
To appear in Math. Proc. Camb. Phil. Soc. 1

Residual Julia Sets of Meromorphic Functions

By Tuen Wai Ng†
Department of Mathematics,

The University of Hong Kong, Pokfulam Road, Hong Kong
e-mail : ntw@maths.hku.hk

Jian Hua Zheng‡
Department of Mathematical Science,

Tsinghua University, Beijing 100084, People’s Republic of China
e-mail : jzheng@math.tsinghua.edu.cn

and Yan Yu Choi

Department of Mathematics,
The University of Hong Kong, Pokfulam Road, Hong Kong

e-mail : h0034138@graduate.hku.hk

(Received 29 December 2004; revised 31 December 2005)

Dedicated to the memory of Prof. I.N. Baker

Abstract

In this paper, we study the residual Julia sets of meromorphic functions. In fact, we
prove that if a meromorphic function f belongs to the class S and its Julia set is locally
connected, then the residual Julia set of f is empty if and only if its Fatou set F (f) has a
completely invariant component or consists of only two components. We also show that
if f is a meromorphic function which is not of the form α + (z − α)−keg(z), where k is a
natural number, α is a complex number and g is an entire function, then f has buried
components provided that f has no completely invariant components and its Julia set
J(f) is disconnected. Moreover, if F (f) has an infinitely connected component, then the
singleton buried components are dense in J(f). This generalizes a result of Baker and
Domı́nguez. Finally, we give some examples of meromorphic functions with buried points
but without any buried components.

1. Introduction

Let f : C → C∞ be a meromorphic function, where C∞ is the Riemann sphere.
Throughout this paper, we assume that f is neither constant nor a Möbius transforma-
tion. We shall denote the n-th iterate of f by fn. Then fn is defined for all z in C except
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a countable set which consists of the poles of f, f2, ..., fn−1. If f is rational, then f has
a meromorphic extension to C∞ and we denote the extension again by f . In this case
f is defined and meromorphic in C∞. The Fatou set, F (f) consists of point z in C∞ at
which the sequence {fn}n∈N is defined and normal in some neighborhood of z. The Julia
set, J(f) is defined as the complement of F (f) in C∞. Note that if f is transcendental,
then by definition ∞ is always in the Julia set of f . Clearly F (f) is open and J(f) is
closed. It is also known that J(f) is perfect (and therefore J(f) is uncountable, and no
point of J(f) is isolated). A set E is said to be forward invariant (under f) if f(E) ⊂ E,
and backward invariant (under f) if f−1(E) ⊂ E. E is completely invariant if it is both
forward and backward invariant. It is easy to check that both F (f) and J(f) are com-
pletely invariant. Moreover, it is well-known that J(f) is the smallest closed completely
invariant set which contains at least three points. For the details of the general theory of
iterations of meromorphic functions, we refer the reader to a series of papers by Baker,
Kotus and Lü [7, 8, 9, 10], the survey article [13], as well as the book [26]. For the
iteration theory of rational functions, we refer to the books [12], [27] or [37].

In [38], Sullivan drew the attention to the dictionary of correspondence between the
theory of Kleinian groups and iteration theory of rational functions. For example if Γ
is a Kleinian group, Ω(Γ) and Λ(Γ) = C∞ − Ω(Γ) are its ordinary set and limit set
respectively, then the limit set Λ(Γ) is the smallest closed Γ invariant set with at least
three points. The details of the dictionary can be found in Chapter 5 of [32] or Section
10 of [24].

It is known that ∂Ωi ⊂ Λ(Γ) for any component Ωi of the ordinary set Ω(Γ). Hence,
∪i∂Ωi ⊂ Λ(Γ). In [1] and [2], Abikoff defined the residual limit set Λr(Γ) to be

Λr(Γ) = Λ(Γ)− ∪i∂Ωi.

In other words, the residual limit set Λr(Γ) is the subset of those points of the limit
set Λ(Γ) which do not lie on the boundary of any component of the ordinary set Ω(Γ).
Abikoff also gave examples to show that Λr(Γ) can be nonempty. In [2], Abikoff, obtained
a complete classification of the limit sets of finitely generated Kleinian groups, namely
the limit set is a union of quasi-circles, limit sets of degenerate groups, the residual limit
set and a discrete set. He also proved that Λr(Γ) is empty if and only if Γ is a function
group (i.e. having an invariant component of the set of discontinuity) or has a subgroup
of index 2 which is quasi-Fuchsian.

