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Abstract. Tsai [Ts, 1993] proved that a proper holomorphic mapping f : Ω → Ω′ from
an irreducible bounded symmetric domain Ω of rank ≥ 2 into a bounded symmetric domain

Ω′ is necessarily totally geodesic provided that r′ := rank(Ω′) ≤ rank(Ω) := r, proving a
conjecture of the author’s [Mk1, 1989] motivated by Hermitian metric rigidity. As a first step
in the proof, Tsai showed that df preserves almost everywhere the set of tangent vectors of
rank 1. Identifying bounded symmetric domains as open subsets of their compact duals by
means of the Borel embedding, this means that the germ of f at a general point preserves
the varieties of minimal rational tangents (VMRTs).

In another completely different direction Hwang-Mok (cf. [HM6, 2004]) established with
very few exceptions the Cartan-Fubini Extension Priniciple for germs of local biholomor-
phisms between Fano manifolds of Picard number 1, showing that the germ of map extends
to a global biholomorphism provided that it preserves VMRTs. We propose to isolate the
problem of characterization of special holomorphic embeddings between Fano manifolds of
Picard number 1, especially in the case of classical manifolds such as rational homogeneous
spaces of Picard number 1, by a non-equidimensional analogue of the Cartan-Fubini Exten-
sion Principle. As an illustration we show along this line that standard embeddings between
complex Grassmann manifolds of rank ≤ 2 can be characterized by the VMRT-preserving
property and a non-degeneracy condition, giving a new proof of a result of Neretin’s [Ne,
1999] which on the one hand paves the way for far-reaching generalizations to the context
of rational homogeneous spaces and more generally Fano manifolds of Picard number 1, on
the other hand should be applicable to the study of proper holomorphic mappings between
bounded domains carrying some form of geometric structures.
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This article is motivated by two distinct topics of research: proper holomorphic
maps between bounded symmetric domains in Several Complex Variables; and varieties
of minimal rational tangents, alias VMRTs (cf. Hwang-Mok [HM3]), on uniruled pro-
jective manifolds in Algebraic Geometry. By embedding bounded symmetric domains
into their compact duals, we relate rigidity results for proper holomorphic maps between
bounded symmetric domains of rank ≥ 2 to the study of local properties of VMRTs in
terms of differential projective geometry.

Motivated by Hermitian metric rigidity, the author conjectured in [Mk1, 1989]
that a proper holomorphic mapping f : Ω → Ω′ from an irreducible bounded symmetric
domain Ω of rank≥ 2 into a bounded symmetric domain Ω′ is necessarily totally geodesic
provided that r′ := rank(Ω′) ≤ rank(Ω) := r. In 1993, Tsai [Ts] resolved the conjecture.
Following a scheme for studying holomorphic maps on bounded symmetric domains of
rank ≥ 2 in Mok-Tsai [MT], Tsai showed that df preserves almost everywhere the set of
vectors tangent to minimal disks, i.e., tangent to lines (minimal rational curves) on the
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compact duals in terms of the Borel embedding. In other words, f is VMRT-preserving
at a general point. The hard part of Tsai’s proof then proceeded by exploiting the
complex geometry of bounded symmetric domains with respect to the Bergman metric.

In another completely different direction, in the context of Algebraic Geometry
Hwang-Mok studied the geometry of uniruled projective manifolds, including especially
Fano manifolds, in terms of VMRTs. Especially we established with very few exceptions
the Cartan-Fubini Extension Priniciple for germs of local biholomorphisms between
Fano manifolds of Picard number 1, showing that the germ of a VMRT-preserving local
biholomorphism extends to a global biholomorphism (Hwang-Mok [HM4, 1999] [HM5,
2001] [HM6, 2004]). We propose to isolate the problem of characterization of special
holomorphic embeddings between Fano manifolds of Picard number 1, especially in the
case of classical manifolds such as rational homogeneous spaces of Picard number 1,
by a non-equidimensional analogue of the Cartan-Fubini Extension Principle. In the
special case of irreducible Hermitian symmetric spaces of the compact type we establish
such a non-equidimensional result on analytic continuation. Using this we show in the
current article that standard embeddings between Grassmann manifolds of rank ≥ 2 can
be characterized by the VMRT-preserving property and a non-degeneracy condition,
giving a new proof of a result of Neretin’s [Ne, 1999]. Our method serves to give a
proof of Tsai’s rigidity theorem on proper holomorphic maps in the case of classical
symmetric domains of type I (which generalizes to many cases). We present the proof
of the special case to illustrate a schematic approach in the study of proper holomorphic
maps between domains carrying certain geometric structures in which rigidity properties
of proper holomorphic maps are established in two steps: a first step which consists of
the study of boundary values of such maps with an aim to force local differential-
geometric properties on the map, and a second step which derives rigidity properties
of the proper map from such local differential-geometric properties by means of a non-
equidimensional analogue of the Cartan-Fubini Extension Principle. Domains carrying
some form of geometric structures include first of all irreducible bounded symmetric
domains of rank ≥ 2, but should extend more generally at least to certain classes of
bounded homogeneous domains.

