THE PREIMAGE OF A COORDINATE

SHENG-JUN GONG AND JIE-TAI YU

Abstract. Let K be a field of characteristic zero. Based on the degree estimate of Makar-Limanov and J.-T.Yu, we prove the following new result: The preimage of a coordinate under an injective endomorphism of $K\langle x, y \rangle$ is also a coordinate. As by-products, we give new proofs of the following results: 1) The preimage of a coordinate under an injective endomorphism of K[x, y] is also a coordinate; 2) Any automorphism of K[x, y] or $K\langle x, y \rangle$ is tame.

1. INTRODUCTION AND MAIN RESULTS

In this paper, K always denotes a field of characteristic zero. Automorphisms (endomorphisms) always mean K-automorphisms (K-endomorphisms).

In Shpilrain and J.-T. Yu [12], the following problem was raised:

Problem 1. Let $p \in K\langle x_1, \ldots, x_n \rangle$ and there exists an injective endomorphism ϕ such that $\phi(p) = x$. Is then p a coordinate of $K\langle x_1, \ldots, x_n \rangle$?

In [12], a negative answer was given to Problem 1 for $n \ge 4$. But the problem remains open for n = 2 and n = 3 to the best of our knowledge.

Recently Makar-Limanov and J.-T. Yu [10] have given a sharp lower degree bound for subalgebras generated by two elements of a polynomial or free associative algebra. It has found applications for characterization of test elements by retracts for free associative algebras, see S.-J. Gong and J.-T. Yu [5].

²⁰⁰⁰ Mathematics Subject Classification. Primary 16S10, 16W20; Secondary 13B10, 13F20.

Key words and phrases. Degree estimate, free associative algebra, polynomial algebra, coordinate, tame automorphism, Jung's theorem.

Sheng-Jun Gong was partially supported by a University of Hong Kong Postgraduate Studentship.

Jie-Tai Yu was partially supported by an RGC-CERG Grant.

In this note, based on the degree estimate of Makar-Limanov and J.-T.Yu [10], we give a positive answer for Problem 1 for n = 2 when K has characteristic zero.

Theorem 1.1. Let $p \in K\langle x, y \rangle$ and there exists an injective endomorphism ϕ such that $\phi(p) = x$. Then p is a coordinate of $K\langle x, y \rangle$.

Note that the analogue of the above result in the polynomial case, which has found applications in affine algebraic geometry [9, 11, 13], is the following proposition, which was initially obtained by L.A.Campbell and J.-T.Yu [1]. But for $n \geq 3$, the analogue of Problem 1 for polynomial algebras has a negative solution by Makar-Limanov, see [4, 12].

Proposition 1.2. Let $p \in K[x, y]$ and there exists an injective endomorphism ϕ such that $\phi(p) = x$. Then p is a coordinate of K[x, y].

The proof of the above result in [1] was somewhat complicated. Here we present a simple new proof by the degree estimate in [10].

Note that in [7], the authors considered inverse images of coordinates in some free algebras and showed that the similar results hold for all free (non-associative) algebras.

As by-products, we also give simple new proofs of the following two well-known results.

The first is due to Jung [6].

Proposition 1.3. Any automorphism of K[x, y] is tame, namely, can be decomposed as a product of linear and elementary automorphisms.

Note that an elementary automorphism of a polynomial or associative algebra is an automorphism fixing all generators except one.

The second was given by Makar-Limanov [8] and Czerniakiewicz [3]. See also Cohn [2].

Proposition 1.4. Any automorphism of $K\langle x, y \rangle$ is tame. Moreover, $AutK\langle x, y \rangle$ is isomorphic to AutK[x, y].

2. Proofs

The following two lemmas are Theorem 1.1 and Proposition 1.2 in [10].

Lemma 2.1. Let $A = K\langle x_1, \dots, x_n \rangle$ be a free associative algebra over an arbitrary field K of zero characteristic, $f, g \in A$ be algebraically independent, f^+ and g^+ are algebraically independent, or f^+ and g^+ are algebraically dependent and neither $\deg(f) \mid \deg(g)$ nor $\deg(g) \mid \deg(f), p \in K\langle x, y \rangle$. Then

$$\deg(p(f,g)) \ge \frac{\deg[f,g]}{\deg(fg)} w_{\deg(f),\deg(g)}(p).$$

Here deg is the homogeneous (total) degree of the corresponding element, $w_{\deg(f),\deg(g)}(p)$ is the weighted degree of p when the weight of the first variable is deg(f) and the weight of the second variable is deg(g), f^+ and g^+ are the highest homogeneous components of f and g respectively, and [f,g] = fg - gf is the commutator of f and g.