As an analogue of the residual limit set of a Kleinian group, Morosawa [29] defined the
residual limit set Jr(f) to be the subset of those points of the Julia set J(f) which do not
lie on the boundary of any component of the Fatou set F (f). A point in Jr(f) is called a
buried point. A component of J(f) which consists of buried points only is called a buried
component. Buried points and buried components were first considered by McMullen in
[28] and he gave the first example of a rational function with buried components. In
[33], Qiao gave examples of transcendental entire function with nonempty Fatou set and
residual Julia set.

In Section 2, we introduce the Makienko’s conjecture on the residual Julia sets and
discuss some results of Beardon [11], Morosawa [29, 31] and Qiao [34, 35] on condi-
tions for a rational function to have buried points or buried components. Some of these
results are extended to certain classes of the meromorphic functions (see Theorem 2.1
and Theorem 2.2). In particular, Theorem 2.2 is a generalization of a result obtained
by Baker and Domı́nguez in [4]. In order to prove Theorem 2.1 and 2.2, it is useful to
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consider a more general class of functions, namely the meromorphic functions outside
small sets. We briefly recall the basic facts of this class of functions in Section 3. We then
prove Theorem 2.1 in Section 4 and Theorem 2.2 in Section 5. In Section 6, we show that
the Newton’s map of the polynomial zn − 1 has buried points when n ≥ 3. Finally, we
consider some meromorphic functions whose Julia sets are Sierpinski curves in Section
7. We show that for these functions, their residual Julia sets are nonempty.

2. Motivations and results

By analogy of Abikoff’s theorem on residual limit sets mentioned in the last section,
it is natural to pose the following conjecture which is often referred as

Makienko’s conjecture : Let f be a rational function with degree at least two. Then
Jr(f) is empty if and only if F (f) has a completely invariant component or consists of
only two components.

Notice that the original Makienko’s conjecture was first mentioned in [24], p.578 and
in the original formulation, the possibility for F (f) to have exactly two components was
not mentioned. In [35], Qiao stated the correct conjecture in a way slightly different from
the above formulation. Makienko’s conjecture was proved to be true by Morosawa [29] for
hyperbolic rational functions first and then extended to subhyperbolic rational functions
in [31]. Note that a rational function f is hyperbolic if every critical point of f has a
forward orbit that accumulates at an attracting cycle of f . While a rational function is
subhyperbolic if each critical point of f has a forward orbit that is finite or accumulates
at an attracting cycle of f . It is known that if a rational functions f is hyperbolic or
subhyperbolic and J(f) is connected, then J(f) is locally connected (see [27], p.191).
The same is also true for geometrically finite rational functions. Here a rational function
is geometrically finite if the orbit of every critical point in its Julia set is eventually
periodic.

From Morosawa’s results, one may expect that Makienko’s conjecture is true if the
Julia set is not too complicated. In fact, Qiao proved in [35] that the conjecture is true
if the Julia set J(f) is locally connected. However, Qiao’s proof is quite complicated and
we find it difficult to follow his argument. Theorem 2.1 stated below covers Qiao’s result
and the proof of it is very different from that of Qiao. In Theorem 2.1, we consider the
class S of meromorphic functions which consists of meromorphic functions with finitely
many critical and asymptotic values. It is not difficult to show that rational functions,
rational functions of exp(az), a ∈ C, and elliptic functions are class S functions. Class S
functions are considered as a natural generalization of rational functions. Many results on
iterations of rational functions have been generalized to functions in class S. For example,
Sullivan’s well-known theorem that a rational function has no wandering domains has
been extended to transcendental meromorphic functions in class S (see [10]). In this
paper, we extend Qiao’s result to functions in class S by proving the following

Theorem 2·1. Let f be a meromorphic function in the class S. Suppose that J(f)\{∞}
is locally connected, then Jr(f) is empty if and only if F (f) has a completely invariant
component or consists of only two components.

Examples of functions with locally connected Julia sets can be found in [30], [15] and
[25]. In particular, in [30] and [25], examples of class S functions are constructed in
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such a way that their Julia sets are Sierpinski curves. In Section 7, we show that these
functions must have buried points.

The existence of buried components of meromorphic functions is also an interesting
topic to consider. We would like to find some necessary and sufficient conditions on
the existence of buried components of meromorphic functions. It is clear that the Julia
set must be disconnected if it has some buried components. Therefore, we focus on
disconnected Julia sets. In [11], Beardon proved that the Julia set J(f) of a rational
function with degree at least two has a buried component if J(f) is disconnected and
every Fatou component is of finite connectivity. He obtained his result by first proving
that the number of components of a Julia set is uncountable if the Julia set is disconnected
and noting that the number of Fatou components is always countable, and then under the
assumption that every Fatou component is of finite connectivity, it follows easily that
the Julia set must have some buried components. Qiao [34] then extended Beardon’s
result and proved that a rational function f has buried components if and only if J(f)
is disconnected and F (f) has no completely invariant components.

