TEST ELEMENTS, RETRACTS AND AUTOMORPHIC ORBITS

SHENG-JUN GONG AND JIE-TAI YU

Abstract. Let A_2 be a free associative or polynomial algebra of rank two over a field K of chacateristic zero. Based on the degree estimate of Makar-Limanov and J.-T.Yu, we prove: 1) An element $p \in A_2$ is a test element if p does not belong to any proper retract of A_2 ; 2) Every endomorphism preserving the automorphic orbit of a nonconstant element of A_2 is an automorphism.

1. Introduction and main results

In the sequel, K always denotes a field of characteristic zero, unless stated otherwise. Automorphisms (endomorphisms) always mean K-automorphisms (K-endomorphisms).

Let A_n be a free associative or polynomial algebra of rank n over K. An element $p \in A_n$ is called a *test element* if every endomorphism of A_n fixing p is an automorphism. A subalgebra R of A_n is called a *retract* if there is an idempotent endomomorphism $\pi(\pi^2 = \pi)$ of A_n (called a *retraction* or a *projection*) such that $\pi(A_n) = R$. Test elements and retracts of the other algebras and groups are defined in a similar way. Test elements and retracts of algebras and groups have recently been studied in [3, 5, 6, 7, 12, 16, 20, 21, 22, 23, 24, 29, 30, 32, 33].

A test element does not belong to any proper retract for any algebra or group as the corresponding nonjective idempotent endomorphism is not an automorphism. The converse is proved by Turner [34] for free groups, by Mikhalev and Zolotykh [24] and by Mikhalev and J. -T. Yu [21, 22] for free Lie algebras and free Lie superalgebras respectively,

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 16S10, 16W20; Secondary 13B10, 13F20.

Key words and phrases. Test element, retract, automorphic orbit, free associative algebra, degree estimate, polynomial algebra, coordinate.

Sheng-Jun Gong was partially supported by a University of Hong Kong Post-graduate Studentship.

Jie-Tai Yu was partially supported by an RGC-CERG Grant.

and by Mikhalev, Umirbaev and J.-T. Yu [19] for free nonassociative algebras. See also Mikhalev, Shpilrain and J.-T. Yu [16].

In view of the above, we may raise the following

Conjecture 1. If an element $p \in A_n$ does not belong to any proper retract of A_n , then p is a test element.

Recently, V.Shpilrain and J. -T. Yu [33] proved Conjecture 1 for $\mathbb{C}[x,y]$. A key lemma in their proof is the degree estimate of Shestakov and Umirbaev [26], which plays a crucial role in the recent celebrated solution of the Nagata conjecture [27, 28] and the Strong Nagata conjecture [35].

More recently, Makar-Limanov and J. -T. Yu [18] developed a new combinatorial method based on the Lemma on radicals and obtained a sharp degree estimate for the 'free' case, namely, for a free associative algebra or a polynomial algebra over a field of characteristic zero. It has found applications for automorphisms and coordinates of polynomial and free associative algebras. See S.-J. Gong and J.-T. Yu [9].

Now we consider another related problem. In an algebra or a group, certainly an automorphism preserves the automorphic orbit of an element p. The converse is proved by Shpilrain [31] and Ivanov [10] for free groups of rank two, by D. Lee [14] for free groups of any rank, by Mikhalev and J.-T. Yu [22] for free Lie algebras and by Mikhalev, Umirbaev and J.-T. Yu [19] for free non-associative algebras, by van den Essen and Shpilrain [7] for A_2 when p is a coordinate, by Jelonek [11] for polynomial algebras over $\mathbb C$ when p is a coordinate. For the related linear coordinate preserving problem, see, for instance, S.-J. Gong and J.-T. Yu [8]. See also the book [16].

In view of the above, we may raise the following

Conjecture 2. Let $p \in A_n - K$. Then any endomorphism of A_n preserving the automorphic orbit of p must be an automorphism.

Conjecture 2 has recently been settled affirmatively by J.-T. Yu [36] based on Shpilrain and J.-T.Yu's characterization of test elements of $\mathbb{C}[x,y]$ in [33] and the main result in Drensky and J.-T.Yu [6].