Lemma 2.2. Let $A = K[x_1, \dots, x_n]$ be a polynomial algebra over an arbitrary field K of zero characteristic, $f, g \in A$ be algebraically independent, $p \in K[x, y]$. Then

$$\deg(p(f,g)) \ge w_{\deg(f),\deg(g)}(p) \left[1 - \frac{(\deg(f),\deg(g))(\deg(fg) - \deg(J(f,g)) - 2)}{\deg(f)\deg(g)}\right].$$

Here deg is the homogeneous (total) degree of the corresponding element, $w_{\deg(f),\deg(g)}(p)$ is the weighted degree of p when the weight of the first variable is $\deg(f)$ and the weight of the second variable is $\deg(g)$, $(\deg(f), \deg(g))$ is the greatest common divisor of $\deg(f)$ and $\deg(g)$, $\deg(J(f,g))$ is the largest degree of nonzero Jacobian determinants of f and g with respect to two of x_1, \dots, x_n .

Lemma 2.3. Let $A = K\langle x_1, \dots, x_n \rangle$ be a free associative algebra over an arbitrary field K of zero characteristic, $f, g \in A$ be algebraically independent, f^+ and g^+ are algebraically dependent and neither $\deg(f) \mid \deg(g)$ nor $\deg(g) \mid \deg(f), p \in K\langle x, y \rangle$. Then

$$\deg(p(f,g)) \ge 2.$$

Proof. Applying Lemma 2.1. We may assume $2 \le m = \deg(f) < \deg(g) = n$. Then obviously $(m+n) < 2n \le \operatorname{lcm}(m,n)$.

1) If $w_{\deg(f),\deg(g)}(p) < \deg(fg) = (m+n) < \operatorname{lcm}(m,n)$, then in $p(f,g), f^+$ and g^+ cannot cancel out, hence $\deg(p(f,g)) \ge \deg(f) \ge 2$;

2) Otherwise $w_{\deg(f),\deg(g)}(p) \ge \deg(fg)$, it follows that $\deg(p(f,g)) \ge \deg[f,g] \ge 2$.

Note that in the above proof, we use the well-known fact: Two elements $f, g \in K\langle x_1, \cdots, x_n \rangle$ are algebraically independent over K if and only if $[f,g] \neq 0$ if and only if $\deg[f,g] \geq 2$. See, for instance, Cohn [2].

Lemma 2.4. Let $A = K[x_1, \dots, x_n]$ be a polynomial algebra over an arbitrary field K of zero characteristic, $f, g \in A$ be algebraically independent, f^+ and g^+ are algebraically dependent and neither $\deg(f) \nmid \deg(g)$ nor $\deg(g) \nmid \deg(f), p \in K[x, y]$. Then

$$\deg(p(f,g)) \ge 2.$$

Proof. Applying Lemma 2.2. We may assume $2 \le m = \deg(f) < \deg(g) = n$.

1) If $w_{\deg(f),\deg(g)}(p) < \operatorname{lcm}(m,n)$, then in p(f,g), f^+ and g^+ cannot cancel out, hence $\deg(p(f,g)) \ge \deg(f) \ge 2$;

2) Otherwise $w_{\deg(f),\deg(g)}(p) \ge \operatorname{lcm}(m,n) = mn/(m,n)$. We also have $mn = (m,n)\operatorname{lcm}(m,n) \ge (m,n)(m+n)$. Hence $\deg(p(f,g)) \ge \deg(J(f,g)) + 2 \ge 2$.

Note that in the above proof, we use the well-known fact: Two elements $f, g \in K[x_1, \ldots, x_n]$ are algebraically independent over K if and only if $J(f, g) \neq 0$ if and only if $\deg(J(f, g)) \geq 0$. See, for instance, J.-T. Yu [14].

Proof of Theorem 1.1.

Let $\phi(x) = f, \phi(y) = g$. Then f and g are algebraically independent. Set $\deg(f) = m$, $\deg(g) = n$. Let h(x, y) be the hightest (m, n) homogeneous component of p(x, y)

1) If f^+ and g^+ are algebraically independent, by p(f,g) = x, we get $h(f^+, g^+) = x$. Then h must be linear. So is p. Hence p is a coordinate.

2) If f^+ and g^+ are algebraically dependent, by Lemma 2.3, $m \mid n$ or $n \mid m$. Suppose $m \mid n, n = km$. Replace g by $g_1 = g - f^k$ and p(x, y) by $p_1(x, y) = p(x, y + x^k)$. We get $p_1(f, g_1) = x$. Note that $\deg(g_1) < \deg(g)$ and p_1 is a coordinate if and only if so is p.

Repeating the process in 2) inductively, after a finite number of steps we would return to the case 1). Therefore p is a coordinate.

Proof of Proposition 1.2.

Similar to the above proof. Just replace Lemma 2.3 by Lemma 2.4 in the proof. \Box

Proof of Proposition 1.3.