In [4], Baker and Domı́nguez considered the case of transcendental meromorphic func-
tions and obtained the following result.

THEOREM A ([4]). Let f be a transcendental meromorphic function with no wan-
dering domains. Then J(f) has buried components if f has no completely invariant
components and its Julia set is disconnected in the following way. Either F (f) has a
component of connectivity at least three, or F (f) has three doubly-connected compo-
nents Ui, 1 ≤ i ≤ 3, such that one of the following conditions holds.

(a) Each Ui lies in the unbounded component of the complement of the other two.
(b) Two components U1, U2 lie in the bounded component of C∞\U3 but U1 lies in

the unbounded component of C∞\U2 and U2 lies in the unbounded component of C∞\U1.

We shall extend this result to the following

Theorem 2·2. Let f be a meromorphic function which is not of the form α + (z −
α)−keg(z), where k is a natural number, α is a complex number and g is an entire function.
Then J(f) has buried components if f has no completely invariant components and its
Julia set is disconnected. Moreover, if F (f) has an infinitely connected component, then
the singleton buried components are dense in J(f).

If f is a transcendental meromorphic function of the above form α + (z − α)−keg(z),
then it was proved by Baker in [3] that f can have at most one multiply-connected
Fatou component and the connectivity of such component is 2. Therefore, such f cannot
satisfy the assumptions of Theorem A and hence Theorem 2.2 is really a generalization
of Theorem A.

It is possible to have a rational function with buried points and does not have any
buried components. For example, it was shown by Morosawa in [29] that the rational
function

−2z + 1
(z − 1)2

has buried points while its Julia set J(f)( 6= C∞) is connected and hence f has no buried
components. A more detailed study of the dynamics of this rational function can be found
in Baker & Domı́nguez [4]. We give more examples of meromorphic functions with buried
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points and without any buried components in Sections 6 and Section 7. For other results
concerning buried points and buried components, we refer the reader to [20],[22],[39],[40]
and the recent paper [23].

3. Functions meromorphic outside a small set

We first notice that if we iterate a meromorphic function f , we are also iterating fp

for each natural number p, which in general has countably many essential singularities
in C. Since it is often very convenient in proofs to replace a function by its higher order
iterates, it is natural to extend our iteration theory to include this kind of functions.
This has been done by Baker, Domı́nguez and Herring in [5]. Here, we first recall the
basic definitions and some results of this extended theory. Then we state and prove some
lemmata we are going to use later. The presentation here follows closely to that of [5].

Let E be any compact totally disconnected set in C∞ and f be a function meromorphic
in Ec = C∞\E. For any z0 ∈ E, the cluster set C(f, Ec, z0) is defined as {w : w =
limn→∞ f(zn) for some zn ∈ Ec with zn → z0}. Denote by M the class of functions f

such that f is meromorphic outside some compact totally disconnected set E = E(f) ⊂
C∞ and C(f,Ec, z0) = C∞ for all z0 ∈ E. In case E = ∅ we further assume that f

is neither constant nor a Möbius transformation. A related class K ⊂ M consists of
functions f with the property that there is a compact countable set E = E(f) ⊂ C∞
such that f is non-constant meromorphic in C∞\E but in no proper superset. The class
K is studied in [17] and [18]. Let f ∈ K and e ∈ E(f). It is known that for any open
neighborhood U of e, f takes in U\E(f) every value in C∞ with at most 2 exceptions.
We call such exceptional values the Picard values of f .

One reason to consider the class M is that it is closed under functional composition.
In fact, if f and g belong to M, then so is f ◦ g and E(f ◦ g) = E(g) ∪ g−1(E(f)) which
is still a compact totally disconnected set ([5], Lemma 2). In particular, for any f ∈ M
and n ∈ N, fn ∈ M and En = E(fn) = ∪n−1

i=0 f−i(E(f)), where f0 is defined to be the
identity function on C∞. Clearly, if we set J1(f) = ∪∞n=1En and F1(f) = C∞\J1(f),
then F1(f) is the largest open set in which all fn are defined. Furthermore f(F1) ⊂ F1.
We obtain an extension of the standard Fatou and Julia theory by defining the Fatou
set F (f) to be the largest open set in which (i) all fn, n ∈ N, are meromorphic and (ii)
{fn} is a normal family. The Julia set is defined to be J(f) = C∞\F (f). If J1(f) is
either empty or contains one point (in this case, assume without loss of generality that
J1(f) = E1(f) = {∞}) or two points (may assume that J1(f) = {0,∞}), then we are
dealing with maps which are rational or (conjugate to) entire functions or analytic maps
of the punctured plane C∗ respectively. In this case the condition (i) above is trivial and
the Fatou and Julia sets are determined by (ii). In the other cases Montel’s theorem
shows us that F (f) = F1(f) and J(f) = J1(f) as defined above.