In this paper, based on the recent degree estimate of Makar-Limanov and J.-T.Yu [18], the main ideals and techniques in Drensky and J.-T.Yu [6], Shpilrain and J.-T. Yu [32, 33], and J.-T.Yu [36], we prove both Conjecture 1 and Conjecture 2 for n = 2. Our main results are

Theorem 1.1. If an element $p \in A_2$ does not belong to any proper retract of A_2 , then p is a test element of A_2 .

Theorem 1.1 was proved by Shpilrain and J.-T.Yu [33] for $A_2 = \mathbb{C}[x,y]$.

Theorem 1.2. If an endomorphism ϕ of A_2 preserves the automorphic orbit of a nonconstant element $p \in A_2$, then ϕ is an automorphism of A_2 .

Theorem 1.2 was proved by J.-T.Yu [36] for $A_2 = \mathbb{C}[x, y]$.

Crucial to the proofs of the above two theorems are the following two results, which have their own interests.

Theorem 1.3. Let $p \in A_2$ has outer rank two. Then any injective endomorphism ϕ of A_2 is an automorphism if $\phi(p) = p$.

Theorem 1.3 may be viewed as an analogue of a result in Turner [34] for free groups. It was proved for $A_2 = \mathbb{C}[x, y]$ in J.-T.Yu [36] based on a result in Shpilrain and J.-T.Yu [33].

Theorem 1.4. An element $p(x,y) \in A_2$ belongs to a proper retract of A_2 if p(x,y) is fixed by a noninjective endomorphism ϕ of A_2 . Moreover, in this case there exists a positive integer m such that ϕ^m is a retraction of A_2 .

Theorem 1.4 was proved for $A_2 = \mathbb{C}[x, y]$ in Drensky and J.-T.Yu [6].

2. Proofs

The following two lemmas are Theorem 1.1 and Proposition 1.2 in Makar-Limanov and J.-T.Yu [18].

Lemma 2.1. Let $A_n = K\langle x_1, \dots, x_n \rangle$ be a free associative algebra over a field K of characteristic zero, $f, g \in A$ be algebraically independent, f^+ and g^+ are algebraically independent, or f^+ and g^+ are algebraically dependent and neither $\deg(f) \mid \deg(g)$ nor $\deg(g) \mid \deg(f)$, $p \in K\langle x, y \rangle$. Then

$$\deg(p(f,g)) \ge \frac{\deg[f,g]}{\deg(fg)} w_{\deg(f),\deg(g)}(p).$$

Here deg is the total degree, $w_{\deg(f),\deg(g)}(p)$ is the weighted degree of p when the weight of the first variable is $\deg(f)$ and the weight of the second variable is $\deg(g)$, f^+ and g^+ are the highest homogeneous components of f and g respectively, and [f,g]=fg-gf is the commutator of f and g.

Lemma 2.2. Let $A_n = K[x_1, \dots, x_n]$ be a polynomial algebra over a field K of characteristic zero, $f, g \in A$ be algebraically independent, $p \in K[x, y]$. Then

$$\deg(p(f,g)) \ge w_{\deg(f),\deg(g)}(p) \left[1 - \frac{(\deg(f),\deg(g))(\deg(fg) - \deg(J(f,g)) - 2)}{\deg(f)\deg(g)}\right].$$

Here deg is the total degree, $w_{\deg(f),\deg(g)}(p)$ is the weighted degree of p when the weight of the first variable is $\deg(f)$ and the weight of the second variable is $\deg(g)$, $(\deg(f), \deg(g))$ is the greatest common divisor of $\deg(f)$ and $\deg(g)$, $\deg(J(f,g))$ is the largest degree of non-zero Jacobian determinants of f and g with respect to two of x_1, \dots, x_n .

The following characterization of a proper retract of A_2 was obtained by Shpilrain and J.-T.Yu [32] based on a result of Costa [3].

Lemma 2.3. Let R be a proper retract of A_2 . Then R = K[r] for some $r \in A_2$. Moreover, there exists an automorphism α of A_2 such that $\alpha(r) = x + w(x, y)$, where w(x, y) belongs to the ideal of A_2 generated by y.

Lemma 2.4. Let $p \in A_2$ with outer rank 2 and $f, g \in A_n$. Then $w_{\deg(f),\deg(g)}(p) \ge \deg(f) + \deg(g)$.

