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Abstract. In this article, the logarithmic convexity of the one-parameter

mean values J(r) and the monotonicity of the product J(r)J(−r) with r ∈ R
are presented. Some more general results are established. Three open problems

are posed.
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1. Introduction

Define a function g(r;x, y) for x 6= y by

g(t) , g(t;x, y) =





yt − xt

t
, t 6= 0;

ln y − lnx, t = 0.
(1)

The following integral form of g is presented and applied in [11, 13, 16, 17]:

g(t) =
∫ y

x

ut−1 du, t ∈ R, (2)

g(n)(t) =
∫ y

x

(lnu)nut−1 du, t ∈ R. (3)

Straightforward computation results in
(

g′(t)
g(t)

)′
=

g′′(t)g(t)− [g′(t)]2

g2(t)
, (4)
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(
g′(t)
g(t)

)′′
=

g2(t)g′′′(t)− 3g(t)g′(t)g′′(t) + 2[g′(t)]3

g3(t)
. (5)

In [11], Corallary 3 states that, for y > x > 0, if t > 0, then

g2(t)g′′′(t)− 3g(t)g′(t)g′′(t) + 2[g′(t)]3 < 0; (6)

if t < 0, inequality (6) reverses.
The function g(t;x, y) and its integral expressions (2) and (3) are very important

in the proofs of the logarithmic convexity [11, 13] and Schur-convexity [12, 13, 15]
of the extended mean values E(r, s;x, y), which is a generalization of the one-
parameter mean values J(r) with E(r, r + 1;x, y) = J(r;x, y). The monotonicity
and comparison of E(r, s;x, y) were studied in [6, 7, 8, 13]. The concepts of mean
values are generalized in [9, 10, 13, 19]. For more information about the extended
mean values E(r, s;x, y), please refer to the expository article [13] and the references
therein.

The one-parameter mean values J(r;x, y) for x 6= y are defined in [1, 20] and
introduced in [5, p. 44] by

J(r) , J(r;x, y) =





r(xr+1 − yr+1)
(r + 1)(xr − yr)

, r 6= 0,−1;

x− y

lnx− ln y
, r = 0;

xy(lnx− ln y)
x− y

, r = −1.

(7)

In [4, p. 49], the following results in [2, 3] by Alzer are mentioned:
(1) When r 6= 0, we have

G(x, y) <
√

J(r;x, y)J(−r;x, y) < L <
J(r;x, y) + J(−r;x, y)

2
< A(x, y). (8)

(2) For x1 > 0, x2 > 0, y1 > 0 and y2 > 0, if r ≥ 1, then

J(r;x1 + y1, x2 + y2) ≤ J(r;x1, x2) + J(r; y1, y2); (9)

if r ≤ 1, inequality (9) is reversed.
(3) If (x1, x2) and (y1, y2) are similarly or oppositely ordered, then, if r < − 1

2 ,
we have

J(r;x1y1 + x2y2) ≥ J(r;x1, x2)J(r; y1, y2); (10)

if r ≥ − 1
2 , then inequality (10) is reversed.

(4) For x > 0 and y > 0, if r < s < t ≤ − 1
2 , then

[J(s;x, y)]t−r ≤ [J(r;x, y)]t−s[J(t;x, y)]s−r; (11)

if − 1
2 ≤ r < s < t, inequality (11) is reversed.

Moreover, H. Alzer in [3] raised a question about the convexity of r lnJ(r;x, y) and
proved that (r + 1)J(r;x, y) is convex.

In April of 2004, Witkowski looked for the reference to the inequality

J(r;x, y)J(−r;x, y) ≤ [J(0;x, y)]2 = L2(x, y), (12)

which is contained in (8), through S. S. Dragomir by an e-mail which was for-
warded to all members of the Research Group in Mathematical Inequalities and
Applications at http://rgmia.vu.edu.au.

http://rgmia.vu.edu.au�
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The main purpose of this paper is to prove the logarithmic convexity of the
one-parameter mean values J(r;x, y) and the monotonicity of J(−r)J(r) for r ∈ R.

Our main results are as follows.