Many properties of F (f) and J(f) are similar for f ∈ M to those for rational, entire or
analytic maps of the punctured plane but different proofs are often needed. For example,
we still have F (f) = F (fn) and J(f) = J(fn). If U is a component of F (f) then for each
k ∈ N, fk(U) is contained in a unique component Uk of F (f). If Uk 6= Un whenever k 6= n,
then U is called a wandering domain; otherwise we call U eventually periodic. Attracting
domains, Parabolic domains, Siegel disks, Herman rings and Baker domains are defined
for f ∈ M just as for rational functions, transcendental entire functions and analytic
self-maps of the punctured plane, with little change in the discussion. In particular, we
still have the classification theorem of periodic Fatou components (see [5], Theorem C).
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Moreover, the No Wandering Domains Theorem for the class S meromorphic functions
has also been extended to the class MS ∩ K ⊂ M (see [5], p.660). Here we say that
f ∈ M belongs to the class MS if sing(f−1), the set of singularities of f−1 is finite. This
set of singularities consists of the critical values, asymptotic values of f as well as their
limit points. Here, we say that w1 is an asymptotic value of f at e ∈ E(f) if f(z) tends
to w1 as z tends to e ∈ E(f) along some path γ. The precise definition of singularities of
f−1 for f ∈ M can be found in [5], p.659. Notice that when f ∈ MS is meromorphic in
C, the singularities of f−1 are the usual critical values and asymptotic values of f and
in this case f belongs to the class S. It is known that if f, g ∈ MS, then so is f ◦ g. Also
note that if f ∈ MS, then f has no Baker domains ([5], p.664). The periodic domains
are closely related to the set of singularities of f−1 as can be seen from the following
theorem.

THEOREM B ([5], Lemma 10).
(i) If f ∈ M and G1, ..., Gp is a periodic cycle of Fatou components in which the iterates
converge to either an attracting or parabolic periodic cycle of points, then G1 ∪ ... ∪Gp

contains the forward orbit of some singularity of f−1.
(ii) If G1, ..., Gp is a cycle of Siegel discs or Herman rings (i.e. each Gi is a Siegel disc or
Herman ring of fp), then each point of ∪p

i=1∂Gi is a limit of points in the forward orbit
of singularities of f−1.

We shall also need the following results on the completely invariant components of
f ∈ MS.

THEOREM C ([6]). Suppose that f ∈ MS. If E(f) has an isolated point, then f has
at most two completely invariant Fatou components.

By proving that if f ∈ S, then fp ∈ MS and E(fp) has an isolated point, we obtain
the following lemma.

Lemma 3·1. Suppose that f ∈ S, then for any natural number p, fp has at most two
completely invariant Fatou components.

Proof. Note that f ∈ S is the same as f ∈ MS and E(f) = {∞}. Therefore, we have
fp ∈ MS and E(fp) = ∪p−1

i=0 f−i({∞}). We claim that any z0 ∈ E(fp)\{∞} is an isolated
point of E(fp). Assume to the contrary that there exists a sequence {zn}∞1 ⊂ E(fp) such
that limn→∞ zn = z0. Since E(fp) = ∪p−1

i=0 f−i({∞}), there exists some 1 ≤ j ≤ p − 1
such that infinitely many zn belongs to f−j({∞}). Hence z0(6= ∞) is an accumulation
point of the set f−j({∞}) which contradicts the fact that the solution set of the equation
f j(z) = ∞ has no finite accumulation points for the non-constant meromorphic function
f . Now apply Theorem C and we conclude that fp has at most two completely invariant
Fatou components.

Using Theorem C, Lemma 3.1 and the result that any f ∈ MS∩K has no wandering
domains, one can obtain the following lemma easily.

Lemma 3·2. Suppose that f ∈ MS∩K. If E(f) has an isolated point, then the number
of Fatou components is either 0,1,2 or ∞. In particular, this is true for any fp with f ∈ S.

The following result of Bergweiler and Eremenko takes care of what happens when



Residual Julia Sets of Meromorphic Functions 7

f ∈ MS has precisely two completely invariant components. They only prove the result
for the class S, but their proof also works for the class MS.

THEOREM D ([14]). Suppose that f ∈ MS and f has two completely invariant Fatou
components D1 and D2. Then the set of singularities of f−1 is contained in D1 ∪D2.

By using the above results, we have the following lemma which is a generalization of
Theorem 1 in [19].

Lemma 3·3. Suppose that f ∈ MS ∩ K and f has two completely invariant Fatou
components D1 and D2, then f has exactly two Fatou components D1 and D2.