Proof. 1) If p contains a monomial containing both x and y, where $i \neq 0, j \neq 0, w_{\deg(f),\deg(g)}(p) \geq i(\deg(f)) + j(\deg(g)) \geq \deg(f) + \deg(g)$.

2) Otherwise p must contain monomials x^i and y^j where $i \geq 2, j \geq 2$. Then $w_{\deg(f),\deg(g)}(p) \geq 2 \max\{\deg(f),\deg(g)\} \geq \deg(f) + \deg(g)$. \square

Lemma 2.5. Let $A_n = K\langle x_1, \dots, x_n \rangle$ be a free associative algebra over an arbitrary field K of zero characteristic, $f, g \in A$ be algebraically independent, $p \in K\langle x, y \rangle$ has outer rank two. Then

$$\deg(p(f,g)) \ge \deg[f,g].$$

Proof. Let 1) If f^+ and g^+ are algebraically independent; or f^+ , g^+ are algebraically dependent, but $\deg(f) \nmid \deg(g)$ and $\deg(g) \nmid \deg(f)$. Then by Lemma 2.1 and Lemma 2.4, $\deg(p(f,g)) \geq \deg[f,g]$.

2) Otherwise there exists an automorphism α , which is the composition of a sequence of elementary automorphisms, such that $\alpha(f) = \bar{f}$, $\alpha(g) = \bar{g}$, $\bar{p} = \alpha^{-1}(p)$ satisfying the condition in 1). Then $\deg(p(f,g)) = \deg(\bar{p}(\bar{f},\bar{g})) \geq \deg[\bar{f},\bar{g}] = \deg[f,g]$.

Lemma 2.6. Let $A_n = K[x_1, \dots, x_n]$ be a polynomial algebra over an arbitrary field K of zero characteristic, $f, g \in A_n$ be algebraically independent, $p \in K[x, y]$ has outer rank two. Then

$$\deg(p(f,g)) \ge \deg(J(f,g)) + 2.$$

Proof. We may assume $\deg(f) = m$, $\deg(g) = n$. As p has outer rank 2, by Lemma 2.4 then p contains a monomial with both x and y, or contains monomials x^i and y^j where $i \geq 2, j \geq 2$.

- 1) Let f^+ and g^+ be algebraically independent.
- a) If there exists a monomial in p containing both x and y, then $\deg(p(f,g)) \ge \deg(f) + \deg(g) \ge \deg(J(f,g)) + 2$;
- b) Otherwise p must have a monomial of x^i where $i \geq 2$, and another monomial y^j where $j \geq 2$, then $\deg(p(f,g)) \geq 2 \max\{m,n\} \geq \deg(f) + \deg(g) \geq \deg(J(f,g)) + 2$;
 - 2) Let f^+ , g^+ be algebraically dependent, and $m \nmid n$ and $n \nmid m$.
- c) If $w_{\deg(f),\deg(g)}(p) < \operatorname{lcm}(m,n)$, then in p(f,g), f^+ and g^+ cannot cancel out, hence similar to the case 1 a), $\deg(p(f,g)) \ge \deg(f) + \deg(g) \ge \deg(J(f,g)) + 2$.
- d) Otherwise $w_{\deg(f),\deg(g)}(p) \ge \text{lcm}(m,n) = mn/(m,n)$. We also have $mn = (m,n)\text{lcm}(m,n) \ge (m,n)(m+n)$. Hence $\deg(p(f,g)) \ge \deg(J(f,g)) + 2$ by Lemma 2.2.
- 3) Let f^+ , g^+ be algebraically dependent, but $m \mid n$ or $n \mid m$. Then by same process in the Proof 2) of Lemma 2.4, we may reduce to the above case 1) or case 2).

Lemma 2.7. Let $\phi = (f, g)$ be an injective endomorphism of $K\langle x, y \rangle$ but not an automorphism. Then $\deg([\phi^k(x), \phi^k(y)]) \geq k + 2$ for $k \geq 0$.

