desired directions, intervention has been studied in

some different ways. It has been shown that given a target state, one can facilitate the

transition to it by toggling the state of a particular gene from on to off or vice-versa

[7]. However, making a perturbation or a forced intervention can only be applied at one

time point. The behavior of the system thereafter still depends on the network itself.

The network may eventually return to some undesirable state after many steps. Another

way is by using structural intervention to change the stationary behavior of the PBNs

[8]. This approach also constitutes transient intervention. Since it involves the structural

intervention, it is more permanent than the first one.

To increase the likelihood of transitions from an undesirable state to a desirable one in

a PBN, more auxiliary variables can be involved in the system. Such variables are called

control inputs. They take the binary values: 0 or 1, which indicates that a particular

intervention is ceased or actively applied. The control can be applied in finite steps,

not only at one time point. In [5], the control problem is formulated as a minimization

problem of some costs. Under the supervision of biologists or clinicians, the cost functions

are defined as the cost of applying the control inputs in some particular states. For the

terminal states, all possible states are assumed to be reachable. Higher terminal costs are

assigned to the undesirable states. Then, the control problem is to minimize the total cost

under the condition that each step evolution is based on the transition probability which
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now is a function with respect to the control inputs. Since the system is stochastic in

nature, the cost is given by its expectation. The optimal control problem is solved by the

technique of stochastic dynamic programming. The simulations for this model indicate

that the final state will be the desirable state with higher probability when using controls.

For more details, we refer readers to the paper by Datta et al.[5].

In this paper, we formulate the gene intervention problem with a linear control model

which is easy to understand and implement. At each time step, finite controls can be put to

drive the states to the desirable ones. The objective is to achieve a target state probability

distribution with a minimal control cost. The model is formulated as a minimization

problem with integer variables and continuous variables. There are many methods to

solve such problems [9]. We use LINGO, a popular software for solving such minimization

problem, to get the control input solutions for gene intervention.

The remainder of the paper is organized as follows. In Section 2, we give a brief

review on PBNs and in Section 3, we formulate the linear control problem. In Section

4, preliminary numerical results are given to demonstrate the effectiveness of the linear

control models and the efficiency of our algorithms. Finally, concluding remarks are given

to discuss further research issues in Section 5.

2 Formulation of the Linear Control Model

In this section, we first review the PBNs briefly, we then present our linear control objec-

tive. We are interested in modeling the relationship among “n” genes. In such a genetic

network, each gene can take one of the two binary values: 0 or 1, or one of the three

ternary values: −1, 0 or 1. For the former case, 0 and 1 correspond to the case that a

particular gene is not expressed and expressed. For the latter case, −1, 0 and 1 indi-

cate that the gene is down-regulated, unchanged and up-regulated respectively. Here we

assume that each gene takes binary values in the discussion.

Suppose that the activity level of gene “i” at time step “k” is denoted by xi(k) where

xi(k) = 0 or 1. The overall expression levels of all the genes in the network at time step

k is given by the following column vector

x(k) = [x1(k), x2(k), . . . , xn(k)]T .

This vector is referred to the Gene Activity Profile (GAP) of the network at time k. For

x(k) ranging from [0, 0, . . . , 0]T (all entries are 0) to [1, 1, . . . , 1]T (all entries are 1), it

takes on all the 2n possible states of the n genes.
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Furthermore, for each gene xi, there corresponds l(i) possible Boolean functions:

f
(i)
j , j = 1, . . . , l(i),

and the probability of selecting function f
(i)
j is c

(i)
j , where f

(i)
j is a function with respect

to x1, x2, . . . , xn, which shows the dependency of xi on x1, x2, . . . , xn. Since c
(i)
j are prob-

abilities, they must satisfy the following condition:

l(i)∑

j=1

c
(i)
j = 1.

For such a PBN with n genes, there are at most N =
∏n

i=1 l(i) different Boolean networks.

This means that there are totally N possible realizations of the network. Let fk be the

kth possible realization,

fk = [f
(1)
k1

, f
(2)
k2

, . . . , f
(n)
kn

], 1 ≤ ki ≤ l(i), i = 1, 2, . . . , n.