Proof. Let D3 be a Fatou component of f other than D1 and D2. This D3 must be
eventually periodic as any function in MS∩K has no wandering domains. Consider the
forward orbit of D3, that is, D3, f(D3), f2(D3), . . .. Then this orbit will eventually be
attracted to a cycle of attracting domains or parabolic domains or Siegel discs or Herman
rings as f ∈ MS has no Baker domains. Let this cycle be G1, ..., Gp. By Theorem D and
the fact that D1 and D2 are forward invariant, all the forward orbits of the singularities
of f−1 must lie inside D1∪D2. Hence it follows from Theorem B that the cycle G1, ..., Gp

cannot be a cycle of Siegel discs or Herman rings. Therefore it must be a cycle of attracting
domains or parabolic domains which will contain the forward orbit of some singularity of
f−1. Since all such forward orbits are contained in the completely invariant components
D1 and D2, we have p = 1 and G1 = D1 or D2. Now G1 = D1 or D2 implies that G1 is
backward invariant and therefore D3 ⊂ G1 which is a contradiction.

THEOREM E ([4], Corollary 1). Suppose that f ∈ K and has no wandering domains.
If D is a multiply-connected periodic Fatou component such that ∂D = J(f), then D is
completely invariant.

Baker and Domı́nguez only proved the above result for f meromorphic in C. However,
their proof also works for any f ∈ K. Finally, using this result, we prove the following
lemma which is crucial for the proof of Theorem 2.1.

Lemma 3·4. Let f ∈ MS∩K and E(f) has an isolated point. Assume that J(f)\{∞}
is locally connected. If D is a forward invariant Fatou component of f such that ∂D =
J(f), then D is completely invariant.

Proof. We shall first consider the case that J(f) is disconnected. Since J(f) = ∂D

and J(f) is disconnected, we know that D must be multiply-connected. Note that f has
no wandering domains and therefore we can apply Theorem E to conclude that D is
completely invariant.

Now it remains to consider the case that J(f) is connected. Suppose the number of
Fatou components is finite. Then by Lemma 3.2, the number of Fatou components must
be one or two. For the first case, obviously D is completely invariant. If the number of
Fatou components is two, then let D1 be another Fatou component. As D is forward
invariant, D1 must be backward invariant and hence D1 is forward invariant. Thus, D

must be backward invariant and therefore D is completely invariant.
From now on we shall assume that the number of Fatou components is infinite. As
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D = J(f) ∪D, C∞ −D = ∪iDi, where Di are all the Fatou components other than D.
Since D is connected, each of the Fatou component Di( 6= D) is simply connected (see
[12], Proposition 5.1.3). Since J(f) = ∂D is connected, D is also simply connected.

Take a Fatou component E other than D such that E contains no singular values (this
is possible as there are infinitely many Fatou components and only finitely many singular
values). Then f−1(E) is a union of distinct Fatou components E1, ..., Ed, . . . such that
each fi = f|Ei

: Ei → E is a conformal map with f−1
i (∂E) = ∂Ei.

As D is forward invariant, none of Ei is equal to D. Suppose D is not backward
invariant, then f−1(D) has a component D1 other than D. Let f0 = f|D1

: D1 → D.
Then f−1

0 (∂D\Ef ) = ∂D1, where Ef is the set of Picard exceptional values of f . Note
that ∂E ⊂ J(f) = ∂D. Since every Picard exceptional value is an asymptotic value (the
proof is similar to the usual one for meromorphic functions in C), we have ∂E ⊂ ∂D\Ef

and hence f−1
0 (∂E) ⊂ ∂D1. On the other hand, f−1

0 (∂E) is the union of some of the
f−1

i (∂E) = ∂Ei. Therefore each of these ∂Ei is a subset of ∂D1 and we may for example
assume that ∂E1 ⊂ ∂D1 ⊂ ∂D = J(f).

Recall that a boundary point a of a domain G is said to be accessible if there exists an
arc γ : [0, 1) → G such that lim t→1 γ(t) = a. It is known that the accessible boundary
points of a domain G form a dense subset of ∂G (see [37], p.9, exercise 1). Therefore we
can take two finite accessible points a and b in ∂E1 such that a and b are connected by
some Jordan path γ so that except the two endpoints a and b, the whole γ is lying inside
E1.