Recently Hong [Ho, 2007] established a very strong form of rigidity characterizing
certain totally geodesic complex submanifolds of irreducible Hermitian symmetric spaces
of Picard number 1, which in the special case of a Grassmann manifold X says that
Grassmann submanifolds S of rank ≥ 2 are characterized by the fact that X induces in
a canonical way a Grassmann structure of rank ≥ 2 on S. Although this is not how the
proof goes, such a rigidity result can be understood as ascertaining first of all that the
induced Grassmann structure on S is automatically flat, so that the germ of S at a point
can be identified as the holomorphic image of a VMRT-preserving holomorphic map f

from a germ of Grassmann manifold satisfying a certain non-degeneracy condition, and
secondly that the image of such a germ of map must necessarily be the germ of a
Grassmann submanifold. In a joint work with Hong [HoM], we extend the method of
analytic continuation to yield a far-reaching generalization of the second half of the
result to the case of rational homogeneous spaces of Picard number 1.
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By way of explicit examples the author wishes to relate function-theoretic problems
on certain bounded domains to the geometric theory on Fano manifolds basing on the
study of minimal rational curves and their varieties of minimal rational tangent, the
two being linked to each other via a non-equidimensional theory for local holomorphic
maps respecting geometric structures. To make the article accessible the author has
provided more background on the various sides of the subject than is absolutely neces-
sary. Especially, we give a brief introduction to the geometric theory of Fano manifolds
basing on VMRTs sufficient for our purpose, and sometimes give direct and elementary
proofs of basic facts about Grassmann manifolds on top of resorting to general theory
about geometric structures modeled on irreducible Hermitian symmetric spaces of the
compact type.

§1 Background and motivation
(1.1) Motivated by Hermitian metric rigidity, the author formulated in [Mk1, 1989] a
conjecture on the rigidity of proper holomorphic maps between irreducible bounded
symmetric domains under certain rank conditions. Tsai [Ts, 1993] completely resolved
the Conjecture in the affirmative, as follows.

Theorem A (Tsai [Ts, Main Theorem]). Let f : Ω → Ω′ be a proper holomorphic
map between two bounded symmetric domains such that Ω is irreducible and of rank
≥ 2, and such that rank(Ω′) ≤ rank(Ω). Then, rank(Ω′) = rank(Ω), and f : Ω → Ω′ is
a totally geodesic embedding.

Tsai’s proof broke down into two parts. In the first part, by studying boundary
values of proper holomorphic maps as in Mok-Tsai [MT, 1992] and using the structure
of boundary components of bounded symmetric domains (cf. Wolf [Wo]) he showed that
the rank condition in the hypothesis of Theorem A forces rank(Ω′) = rank(Ω) and that
at almost every point x ∈ Ω, dfx must transform vectors of rank 1 to vectors of rank 1,
where the rank is a general notion for tangent vectors on a bounded symmetric domain
which agrees with the notion of ranks of matrices in the case of classical symmetric
domains of type I, II or III defined in terms of matrices.

In what follows bounded symmetric domains are realized as Euclidean domains by
means of the Harish-Chandra embedding. In the usual notations we write Ω = G/K,
Ω′ = G′/K ′ as homogeneous manifolds, where G resp. G′ is the group of biholomorphic
automorphisms of Ω resp. Ω′, and K ⊂ G resp. K ′ ⊂ G′ is the isotropy subgroup at
the origin 0 with respect to Harish-Chandra coordinates. At any x ∈ Ω denote by
Kx ⊂ G the isotropy subgroup. Then, we have also Ω ∼= G/Kx. The association of each
γ ∈ Kx to the differential dγx ∈ End(Tx(Ω)) defines a faithful linear representation of
Kx. Kx is thus isomorphic to a real linear subgroup of the complex general linear group
GL(Tx(Ω)), and its complexification KC

x is isomorphic to a complex linear subgroup
of the same group GL(Tx(Ω)). Given x ∈ Ω and x′ ∈ Ω′, and complex linear maps
λ1, λ2 : Tx(Ω) → Tx′(Ω′), in what follows we say that λ1 is complex equivalent to λ2 if
and only if there exists ϕ ∈ KC

x , ϕ′ ∈ K ′C
x′ such that λ2 = dϕ′x′ ◦ λ1 ◦ dϕx.