Theorem 1. For fixed positive numbers x and y with x 6= y, we have
(i) The one-parameter mean values J(r) defined by (7) are strictly increasing

in r ∈ R;
(ii) The one-parameter mean values J(r) defined by (7) are strictly logarithmi-

cally convex in
(−∞,− 1

2

)
and strictly logarithmically concave in

(− 1
2 ,∞)

.

Remark 1. Though the monotonicity property of J(r;x, y) with r ∈ R is well
known, as a by-product of Theorem 1 and for completeness, we give it other two
proofs below. However, we cannot affirm whether they are new proofs or not.

Theorem 2. Let J (r) = J(r)J(−r) with r ∈ R for fixed positive numbers x and
y with x 6= y. Then the function J (r) is strictly increasing in (−∞, 0) and strictly
decreasing in (0,∞).

Remark 2. Inequality (12) is clearly a direct consequence of Theorem 2.

2. Proofs of theorems

Proof of Theorem 1. (i) Formula (6) implies that, for y > x > 0,

(
g′(t)
g(t)

)′′




> 0, t < 0,

= 0, t = 0,

< 0, t > 0.

(13)

From this, we obtain that the function
(

g′(t)
g(t)

)′
is strictly increasing in (−∞, 0) and

strictly decreasing in (0,∞).
In [14, 18], by using the Cauchy-Schwartz integral inequality or the Tchebycheff

integral inequality, it is obtained that
(

g′(t)
g(t)

)′
> 0 (14)

for t ∈ R. Then the function g′(t)
g(t) is strictly increasing in (−∞,∞).

The one-parameter mean values J(r) can be rewritten in terms of g as

J(r) =
g(r + 1)

g(r)
(15)

with r ∈ R for y > x > 0. Taking logarithm of J(r) yields

lnJ(r) = ln g(r + 1)− ln g(r) =
∫ r+1

r

g′(u)
g(u)

du =
∫ 1

0

g′(u + r)
g(u + r)

du (16)

and
[
lnJ(r)

]′ =
g′(r + 1)
g(r + 1)

− g′(r)
g(r)

> 0. (17)

Hence the functions lnJ(r) and J(r) are strictly increasing in r ∈ (−∞,∞). This
proves (i).
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(ii) If r < −1, then r < r + 1 < 0 and

[
lnJ(r)

]′′ =
(

g′(r + 1)
g(r + 1)

)′
−

(
g′(r)
g(r)

)′
> 0 (18)

which follows from the strictly increasing property of
(

g′(r)
g(r)

)′
in (−∞, 0).

If r > 0, then from the strictly decreasing property of
(

g′(r)
g(r)

)′
in (0,∞), we have

[
lnJ(r)

]′′
< 0.

If −1 < r < 0, then r < 0 < r + 1, and we have

[
lnJ(r)

]′′ =
(

g′(r + 1)
g(r + 1)

)′
−

(
g′(r)
g(r)

)′

=
g′′(r + 1)g(r + 1)− [g′(r + 1)]2

g2(r + 1)
− g′′(r)g(r)− [g′(r)]2

g2(r)

=
g′′(u)g(u)− [g′(u)]2

g2(u)
− g′′(−r)g(−r)− [g′(−r)]2

g2(−r)

=
g′′(u)g(u)− [g′(u)]2

g2(u)
− g′′(v)g(v)− [g′(v)]2

g2(v)

=
(

g′(u)
g(u)

)′
−

(
g′(v)
g(v)

)′
,

(19)

where u = r + 1 > 0 and v = −r > 0. Thus,
[
lnJ(r)

]′′
< 0 for −1 < r < 0 and

r + 1 > −r. This means that
[
lnJ(r)

]′′
< 0 for r ∈ (− 1

2 , 0
)
.

Similarly as above,
[
lnJ(r)

]′′
> 0 for −1 < r < 0 and −r > r + 1. This means

that
[
lnJ(r)

]′′
> 0 for r ∈ (−1,− 1

2

)
. This proves (ii).

The proof of Theorem 1 is completed. ¤

Remark 3. From (16), (13) and by direct calculation, we have

[lnJ(r)]′′ =
∫ 1

0

d2

dr2

(
g′(u + r)
g(u + r)

)
du < 0 (20)

for r ∈ (0,∞). This means that J(r;x, y) is strictly logarithmically concave in
r ∈ (0,∞), whether x > y or x < y, since J(r;x, y) = J(r; y, x) holds.