Suppose that Pk is the probability of choosing the kth Boolean network,

Pk =
n∏

i=1

c
(i)
ki

, 1, 2, . . . , N. (1)

Let a and b be any two column vectors with n entries being either 0 or 1. Then

Pr{x(k + 1) = a | x(k) = b}

=
N∑

i=1

Pr{x(k + 1) = a | x(k) = b, (2)

the ith Network is selected} · Pi.

By letting a and b ranging from 00 . . . 0 to 11 . . . 1 independently, we can get the transition

probability matrix A. For the ease of presentation, we first transform the n−digit binary

number vector, as discussed in [1], into a decimal number by

y(k) = 1 +
n∑

j=1

2n−jxj(k).

As x(k) ranges from 00 . . . 0 to 11 . . . 1, y(k) will cover all the values from 1 to 2n. Since

the mapping from x(k) to y(k) is one-to-one, we can just equivalently work with y(k).

Let w(k) be the probability distribution vector at time k, i.e.

wi(k) = Pr{y(k) = i}, i = 1, 2, . . . , 2n.
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It is straightforward to check that

w(k + 1) = Aw(k) (3)

where A satisfies
2n∑

i=1

Aij = 1

and it has at most N · 2n non-zero entries of the 2n-by-2n matrix.

Suppose that the m auxiliary variables, which are called control inputs

u1, u2, . . . , um

are applied to the PBNs at each time step. At each time step k,

u(k) = [u1(k), u2(k), . . . , um(k)]T

indicates the control status. As in the PBNs, u(k) can take all the possible values from

[0, 0, . . . , 0]T to [1, 1, . . . , 1]T . One can still represent the controls with the decimal numbers

v(k) = 1 +
m∑

i=1

2m−iui(k).

As u(k) ranges from [0, 0, . . . , 0]T to [1, 1, . . . , 1]T , v(k) can cover all the values from 1 to

2m.

In [5], after applying the controls to the PBNs, the one-step time evolution of the

probabilistic distribution vector follows the equation:

w(k + 1) = A(v(k))w(k) (4)

which not only depends on the initial distribution but also on the controls at each time

step. By appropriately choosing the control inputs, the states of the network can be led

to a more desirable direction. The control problem is then formulated as follows. Given

an initial state y(0), find a control law

π = {u0, u1, . . . , uM−1}

that minimizes the cost function:

Jπ(y(0)) = E[
M−1∑

k=0

Ck(y(k), uk(y(k))) + CM(y(M))] (5)

subject to the constraint

Pr{y(k + 1) = j | y(k) = i} = aji(v(k)). (6)
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Here Ck(y(k), v(k)) are the costs of applying the control input v(k) when the state is y(k).

The optimal solution of this problem is given by the last step of the following dynamic

programming algorithm which proceeds backward in time from time step M − 1 to time

step 0:





JM(y(M)) = CM(y(M))

Jk(y(k)) = min
v(k)∈{1,2,...,2m}

E{G(y(k), v(k))}
k = 0, 1, 2, . . . , M − 1.

G(y(k), v(k)) = Ck(y(k), v(k)) + Jk+1(y(k + 1))

Furthermore, if v∗(k) = u∗k(y(k)) minimizes the right handside of (5) for each y(k), the

control law

π∗ = {u∗0, u∗1, . . . , u∗N−1}
is optimal. For more details, we refer readers to Datta et al.[5].

The above control problem is to put the controls on the transition probability matrix

in each time step, such that the system can evolve towards the more desirable states.

For the general control problems, the controls can be transferred by a control transition

matrix to the whole system such that the probability of the system evolving towards the

desired direction will increase.

3 Linear Control Models

In this section, we consider a discrete linear control system:

w(k + 1) = αkAw(k) + βkBu(k). (7)

All the assumptions are the same as the above. Here w(k) is the state probabilistic

distribution of all the states in the probabilistic Boolean network, from [0, 0, . . . , 0]T to

[1, 1, . . . , 1]T . The matrix A is the transition probability matrix for representing the

dynamics from one time step to the next one. The matrix B is the control transition

matrix and u(k) is the control vector on the states with ui(k), i = 1, 2, . . . , m taking

on the binary values 0 or 1. The matrix B can be set in each column to represent the

transition from one specific state to another for one particular gene. For example, we can

set in the first column such that the first gene makes a transition from 0 to 1, then the

first 2n−1 entries are 0 and the others are nonzero with the sum being equal to one in

this column. Moreover, ui(k) = 1 means the active control is applied at the time step k
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while ui(k) = 0 indicates that the control is ceased. At this stage, we assume B is given

and we need the biologists’ or clinicians’ guidance or some other methods to compute it.