Note that a and b are also boundary points of D. Since ∂D = J(f) is locally connected
at any finite point, by Lemma 17.17 of [27], ∂D is also locally path connected at any
finite point. Hence, there exist path connected neighborhoods of both a and b in ∂D, say
A and B respectively. Since a and b are also boundary points of D1 and the accessible
boundary points of D1 form a dense subset of ∂D1, there exist two accessible points of
D1, a1 and b1 in the two neighborhoods A ∩ ∂D1 and B ∩ ∂D1 of ∂D1 respectively so
that a1, b1 ∈ ∂D1 can be connected by a Jordan path γ1 lying inside D1 (except the
two endpoints a1, b1). Let σ1 ⊂ A, σ2 ⊂ B be a path joining a, a1 ∈ A and b, b1 ∈ B

respectively. Then Γ = γ ∪ σ1 ∪ γ1 ∪ σ2 forms a simple closed curve in C and C∞\Γ has
two components. Note that each of these two components contains some points in J(f),
for otherwise, as D1 and E1 are connected, they will be the same component which is
a contradiction. Then it follows from the assumption ∂D = J(f) that each component
of C∞\Γ contains some points in D. Let d1 and d2 be two points in D so that they are
lying in the two different components of C∞\Γ. Connect d1 and d2 by a path in D. This
path must cut Γ at certain point and it is a contradiction as Γ ∩D = ∅.

4. Proof of Theorem 2.1

The ”if” part of Theorem 2.1 is rather easy to prove. In fact, if there exists a completely
invariant component D of F (f), then D is also completely invariant. Hence, by the
minimality of J(f), we have J(f) ⊂ D and therefore ∂D = J(f). This implies Jr(f) = φ.
Now suppose F (f) has two components only, say D1 and D2. Then each of these two
components must be a completely invariant component of F (f2) = F (f). Hence, we have
∂Di = J(f2) = J(f) and therefore Jr(f) = ∅.

It remains to consider the ”only if” part. We shall prove by contradiction. Assume
to the contrary that F (f) has no completely invariant components and F (f) consists
of more than two components. This implies that F (f) has infinitely many components.
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Given that Jr(f) = ∅, then by definition, J(f) = ∪i∂Di, where Di are all the Fatou
components. In [29], Morosawa shows that for rational function f , we actually have
J(f) = ∪M

i ∂Di, where Di are all the periodic components of F (f). This result is then
improved by Baker and Domı́nguez to the following lemma.

LEMMA F ([4]). If f ∈ K has no wandering domains and Jr(f) = ∅, then there is a
periodic Fatou component D such that ∂D = J(f).

Therefore we can assume that J(f) = ∂D for some periodic Fatou component D.
Let’s consider the periodic cycle D1 = D, D2, ..., Dp. Then each Di is forward invariant
under fp for i = 1, 2, ..., p. Note that as f ∈ S, fp ∈ MS ∩K and E(fp) contains an
isolated point (see the proof of Lemma 3.1). Apply Lemma 3.4 and we conclude that Di

is completely invariant under fp for i = 1, ..., p. However by Lemma 3.1, fp can have at
most two completely invariant Fatou components and therefore p ≤ 2. If p = 1, then f

has a completely invariant Fatou component which is a contradiction. If p = 2, then f2

has two completely invariant Fatou components. By Lemma 3.3, F (f2) and hence F (f)
has only two Fatou components. This is again a contradiction and we are done.

5. Proof of Theorem 2.2

We shall repeatedly apply the following result to prove Theorem 2.2.

THEOREM G ([17],p.555). Let f : V → U be a nonconstant meromorphic function
between V and U which are subdomains of C∞. Let c(V ) and c(U) be the connectivity
of V and U respectively. If there exists a countable subset E of ∂V such that for any
a ∈ ∂V \E, the cluster set of f at a, C(f, V, a) is a subset of ∂U . Then we have

max {c(V )− 2, 0} ≥
∫

V

[
f#(z)

]2
dσ

Area(U)
(c(U)− 2).

We first consider the case that f has no infinitely connected Fatou components. Note
that for a transcendental meromorphic function f which is not of the form α + (z −
α)−keg(z), if its Julia set J(f) is disconnected, then J(f) consists of uncountably many
components (this can be proved by using the similar arguments in the proof of Theorem
3 in [37] ). Now as the connectivity of each Fatou component of f is finite, the total
number of the boundary components of all Fatou components is countable because there
are only countably many Fatou components. This implies that J(f) has uncountably
many buried components and we are done.

Now we may assume that f has at least one infinitely connected Fatou component
U . Then it follows from a result of Domı́nguez ([21], Theorem A), that the singleton
components of J(f) are dense in J(f).