By straightforward computation, we have

J(r) =
xy

J(−r − 1)
(21)

for r ∈ R. Hence, if r ∈ (−∞,−1), from (6), (20) and (13), it follows that

[lnJ(r)]′′ = −[lnJ(−r − 1)]′′ = −
∫ 1

0

d2

dr2

(
g′(u− r − 1)
g(u− r − 1)

)
du > 0. (22)

This tells us that the one-parameter mean values J(r;x, y) are strictly logarithmi-
cally convex in r ∈ (−∞,−1), whether x > y or x < y, since J(r;x, y) = J(r; y, x).

Proof of Theorem 2. By standard argument, we obtain

J (r) =
xyJ(r)
J(r − 1)

(23)
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for r ∈ R. Then

lnJ (r) = ln(xy) + lnJ(r)− lnJ(r − 1), (24)

[lnJ (r)]′ =
J ′(r)
J(r)

− J ′(r − 1)
J(r − 1)

. (25)

Theorem 1 states that the function J(r) is strictly logarithmically convex in(−∞,− 1
2

)
. Thus, being the derivative of lnJ(r), J′(r)

J(r) is strictly increasing in(−∞,− 1
2

)
, that is

J ′(r)
J(r)

>
J ′(r − 1)
J(r − 1)

, (26)

or, equivalently, [lnJ (r)]′ > 0 for r ∈ (−∞,− 1
2

)
, thus lnJ (r) and J (r) are strictly

increasing in
(−∞,− 1

2

)
.

From (21), it follows that

lnJ(r) = ln(xy)− lnJ(−r − 1), (27)

J ′(r)
J(r)

=
J ′(−r − 1)
J(−r − 1)

. (28)

Then, from (25), we have

[lnJ (r)]′ =
J ′(−r − 1)
J(−r − 1)

− J ′(r − 1)
J(r − 1)

. (29)

For r ∈ (− 1
2 , 0

)
, we have − 3

2 < r − 1 < −1 and −1 < −r − 1 < − 1
2 . Since J′(r)

J(r)

is strictly increasing in
(−∞,− 1

2

)
, [lnJ (r)]′ > 0 for r ∈ (− 1

2 , 0
)
, therefore lnJ (r)

and J (r) are also strictly increasing in
(− 1

2 , 0
)
.

It is clear that the function J (r) is even in (−∞,∞). So, it is easy to see that
J (r) is strictly decreasing in (0,∞). The proof of Theorem 2 is completed. ¤

3. Some related results

For x 6= y and α > 0, define

Jα(r) , Jα(r;x, y) =





r(xr+α − yr+α)
(r + α)(xr − yr)

, r 6= 0,−α;

xα − yα

α(lnx− ln y)
, r = 0;

αxαyα(lnx− ln y)
xα − yα

, r = −α.

(30)

We call Jα(r;x, y) the generalized one-parameter mean values for two positive num-
bers x and y in the interval (−∞,∞).

It is clear that J1(r;x, y) = J(r;x, y) and Jα(r;x, y) = g(r+α)
g(r) .

By the same arguments as in the proofs of Theorems 1 and 2, we can obtain the
following

Theorem 3. For positive numbers x and y with x 6= y, we have
(1) The generalized one-parameter mean values Jα(r) defined by (30) are strictly

increasing in r ∈ R;
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(2) The generalized one-parameter mean values Jα(r) defined by (30) are strictly
logarithmically convex in

(−∞,−α
2

)
and strictly logarithmically concave in(−α

2 ,∞)
.

(3) Let Jα(r) = Jα(r)Jα(−r) with r ∈ R for positive numbers x and y with
x 6= y. Then the function Jα(r) is strictly increasing in (−∞, 0) and strictly
decreasing in (0,∞).

Proof. These follow from combining the identity

Jα(r;x, y) = J
( r

α
;xα, yα

)
(31)

with Theorems 1 and 2. ¤

Theorem 4. The function (r + α)Jα(r) is strictly increasing and strictly convex
in (−∞,∞), and is strictly logarithmically concave for r > −α

2 .