Through the matrix B, the controls are effectively transferred to different states of the

PBN. If there are m possible controls at each time step, then the matrix B will be of size:

2n ×m.

Starting from the initial state or initial state probability distribution w(0), one may

apply the controls

u(0), u(1), . . . , u(k − 1)

to drive the probability distribution of the system to some desirable state probability dis-

tribution at instance k. The evolution of the system now depends on both the initial state

probability distribution and the controls in each time step. To make w(k) a probability

distribution, it is straightforward to require that

αk + βk = 1.

When there is no control at step k, we see that αk = 1. The parameter αk refers to the

intervention ability of the control in a genetic regulatory network.

We remark that the traditional discrete linear control problem does not have such

parameters. The main reason is that in the traditional control problem, w(k) is the state

of a system. However, w(k) is a probability distribution in this paper. We need to make

sure that starting from the initial probability distribution, one apply controls to drive the

probability distribution of the system to become some particular target distribution at

the time instance k.

Given the objective state or state probability distribution at time k, we aim at finding

the optimal controls:

u∗(0), u∗(1), . . . , u∗(k − 1),

such that the final state or state distribution following formula (7) is just the objective

state or state distribution. For simplicity, we set one control at each time step. This

means that the total of ui at each time step should be 1. To make the terminal state to

be the desirable state, we define some cost functions. We define Ck(yj(k), u(k)) to be the

cost when applying u(k) control input at the k-th step with the state yj(k). At each step,

we hope the state is the desirable state. With this definition, the expected control cost

at all the states in step k becomes:

E[Ck(y(k), u(k))|y(k − 1)]. (8)
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At each step, we simplify the model and assume that all the states can be reached. We

assign a penalty cost of Ck(y(k)) to the state y(k). Whether lower costs or higher costs

are assigned depends on whether they are desirable or undesirable. We note that Ck(y(k))

is still stochastic, therefore we must take its expected value.

The control problem can now be formulated as follows. Given an initial state distri-

bution w(0), find a control law

u∗(k) = uk,

such that minimizes the cost function:

Jπ(y(0)) = E[
M−1∑

k=0

Ck(y(k), uk(y(k))) + CM(y(M))] (9)

subject to 



m∑

l=1

[u(k)]l ≤ 1, [u(k)]l ∈ {0, 1},

k = 0, 1, . . . , M − 1.

αk + βk = 1, k = 0, 1, . . . , M − 1.

αk + βk

m∑

l=1

[u(k)]l = 1, k = 0, 1, . . . , M − 1.

(10)

where (9) is same as (5). From (10), we see that all αk and βk can be represented by

ui(k). Thus this formulation can be seen as only involving k ×m integer variables ui(k),

which constitutes an Integer Programming (IP) model.

4 Numerical Results

In this section, we present two examples to show optimal design with integer programming.

The first one is to illustrate how our method can be applied and the second one is based

on a more complex model.

4.1 A simple example

In this section, we present an example to illustrate how (9),(10) are applied to get the

optimal control strategy. It is the same example as that in [5]. . The example involves a

PBN with three genes, x1, x2, x3. There are two functions f
(1)
1 , f

(1)
2 associated with x1, one

function f
(2)
1 associated with x2, and two functions f

(3)
1 , f

(3)
2 associated with x3. These

functions are given by the following truth table 1.
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x1x2x3 f
(1)
1 f

(1)
2 f

(2)
1 f

(3)
1 f

(3)
2

000 0 0 0 0 0

001 1 1 1 0 0

010 1 1 1 0 0

011 1 0 0 1 0

100 0 0 1 0 0

101 1 1 1 1 0

110 1 1 0 1 0

111 1 1 1 1 1

c
(i)
j 0.6 0.4 1 0.5 0.5

Table 1.

In this example, we try to control x1 which is same as that in [5]. To make a clear

comparison with the dynamic model, we make the same settings. The control variable is

defined as gene x1, which now is u. Gene x2, x3 are now x1 and x2, which are same as

that in [5]. When there is no control, x1 and x2 will evolve according to the transition

matrix A, which is transpose of the matrix A(1) in [5]. Now the task is to construct the

matrix B.