Proof. $\deg[\phi^0(x), \phi^0(y)] = \deg[x, y] = 0 + 2$. Since ϕ is not an automorphism, by the well-known result of Dicks (see, Dicks [4], or Cohn [2]), $\deg[\phi(x), \phi(y)] = \deg[f(x, y), g(x, y)] \ge \deg[x, y] + 1 = 1 + 2$. Now the proof is concluded by

$$\deg[\phi^k(x),\phi^k(y)] =$$

$$\deg[f(\phi^{k-1}(x),\phi^{k-1}(y)),g(\phi^{k-1}(x),\phi^{k-1}(y))] \geq \deg[\phi^{k-1}(x),\phi^{k-1}(y)] + 1$$

(Note the above inequality follows by the aformentioned result of Dicks) and induction.

Lemma 2.8. Let $\phi = (f, g)$ be an injective endomorphism of K[x, y] but not an automorphism and there exists an element $p \in K[x, y]$ fixed by ϕ . Then $\deg(J(\phi^k(x), \phi^k(y))) \geq k$ for $k \geq 0$.

Proof. $\deg(J(\phi^0(x),\phi^0(y))) = \deg(J(x,y)) = 0$. As ϕ fixes p, ϕ is not an automorphism, by a result of Kraft [13] (see also Shpilrain and J.-T.Yu [32]), $\deg(J(\phi(x),\phi(y))) = \deg(J(f,g)) \geq 1$. By the chain rule for the Jacobian,

$$\begin{split} &\deg(J(\phi^k(x),\phi^k(y)))\\ &=\deg(J(f,g)(\phi^{k-1}(x),\phi^{k-1}(y))(J(\phi^{k-1}(x),\phi^{k-1}(y))))\\ &\geq \deg(J(\phi^{k-1}(x),\phi^{k-1}(y)))+1. \end{split}$$

The proof is concluded by induction.

Lemma 2.9. Let $\phi = (f, g)$ be an injective endomorphism of A_2 but not an automorphism. Then any element $p \in A_2$ with outer rank 2 cannot be fixed by ϕ .

Proof. If $p \in A_2$ with outer rank two fixed by ϕ , then $p(f,g) = p(\phi^k(x), \phi^k(y)) \ge k + 2$ for all $k \ge 0$. by Lemma 2.5 and Lemma 2.7 for noncommutative case; and by Lemma 2.6 and Lemma 2.8 for polynomial case. The contradiction completes the proof.

Proof of Theorem 1.3.

By Lemma $2.9.\square$

Proof of Theorem 1.4.

The proof presented here is similar to the proof of the main Theorem in Drensky and J.-T. Yu [6].

Let $p \in A_2 - \{0\}$ fixed by a noninjective endomorphism of A_2 . Then $\phi(x)$ and $\phi(y)$ are algebraically dependent over K. Let us denote the image of $\phi(A_2)$ by $S = K[\phi(x), \phi(y)]$ (since $\phi(x)$ and $\phi(y)$ are algebraically dependent, $\phi(x)$ and $\phi(y)$ are in a polynomial algebra of rank one over K as a consequence of a result of Bergman [1] for noncommutative case and as a consequence of a result of Shestakov and Umirbaev [26] for polynomial case) and by Q(S) the field of fractions of S. Therefore the transcendence degree of Q(S) over K is 1. Let

 $0 \neq q(x,y) \in (\text{Ker}(\phi)) \cap S$. Since p(x,y) also belongs to S, the polynomials p and q are algebraically dependent and

$$h(p,q) = a_0(q)p^n + a_1(q)p^{n-1} + \ldots + a_{n-1}(q)p + a_n(q) = 0$$

for an irreducible polynomial $h(u, v) \in K[u, v]$ and $a_i(t) \in K[t]$, $i = 0, 1, \ldots, n$. Hence $\phi(h(p, q)) = h(\phi(p), \phi(q)) = h(p, 0)$,