Let a be any point in J(f) and r be any positive number. Consider the open disc D(a, r)
with center a and radius r. We would like to show that D(a, r) contains at least one buried
component of J(f). Assume to the contrary that D(a, r) contains no buried components.
Since the singleton components of J(f) are dense in J(f), we can find some singleton
component {b0} of J(f) such that b0 ∈ D(a, r). The assumption that D(a, r) contains no
buried components implies that {b0} is a boundary component of some Fatou component
U0. Let γ be a closed Jordan curve in U0 such that b0 is contained in int(γ), the interior
of γ. It follows that γ is not homotopic to a point in U0. Note that as b0 ∈ J(f), there
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exists a sequence {βn} ⊂ int(γ) of singleton components of J(f) such that βn → b0. This
implies that U0 is infinitely connected.

In what follows, we show that int(γ), the interior of γ contains another infinitely
connected Fatou component. As U0 cannot be completely invariant, there is a component
V of f−1(U0) such that V and U0 are disjoint. By Theorem G, V is infinitely connected.
As we shall see later, there is no harm to assume that U0∪V does not contain any Picard
exceptional values of f . If f is entire, then both infinitely connected domains U0 and V

must be bounded. In this case, by the expanding properties of Julia sets, there exists
some m ∈ N such that fm(int(γ)) ⊃ U0∪V . Now if f has poles, since f is not of the form
α+(z−α)−keg(z), J(f) is the closure of the backward orbit O−(∞). As int(γ)∩J(f) 6= ∅,
there exists some c ∈ int(γ) and m ∈ N such that fm−1(c) = ∞. Hence fm has an
essential singularity at c and by Picard Theorem, we also have fm(int(γ)) ⊃ U0 ∪ V .
It follows that there exist U1, U

′
1 ⊂ F (f) such that both U1 ∩ int(γ) and U

′
1 ∩ int(γ)

are non-empty and fm(U1) = U0, fm(U
′
1) = V . Obviously, U1 and U

′
1 are disjoint and

therefore one of them (say U1) is not equal to U0. This implies that U1 must lie inside
int(γ). By Theorem G, U1 is infinitely connected. Hence, int(γ) contains an infinitely
connected Fatou component U1 which is different from U0.

Since U1 is infinitely connected, just as before we can find some singleton component
{b1} of J(f) and some non-contractible closed Jordan curve γ1 such that b1 ∈ int(γ1) and
the diameter diam(γ1) < r

2 . Now replace U by U1 and repeat the previous argument,
then int(γ1) will again contain an infinitely connected Fatou component U2 which is
different from U1 and with diameter less than r

2 .

In this way, we can obtain a sequence of Fatou components {Un}, a sequence of single-
ton components {bn} of J(f) and a sequence of non-contractible closed curves γn such
that bn+1 ∈ Un+1 ⊂ int(γn) and diam(Un) → 0 as n → ∞. Therefore, ∩∞n=1Un = {b}.
Note that b is inside J(f) as b is the limit point of bn ∈ J(f). By our construction,
γn ⊂ F (f) and diam(γn) → 0 as n → ∞. As b ∈ int(γn), {b} is a singleton compo-
nent of J(f). Now if {b} is a boundary component of some Fatou component W , then
γn ∩W 6= ∅ for all sufficiently large n which is impossible as each γn belongs to different
Fatou components Un. Therefore, {b} is a singleton buried component of J(f). As a and
r are arbitrary, the singleton buried components are dense in J(f).

6. Buried Points of Newton’s Maps

In this and the next section we give more examples of the Julia set with buried points
but without any buried components. The example considered in this section comes from
the Newton’s map of a polynomial. The reason that these rational functions do not have
any buried components is that their Julia sets are connected. The following result of
Shishikura gives a sufficient condition for a Julia set to be connected.

THEOREM H ([36]). Let f be a rational function of degree at least two. J(f) is
connected if f has only one repelling fixed point.

Newton’s method involves iterations and is used for finding roots of polynomials. Given
a polynomial p, its Newton’s map Np is defined by

Np(z) = z − p(z)
p′(z)

.

Note that the zeros of a polynomial p are the fixed points of Np.
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Concerning the structure of the Julia set of Np, we have the following

THEOREM I. J(Np) is connected for any polynomial p of degree at least two.

This result follows from the above result of Shishikura as it can be shown that Np

has only one repelling fixed point which is ∞. As J(Np) is connected, there is no buried
components in J(Np). However, J(Np) may have buried points. For example, we have
the following result.

Theorem 6·1. If p(z) = zn− 1 and n ≥ 3, then Jr(Np) 6= φ and J(Np) has no buried
components.