A = A(1)T =




1 0 0 0.5

0 0 0 0.5

0 1 1 0

0 0 0 0




, A(2)T =




0 0 0.5 0

0 0 0.5 0

1 0.5 0 0

0 0.5 0 1




The entries of matrix B correspond to the probability of all the states that the genes are

moving when the controls are applied. Since in this example, we only apply one control,

matrix B has one column. B(j) = 1
4

∑
i A(2)(i, j), which means that the probability

of moving to state j when the control is applied is the sum of the probabilities that

moving to state j and then normalized to make the sum in each column to be 1. Thus,

B(1) = 0.5
4

= 0.125, B(2) = 0.5
4

= 0.125, B(3) = 1+0.5
4

= 0.375, B(4) = 1+0.5
4

= 0.375.

After the matrix A and B are determined, we need to formulate the problem. The

control action is to be carried out over five steps. The terminal penalties are given by

C(1) = 0, C(2) = 1, C(3) = 2, C(4) = 3. The cost the the control at a certain state is 1.

By computing (9), (10), we can get the optimal control strategy for this problem.
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initial state [0,0] [0,1] [1,0] [1,1]

JM 0 2 2 1

w(5) [1,0,0,0] [0, 0, 1,0] [0, 0, 1,0] [0.5, 0, 0.5,0]

Table 2. The evolution of the system without controls.

Case 1. The initial state is the first state [0,0]: According to the computation, the

optimal control strategy in this case is no control, which is same as that in the paper [5].

The value of the optimal control cost is 0. The genes will be always in the state [0,0].

Case 2. The initial state is the fourth state [1,1]: In this case, the evolution of the

PBN is starting from the most undesirable sate. With this control strategy, we need not

apply any control and the system will evolve to the first state with the probability 0.5.

To give a clear picture of this method compared to the dynamic programming method

for this problem, we give the following tables. Table 2 is the evolution of the system when

there is no control applied. Table 3 is the control results when we take different β. The

subscript number is the value of β. We find that the larger β, the better results. The

probability at the first state after we apply controls cannot be larger than a certain value.

This originates from the matrix B, which is determined by the system itself. Table 4 is

the results when the dynamic programming is applied.

4.2 A More Complex Example

In this section, we present an example to demonstrate the optimal control design by

integer linear programming approach. In this example, we consider a PBN of eight genes,

x1, x2, . . . , x8. For each gene i, we assume that it can take two values: 0 or 1. Here 1

means the gene is expressed and 0 means it is not expressed.

We further assume that there are two probabilistic Boolean functions: f
(i)
1 and f

(i)
2

associated with each gene i. All the probabilistic Boolean functions and their variables

are generated randomly. At the same time, the probability of the two Boolean functions

being applied to the corresponding particular gene is obtained. Fig.1 shows the network

of these eight genes. Suppose that in this example, we expect gene 1 is not expressed.

Then controls will be introduced to drive gene 1 from state 1 to state 0. Before solving the

optimization problem formulated in the last section, we need to do the following two steps:
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initial state [0,0] [0,1] [1,0] [1,1]

w(5)0.2 [1,0,0,0] [0.06,0.04,0.90, 0] [0.06,0.04,0.90, 0] [0.50, 0, 0.50,0]

JM0.2 0 2.84 2.84 1

w(5)0.4 [1,0,0,0] [0.13, 0.07, 0.80,0] [0.13, 0.07, 0.80,0] [0.50, 0, 0.50,0]

JM0.4 0 2.67 2.67 1

w(5)0.5 [1,0,0,0] [0.16, 0.09, 0.75,0] [0.16, 0.09, 0.75,0] [0.50, 0, 0.50,0]

JM0.5 0 2.59 2.59 1

w(5)0.6 [1,0,0,0] [0.19, 0.11, 0.70, 0] [0.19, 0.11, 0.70, 0] [0.50, 0, 0.50,0]

JM0.6 0 2.51 2.51 1

w(5)0.8 [1,0,0,0] [0.25, 0.15, 0.60, 0] [0.25, 0.15, 0.60, 0] [0.50, 0, 0.50,0]