$$a_0(0)p^n + a_1(0)p^{n-1} + \ldots + a_{n-1}(0)p + a_n(0) = 0.$$

Therefore $a_0(0) = a_1(0) = \ldots = a_n(0) = 0$. Now the polynomials $a_i(t)$ have no constant terms and h(u,v) is divisible by v which contradicts to the irreducibility of h(u, v). Therefore $(\text{Ker}(\phi)) \cap S = 0$ and ϕ acts injectively on its image S. Hence we may extend the action of ϕ on Q(S) (because $a_1/b_1 = a_2/b_2$ in Q(S) is equivalent to $a_1b_2 = a_2b_1$ and hence $\phi(a_1/b_1) = \phi(a_1)/\phi(b_1) = \phi(a_2)/\phi(b_2) = \phi(a_2/b_2)$. By Lüroth's theorem (See, for instance, Schinzel [25]), Q(S) = K(w) for some $w \in Q(S)$. The automorphism ϕ fixes p(x,y) and its extension $\bar{\phi}$ on Q(S) fixes K(p). Since w is algebraic over K(p), Q(S) is a finite dimensional vector space over K(p) and $\bar{\phi}$ is a K(p)-linear operator of Q(S) with trivial kernel. Hence $\bar{\phi}$ is invertible on Q(S) and we may consider ϕ as an automorphism of the finite field extension Q(S)over K(p) which fixes K(p). By Galois theory $(\bar{\phi} \text{ interchanges the }$ roots of the minimal polynomial of w over K(p) and there are finite number of possibilities for $\bar{\phi}(w)$, $\bar{\phi}$ has finite order. Let $\bar{\phi}^m = 1$. Then $\phi^{m+1}(r) = \phi^m(\phi(r)) = \overline{\phi}^m(\phi(r)) = \phi(r)$ for every $r \in A_2$ and $(\phi^m)^2 = \phi^{m+1}\phi^{m-1} = \phi\phi^{m-1} = \phi^m$. Therefore $\pi = \phi^m$ is a retraction (idempotent endomorphism) of A_2 with a nontrivial kernel and $\pi(p) =$ p. Hence p(x,y) is in the image of π which is a proper retract $\pi(A_2)$ of A_2 . \square

Proof of Theorem 1.1.

As $p \in A_2$ does not belong to any proper retract of A_2 , by Theorem 1.4, any endomorphism ϕ of A_2 fixing p must be injective. By Lemma 2.3, obviously p must have outer rank two, otherwise p would belong to a proper retract of A_2 . By Theorem 1.3, ϕ is an automorphism. Hence p is a test element of A_2 . \square

Proof of Theorem 1.2.

The proof presented here is similar to the proof of the main result Theorem 1.4 in J.-T. Yu [36].

We may assume that $\phi(p) = p$. By the definition of the test element, we may assume p is not a test element. By Theorem 1.1, we may assume p belongs to a proper retract K[r] of A_2 . By a result in J.-T.Yu [36], we may assume p has outer rank 2. By Theorem 1.3, we may assume ϕ is non-injective. Suppose that p = f(r), where $f \in K[t] - K$, $\deg(f) = m$. By Theorem 1.4, $\pi = \phi^m$ is a retraction of A_2 to K[r]. As ϕ preserves the automorphic orbit of p, so does $\pi = \phi^m$. Applying Lemma 2.3 (suppose $\alpha(r) = x + w(x, y)$, where $w(x, y) \notin K[y]$ belongs to the ideal of A_2 generated by y, α is some automorphism of A_2 , replace r by $\alpha(r)$, and π by $\alpha\pi\alpha^{-1}$), we have reduced our proof to the following

Lemma 2.10. Let r = x + w(x, y), where w(x, y) belongs to the ideal of A_2 generated by y and $w(x, y) \notin K[y]$, π the retraction of A_2 onto K[r] defined by $\pi(x) = x + w(x, y)$, $\pi(y) = 0$, $f \in K[t] - K$. Then π does not preserve the automorphic orbit of f(r).

Proof. Suppose on the contrary, π preserves the automorphic orbit of f(r). Then for any automorphism α of A_2 , $\pi\alpha(f(r)) = \beta(f(r)) \in K[r]$ for some automorphism β of A_2 . Note that $\pi\beta(f(r)) = \pi^2\beta(f(r)) = \pi\alpha(f(r)) = \beta(f(r))$. By Theorem 1.4, $\pi^{\deg(f)} = \pi$ is the restraction of A_2 onto the retract $K[\beta(r)]$ taking $\beta(r)$ to $\beta(r)$. By hypothesis, π is also a retraction of A_2 onto the retract K[r] taking r to r. This forces that $\beta(r) = cr$ for some $c \in K^*$. We have concluded that for all automorphisms α of A_2 , there exists some $c \in K^*$, such that $\pi\alpha(f(r)) = f(cr)$.