Proof. For k = 1, ..., n, let ωk = e
2π(k−1)

n i. Then ω1, ω2, ..., ωn are the n distinct zeros
of p. Note that Np(z) = (n−1)zn+1

nzn−1 and N ′
p(z) = (n−1)

n

[
zn−1

zn

]
. It follows that each ωk is a

critical fixed point of Np and therefore belongs to one of the immediate superattracting
basins of Np. Hence Np has at least n immediate superattracting basins. It can be easily
checked that {ω1, ..., ωn, 0} is the set of all critical points of Np and ∞ is the repelling
fixed point of Np as N ′

p(∞) = n
n−1 . Therefore ∞ ∈ J(Np). As Np(0) = ∞, we also have

0 ∈ J(Np). Hence Np has only n critical points in F (Np) and each of them lies in the
corresponding immediate superattracting basin of Np. As the period of the n immediate
superattracting basins is one, there exist at least n different periodic cycles. As 0 is the
unique critical point of Np lying in J(Np) and its forward orbit is finite, Np must have
no Herman rings or Siegel disks. If there is another periodic cycle, then there is a critical
point in the cycle. However, all critical points are already in the immediate superat-
tracting basins. Therefore, Np has exactly n periodic Fatou cycles. As each immediate
superattracting basin correspond to a periodic cycle, Np has exactly n periodic Fatou
components which are the n immediate superattracting basins.

Now we show that F (Np) does not have any completely invariant components. As
J(Np) is connected, all Fatou components of Np are simply connected. By Riemann-
Hurwitz formula, it is easy to show that Np is a two fold map on each immediate su-
perattracting basin. As deg (Np) = n ≥ 3, for each α ∈ C∞, it has n preimages under
Np counting with multiplicities. However, as Np is a two fold map on each immediate
superattracting basin and deg (Np) ≥ 3, for each point α in a immediate superattract-
ing basin, there is at least one preimage of α under Np which is not lying in the basin.
Therefore, F (Np) does not have any completely invariant components.

Since the forward orbit of the critical points in F (Np) accumulate at the superattract-
ing basins and the forward orbit of the critical point in J(Np) is eventually periodic,
Np is subhyperbolic. As mentioned in Section 2, the Julia set of a subhyperbolic rational
function is locally connected. Thus, J(Np) is locally connected. Now, assume Jr(Np) = ∅.
Then by Lemma F, there is a periodic Fatou component D such that ∂D = J(Np). By
Lemma 3.4, D is completely invariant. However, by the above analysis, Np has no com-
pletely invariant Fatou components, and therefore we must have Jr(Np) 6= ∅. As J(Np)
is connected, J(Np) has no buried components.

In view of Theorem 6.1, we may consider the following

Problem: Let p be a polynomial with deg (p) ≥ 3. Find some sufficient conditions on
the polynomial p so that Jr(Np) is nonempty.
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7. Buried Points of meromorphic functions with Sierpinki curve Julia sets

In this section, we consider some examples of meromorphic functions which have Sier-
pinki curve Julia sets and show that these functions have buried points. The usual defi-
nition of Sierpinski curve requires that the set is planar. However, since the Julia set of
a meromorphic function is a subset in C∞, we have to modify the definition of Sierpinski
curve. Following [30] and [25], we say that a closed subset in C∞ is a Sierpinski curve
if it is compact, connected, locally connected, nowhere dense, and has the property that
any two complementary domains are bounded by pairwise disjoint simple closed curves.
One example of Sierpinski curve is the famous Sierpinski carpet and any Sierpinski curve
is actually homeomorphic to it.

Examples of rational, entire and meromorphic functions with Sierpinki curve Julia sets
can be found in [16],[30] and [25] respectively. In [16], it is shown that there exists some λ

such that the Julia set of the function fλ(z) = z2 + λ
z2 is a Sierpinski curve. Similar result

is also obtained by Morosawa [30] for functions of the form ga(z) = aea{z − (1− a)}ez,
where a > 1. Very recently, Hawkins and Look [25] show that there exist Weiertrass
elliptic ℘ functions which have Sierpinki curve Julia sets. Note that all these functions
belong to the class S. It follows from the following result as well as the fact that class S
functions have no wandering domains that all these functions have buried points.

Proposition 7·1. Let f be a function in the class K. If f has no wandering domains
and its Julia set is a Sierpinski curve, then Jr(f) 6= φ.

Proof. Assume to the contrary that Jr(f) = φ, then by Lemma F, there is a periodic
Fatou component D such that ∂D = J(f). Since J(f) is a Sierpinski curve (which
is homeomorphic to the standard Sierpinski carpet), F (f) = C∞\J(f) must contain
infinitely many components. Let E 6= D be one of these components. By the definition of
Sierpinski curve, D and E are bounded by pairwise disjoint simple closed curves which
implies that ∂D ∩ ∂E = φ. This is a contradiction as ∂E ⊂ J(f) = ∂D.
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[6] I. N. Baker, P. Doḿınguez and M. E. Herring. Functions meromorphic outside a small

set: completely invariant domains. Complex Variables Theory Appl. 49 (2004), 95–100.
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