JM0.8 0 2.35 2.35 1

w(5)0.99 [1,0,0,0] [0.31, 0.19, 0.50, 0] [0.31, 0.19, 0.50, 0] [0.50, 0, 0.50,0]

JM0.99 0 2.19 2.19 1

u no control fourth step fourth step no control

Table 3. The control results with linear control model.

initial state [0,0] [0,1] [1,0] [1,1]

JM 0 1.5 1.5 1.25

w(5) [1,0,0,0] [0.5, 0.5, 0,0] [0.5, 0.5, 0,0] [0.75, 0.25, 0,0]

u no control fifth step fifth step fifth step

Table 5. The control results with dynamic programming
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Figure 1: Probabilistic Boolean Network of the Eight Genes

(a1) Obtain matrices A and B, where matrices A and B are the corresponding transition

matrix and control transition matrix respectively. Since there are two Boolean functions

for each gene, there are totally 28 networks. From (1), the probability of choosing any

one of all the 28 can be obtained. By (2), we can get matrix A. To construct matrix B, in

practice we need the opinions from the biologists to determine which gene can be easily

controlled or have close relation with the target gene. For the purpose of demonstration,

we will control gene 1 through all the eight genes and let them move from state 1 to state

0 with equal probability.

(a2) Determine the cost of controls and penalty for the states. We assign a cost of 1 to

each forcible control. For the states penalty, since we expect gene 1 to be in state 0, we

assign a penalty of 0 to the states for which gene 1 equals 0 and a penalty of 3 to all the

states for which gene 1 equals 1. We choose the penalty and cost arbitrarily. In practice,

we still need some criteria to determine them.

Now we can solve our optimization problem which is an integer programming problem.

We choose the control such that it is only applied in three steps: 0, 1, 2. With the popular

software LINGO, we can get the solution in about one minute. The following are some

results for initial state being both desirable and undesirable. It is clear to see the effect

of this control strategy.
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(b1) The initial state is [0, 0, 0, 0, 0, 0, 0, 0, 0], which is the desirable state. If we do not

apply any control, the probability of this state evolving to the state for which gene 1

equals 0 after three steps is 0.2492.

Under the control strategy, the probability is 0.6517, which is much more than that

without any control. The control strategy is as follows: in the first step we control gene

1; in the second step, we control gene 4 and in the third step, we control gene 1 again.

As we have assumed, all the corresponding genes will be made to change from 1 to 0.

(b2) The initial state is [1, 1, 1, 0, 1, 0, 1, 1], which is not the desirable state. This time if

we do not apply any control, the final state will be the desirable state with the probability

0.1913, which is a very small likelihood.

However, with the optimal control, the state will evolve to the desirable state with

probability 0.6379. In the first step, we need not apply any control at all; but in the

second and the third step, we need to control gene 4 and and gene 1 correspondingly.

4.3 Computational Cost

To demonstrate the effectiveness of our model, here we made a comparison between our

model and the DP model. Assume each gene can take on s states: s can be 0, 1 or −1, 0, 1.

4.3.1 Computation aspect

If we get the solution of the Integer Programming model by computing all the possible

values of ui(k) under the constraints and then take the one which can minimize the

objective function, the cost is O((m + 1)s2n). When we apply one control at each step.

We know that this cost is the most among all the methods to solve this problem. For the

Dynamic Programming (DP) model, the cost is O(2ms2n). The cost of IP model is much

less than that of the DP model.

4.3.2 Parameter aspect

In the DP model, for each v(k), there will correspond a A(v(k)), thus there will be 2m

matrices which are assumed to be known. In our model, all the control information is

included in one matrix B. No matter how many controls we will apply, a matrix B is

enough although it is still assumed to be known.
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In our numerical tests, we find that our approach takes less than 2 minutes to compute

the control solution under the PC with Platinum 4 and 512 kB RAM. However, for the

DP approach, the PC cannot get the optimal solution in one day time.

5 Concluding Remarks

In this paper, we introduced a linear control model with the general control model form

based on the PBN model of gene regulatory networks. At each step, one or more controls

can be put to drive the genes to more desirable states. The control strategy can be used

in the real life for therapeutic intervention. The optimal control results presented in this

paper assume that the control transition matrix is known. To get a reasonable control

transition matrix is our further research topic.
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