Now we proceed the proof in two cases.

1. Noncommutative case: $A_2 = K\langle x, y \rangle$.

Denote by \mathcal{C} the commutator ideal of $K\langle x,y\rangle$.

- a) If $w(x,y) \in \mathcal{C}$, then take α to be the automorphism of $K\langle x,y\rangle$ defined by $\alpha(x) = y + x^2$, $\alpha(y) = x$. Direct calculation shows that $\pi\alpha(f(r)) = f(r^2 + w(r^2, r)) = f(r^2) \neq f(cr)$, a contradiction.
- b) If $w(x,y) \notin \mathcal{C}$, then $w^a(x,y) = yv(x,y)$ for some $v(x,y) \in K[x,y] \{0\}$. Here $w^a(x,y) \in K[x,y]$ is the image of w(x,y) under the abelianization from $K\langle x,y\rangle$ onto K[x,y]. Let M be a positive integer greater than $\deg(v(x,y))$, it is easy to see that $x^M y$ does not divide v(x,y) in K[x,y]. Let α be the automorphism of $K\langle x,y\rangle$ defined by $\alpha(x) = x$, $\alpha(y) = y + x^M$. Then $\pi\alpha(f(r)) = f(r + w(r, r^M)) =$

 $f(r+r^Mv(r,r^M))$. As x^M-y does not divide $v(x,y),\ v(r,r^M)\neq 0$. Therefore $\pi\alpha(f(r))=f(r+r^Mv(r,r^M))\neq f(cr)$, a contradiction.

2. Polynomial case: $A_2 = K[x, y]$.

In this case we write w(x,y) = yq(x,y) where $q(x,y) \notin K[y]$. Let M be a positive integer greater than $\deg(q(x,y))$, it is easy to see that $x^M - y$ does not divide q(x,y) in K[x,y]. Let α be the automorphism of K[x,y] defined by $\alpha(x) = x$, $\alpha(y) = y + x^M$. Then easy calculation shows that $\pi\alpha(f(r)) = f(r + r^M q(r, r^M))$. As $x^M - y$ does not divide $q(x,y), q(r,r^M) \neq 0$. Therefore $\pi\alpha(f(r)) = f(r + r^M q(r,r^M)) \neq f(cr)$. The contradiction completes the proof.

References

- [1] G.Bergman, Centralizers in free associative algebras, Trans. Amer. Math. Soc. 137 (1969), 327-344.
- [2] P. M. Cohn, Free Rings and Their Relations, 2nd Edition, London Mathematical Society Monograph, 19, Academic Press, Inc. London, 1985.
- [3] D. Costa, Retracts of polynomial rings, J. Algebra 44 (1977), 492-502.
- [4] W. Dicks, A commutator test for two elements to generate the free algebra of rank two, Bull. London Math. Soc. 14 (1982), 48-51.
- [5] V. Drensky, J.-T. Yu, Test Polynomials for automorphisms of polynomial and free associative algebras, J. Algebra 207 (1998), 491-510.
- V. Drensky, J. -T. Yu, Retracts and test polynomials of polynomial algebras,
 C. R. Acad. Bulgaria Sci. 55 (7) (2002), 11-14.
- [7] A. van den Essen, V. Shpilrain, Some combinatorial questions about polynomial mappings, J. Pure Appl. Algebra 119 (1997), 47-52.
- [8] S.-J. Gong, J.-T. Yu, The linear coordinate preserving problem, Preprint.
- [9] S.-J. Gong, J.-T. Yu, The preimage of a coordinate, Preprint.
- [10] S. Ivanov, On endomorphisms of free groups that preserve primitivity, Arch. Math. 72 (1999), 92-100.
- [11] Z. Jelonek, A solution of the problem of van den Essen and Shpilrain, J. Pure Appl. Algebra 137 (1999), 49-55.
- [12] Z. Jelonek, Test polynomials, J. Pure Appl. Algebra 147 (2000), 125-132.
- [13] H. Kraft, On a question of Yosef Stein, in 'Automorphisms of Affine Spaces(Curacao, 1994)' Proceedings of the Conference on Invertible Polynomial Maps held in Curacao, July 4-8, 1994. Ed. A. van den Essen, Kluwer Acad. Publ., Dordrecht, 1995, 225-229.
- [14] D. Lee, Endomorphisms of free groups that preserve automorphic orbits, J. Algebra 248 (2002), 230-236.
- [15] A. A. Mikhalev, V. Shpilrain, J. -T. Yu, On endomorphisms of free algebras, Algebra Colloq. 6 (1999), 241-248.
- [16] A. A. Mikhalev, V. Shpilrain, J.-T. Yu, Combinatorial Methods: Free Groups, Polynomials, and Free Algebras, CMS Books in Mathematics, Springer, New York, 2004.
- [17] L. Makar-Limanov, On automorphisms of free algebra with two generators, Funk. Analiz. Prilozh. 4 (1970), no. 3, 107-108. English translation: Funct. Anal. Appl. 4 (1970), 262-264.