Proof. Direct computation gives

(r + α)Jα(r;x, y) = α
( r

α
+ 1

)
J
( r

α
;xα, yα

)
, (32)

{
ln[(r + α)Jα(r)]

}′′ = − 1
(r + α)2

+ [lnJα(r)]′′. (33)

From the result by Alzer in [3] that the function (r+1)J(r;x, y) is strictly convex,
it is not difficult to obtain that the function (r+α)Jα(r;x, y) is also strictly convex
in (−∞,∞) by using (32).

By standard argument, we have

lim
r→−∞

[(r + α)J ′α(r)] = lim
r→−∞

α(zr+α − 1)
(r + α)(zr − 1)

− lim
r→−∞

rzr(zα − 1) ln z

(zr − 1)2
= 0 (34)

and
lim

r→−∞
Jα(r) = min{xα, yα}, (35)

where z = y
x 6= 1. This leads to

lim
r→−∞

[(r+α)Jα(r)]′ = lim
r→−∞

Jα(r)+ lim
r→−∞

[(r+α)J ′α(r)] = min{xα, yα} > 0. (36)

The convexity of (r + α)Jα(r) means that [(r + α)Jα(r)]′ is strictly increasing,
in view of (36), [(r + α)Jα(r)]′ > 0, and so (r + α)Jα(r) is strictly increasing in
(−∞,∞).

Since Jα(r) is strictly logarithmically concave in
(−α

2 ,∞)
, we have [ln Jα(r)]′′ <

0, then
{
ln[(r +α)Jα(r)]

}′′
< 0 by (33). This means that the function (r +α)Jα(r)

is strictly logarithmically concave in
(−α

2 ,∞)
. ¤

Corollary 1. If r < −α, then

0 <
J ′α(r)
Jα(r)

=
J ′α(−r − α)
Jα(−r − α)

< − 1
r + α

, (37)

0 <
J ′′α(r)
J ′α(r)

< − 2
r + α

. (38)

Proof. From the monotonicity and convexity of (r + α)Jα(r), we have

[(r + α)Jα(r)]′ = Jα(r) + (r + α)J ′α(r) > 0, (39)

[(r + α)Jα(r)]′′ = 2J ′α(r) + (r + α)J ′′α(r) > 0. (40)
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Inequality (37) follows from the combination of (39) and

Jα(r) =
xy

Jα(−r − α)
. (41)

Inequality (38) is a direct consequence of (40). ¤

Theorem 5. The function r lnJα(r) is strictly convex in (−α
2 , 0).

Proof. Direct calculation yields

[r lnJα(r)]′′ = 2[lnJα(r)]′ + r[lnJα(r)]′′. (42)

Since Jα(r) is strictly increasing in (−∞,∞) and strictly logarithmically concave in(−α
2 ,∞)

, it follows that [lnJα(r)]′ > 0 and [lnJα(r)]′′ < 0 in
(−α

2 ,∞)
. Therefore,

[r lnJα(r)]′′ > 0 and r lnJα(r) is strictly convex in
(−α

2 , 0
)
. ¤

Remark 4. If α = 1 and β = 0, then r lnJ(r) is strictly convex in
(− 1

2 , 0
)
. This

answers partially the question raised by Alzer in [3].

4. Open problems

Finally, we pose the following

Open Problem 1. The generalized one-parameter mean values Jα(r) defined by
(30) are strictly concave in

(−α
2 ,∞)

.

Open Problem 2. The function Jα(t) = Jα(t)Jα(−t) is strictly logarithmically
convex for t 6∈ [−α

2 , α
2 ] and strictly concave and strictly logarithmically concave for

t ∈ (−α
2 , α

2 ).

Open Problem 3. The function Jα(r)+Jα(−r) is strictly decreasing in (−∞, 0),
strictly increasing in (0,∞), strictly convex in (−rα, rα), and strictly concave for
r 6∈ [−rα, rα], where rα > 0 is a constant dependent on α.

Remark 5. The following conclusions are well known.
(1) Although a logarithmically convex function is also convex, a convex function

may be not logarithmically convex.
(2) A logarithmically concave function may be not concave.
(3) A concave function may be not logarithmically concave.
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