Let $\phi = (f, g)$ be an automorphism of K[x, y]. Then there exist p, q such that p(f, g) = x, q(f, g) = y. Set $\deg(f) = m$, $\deg(g) = n$.

1) If f^+ and g^+ are algebraically independent. Since p(f,g) = x and q(f,g) = y, both f and g are linear, since f^+ and g^+ cannot cancel out in p(f,g) and q(f,g).

2) If f^+ and g^+ are algebraically dependent. Then by Lemma 2.4, $m \mid n \text{ or } n \mid m$. Suppose $m \mid n, n = km$. Replace g by $g_1 = g - f^k$ Note $\deg(g_1) < \deg(g)$ and (f, g) is composition of the automorphism (f, g_1) with the elementary automorphism $(x, y + x^k)$.

Repeating the process in 2) inductively, after a finite number of steps we would return to the case 1). Therefore ϕ is a composition of linear and elementary automorphisms, hence tame.

Proof of Proposition 1.4.

First, similar to the Proof of Proposition 1.3, we can prove that any automorphism of $K\langle x, y \rangle$ is tame (just replace Lemma 2.4 by Lemma 2.3 in the proof).

An automorphism $\phi = (f,g) \in \operatorname{Aut} K\langle x, y \rangle$ is a product of linear and elementary automorphisms: $(f,g) = (f_1,g_1) \dots (f_s,g_s)$. Take the map $\operatorname{Aut} K\langle x, y \rangle \to \operatorname{Aut} K[x,y]$ induced by the abelianization from $K\langle x, y \rangle$ onto K[x,y], we get the automorphism $\overline{\phi} = (\overline{f},\overline{g})$ of K[x,y] as a product of corresponding linear and elementary automorphisms of K[x,y]: $(\overline{f},\overline{g}) = (\overline{f}_1,\overline{g}_1) \dots (\overline{f}_s,\overline{g}_s)$. Note that the linear and elementary automorphisms of $K\langle x, y \rangle$ and K[x,y] are 'identical'. Therefore, the map $\operatorname{Aut} K\langle x, y \rangle \to \operatorname{Aut} K[x,y]$ is bijective, hence it is an isomorphism between the two groups. \Box

References

- L. A. Campbell, J. -T. Yu, Two dimensional coordinate polynomials and dominant maps, Comm. Algebra 28 (2000), 2297-2301.
- [2] P. M. Cohn, Free Rings and Their Relations, 2nd Edition, London Mathematical Society Monograph, 19, Academic Press, Inc. London, 1985.
- [3] A. J. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2, I, II, Trans. Amer. Math. Soc. 160 (1971), 393-401; 171 (1972), 309-315.

- [4] V. Drensky, J.-T.Yu, Primitive elements of free metabelian algebras of rank two, Internat. J. Algebra Comput. 13 (2003), 17-33.
- [5] S.-J. Gong, J.-T.Yu, Test elements, retracts and automorphic orbits, Preprint.
- [6] H.W.E.Jung, Über ganze birationale Transformationen der Ebene, J.Reine Angew.Math. 184 (1942), 161-174.
- [7] A. A. Mikhalev, V. Shpilrain, J. -T. Yu, On endomorphisms of free algebras, Algebra Colloq. 6 (1999), 241-248.
- [8] L. Makar-Limanov, On automorphisms of free algebra with two generators, Funk. Analiz. Prilozh. 4 (1970), no. 3, 107-108. English translation: Funct. Anal. Appl. 4 (1970), 262-264.
- [9] L.Makar-Limanov, P.van Rossum, V.Shpilrain, J.-T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341-349.
- [10] L. Makar-Limanov, J. -T. Yu, Degree estimate for subalgebras generated by two elements, J. Euro. Math. Soc. (to appear)
- [11] V.Shpilrain, J.-T. Yu, Affine varieties with equivalent cylinders, J. Algebra 251 (2002), 295-307.
- [12] V.Shpilrain, J.-T. Yu, Factor algebras of free algebras: on a problem of G. Bergman, Bull. London Math. Soc. 35 (2003), 706-710.
- [13] V. Shpilrain, J.-T. Yu, Test polynomials, retracts, and the Jacobian conjecture, in Affine Algebraic Geometry, Contemp. Math. 369 (2005), 253-259, Amer. Math. Soc. Series, Providence, RI.
- [14] J.-T. Yu, On relations between Jacobians and minimal polynomials, Linear Algebra Appl. 221 (1995), 19-29.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFULAM ROAD, HONG KONG SAR, CHINA

E-mail address: sjgong@hkusua.hku.hk

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFU-LAM ROAD, HONG KONG SAR, CHINA

E-mail address: yujt@hkucc.hku.hk, yujietai@yahoo.com