- [18] L. Makar-Limanov, J. -T. Yu, Degree estimate for two-generated subalgebras, J. Euro. Math. Soc. (to appear)
- [19] A. A. Mikhalev, U. U. Umirbaev, J.-T. Yu, Automorphic orbits of elements of free non-associative algebras, J. Algebra 243 (2001), 198-223.
- [20] A. A. Mikhalev, U. U. Umirbaev, J.-T. Yu, Generic, almost primitive and test elements of free Lie algebras, Proc. Amer. Math. Soc. 130 (2002), 1303–1310.
- [21] A. A. Mikhalev, J. -T. Yu, Test elements and retracts of free Lie algebras, Commun. Algebra 25 (1997), 3283-3289.
- [22] A. A. Mikhalev, J.-T. Yu, Test elements, retracts and automorphic orbits of free algebras, Intern. J. Algebra Comput. 8 (1998), 295-310.
- [23] A. A. Mikhalev, J. -T. Yu, Primitive, almost primitive, test, and Δ-primitive elements of free algebras with the Nielsen-Schreier property, J. Algebra 228 (2000), 603–623.
- [24] A. A. Mikhalev, A. A. Zolotykh, Test elements for monomorphisms of free Lie algebras and Lie superalgebras, Commun. Algebra 23 (1995), 4995-5001.
- [25] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics, Cambridge University Press, Cambridge, 2000.
- [26] I. P. Shestakov, U. U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004), 181-196.
- [27] I. P. Shestakov, U. U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197-227.
- [28] I. P. Shestakov, U. U. Umirbaev, The Nagata Automorphism is Wild, Proc. Nat. Acad. Sci. 100 (2003), No. 22, 12561-12563.
- [29] V. Shpilrain, Recognizing automorphisms of the free groups, Arch. Math. 62 (1994), 385–392.
- [30] V. Shpilrain, Test elements for endomorphisms of free groups and algebras, Israel. J. Math. **92** (1995), 307-316.
- [31] V. Shpilrain, Generalized primitive elements of a free group, Arch. Math. 71 (1998), 270-278.
- [32] V. Shpilrain, J.-T. Yu, Polynomial retracts and the Jacobian conjecture, Trans. Amer. Math. Soc. **352** (2000), 477-484.
- [33] V. Shpilrain, J.-T. Yu, Test polynomials, retracts, and the Jacobian conjecture, in Affine Algebraic Geometry, Contemp. Math. 369 (2005), 253-259, Amer. Math. Soc. Series, Providence, RI.
- [34] E. Turner, Test words for automorphisms of free groups, Bull. London Math. Soc. 28 (1996), 255-263.
- [35] U. U. Umirbaev, J. -T. Yu, The Strong Nagata Conjecture, Proc. Nat. Acad. Sci. 101 (2004), No. 13, 4352-4355.
- [36] J.-T. Yu, Automorphic orbit problem for polynomial algebras, J. Algebra (to appear)

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFULAM ROAD, HONG KONG SAR, CHINA

E-mail address: sjgong@hkusua.hku.hk

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFULAM ROAD, HONG KONG SAR, CHINA

E-mail address: yujt@hkucc.hku.hk, yujietai@yahoo.com