Let f : Ω → Ω′ be a proper holomorphic map between two irreducible bounded
symmetric domains of the same rank r ≥ 2. Knowing that dfx transforms rank-1
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vectors to rank-1 vectors at almost every point x ∈ Ω, in many cases one can deduce
that at almost every point x ∈ Ω the differential dfx : Tx(Ω) → Tx′(Ω′), x′ := f(x) is
complex equivalent to the differential df0(x) : Tx(Ω) → Tx′(Ω′) for some equivariant
holomorphic totally geodesic embedding f0 : Ω → Ω′ such that f0(x) = f(x) = x′. This
is the case for instance when Ω and Ω′ are both Type-1 bounded symmetric domains
of the same rank r ≥ 2. One purpose of the current article is to isolate this part of the
proof of Tsai’s theorem, and to give a characterization of equivariant holomorphic totally
geodesic embeddings between Ω and Ω′ for such pairs (Ω, Ω′) completely in terms of the
local differential-geometric property as described. For this characterization we consider
certain pairs (Ω, Ω′) of irreducible bounded symmetric domains of rank ≥ 2 equipped
with an equivariant holomorphic totally geodesic embedding f0 : Ω → Ω′. Assume
without loss of generality that f0(0) = 0. Our problem is to characterize the germ of map
f0 : (Ω, 0) → (Ω′, 0) among all germs of holomorphic embeddings f : (Ω, 0) → (Ω′, 0) in
terms of conditions on the tangent subspaces dfx

(
Tx(Ω)

) ⊂ Tf(x)(Ω′) at points where f

is defined. For this type of characterization it is essential to assume that f0 transforms
rank-1 vectors to rank-1 vectors but it will no longer be necessary to assume that Ω and
Ω′ are of the same rank. Some supplementary non-degeneracy condition needs to be
placed on the embedding f0. In the examples we are discussing in the current article,
we will not need to spell out the condition as it is always satisfied and will be used in
the proof only implicitly.

To illustrate the methods for characterizing f0 : Ω → Ω′ we will only consider in
this article the case of bounded symmetric domains of type I and of rank ≥ 2. For its
definition the bounded symmetric domain D(p, q) of type I is represented by the set of
p-by-q matrices Z with complex coefficients such that I −Z

t
Z is positive definite. The

identity component Aut0(D(p, q)) is the quotient of the special unitary group SU(p, q)
of the standard Hermitian form on Cp+q of signature (p, q) by a finite cyclic group. For
positive integers r, s such that p ≤ r, q ≤ s, there is a standard embedding τ : D(p, q) ↪→
D(r, s) given by τ(Z) =

[
Z 0

0 0

]
. Obviously τ : D(p, q) → D(r, s) is holomorphic and Φ-

equivariant with respect to a group homomorphism Φ : Aut0(D(p, q)) and Aut0(D(r, s))
induced by an obvious group homomorphism of SU(p, q) into SU(r, s), and the image
τ(D(p, q)) ⊂ D(r, s) is a totally geodesic complex submanifold.

(1.2) We are going to relate irreducible bounded symmetric domains Ω of rank ≥ 2 to
the geometry of Fano manifolds. Viewing a bounded symmetric domain Ω = G/K as a
homogeneous manifold, at every point x ∈ Ω there is the isotropy representation of the
isotropy subgroup Kx ⊂ G on the holomorphic tangent space Tx(Ω).

Let n be a positive integer. Fix an n-dimensional complex vector space V and let
M be any n-dimensional complex manifold. In what follows all bundles are understood
to be holomorphic. The frame bundle F(M) is a principal GL(V )-bundle with the fiber
at x defined as F(M)x = Isom(V, Tx(M)), the set of linear isomorphisms from V to the
holomorphic tangent space at x.

Definition 1 (G-structures). Let G ⊂ GL(V ) be any complex Lie subgroup. A
4



holomorphic G-structure is a G-principal subbundle G(M) of F(M). An element of
Gx(M) will be called a G-frame at x. For G 6= GL(V ) we say that G(M) defines a
holomorphic reduction of the tangent bundle to G.

On an m-dimensional smooth manifold M , a Riemannian metric g on M gives a
reduction of the structure group of the (real) tangent bundle from the general linear
group GL(m,R) to the orthogonal group O(m). Riemannian geometry may be regarded
as the geometry of smooth O(m)-structures. A Riemannian manifold (M, g) is locally
isometric to the Euclidean space if and only if there exists on M an atlas of coordinate
charts {(Uα, ϕα)}α∈A, ϕα : Uα → Rm, on which orthonormal frames can be chosen to
consist of constant vector fields in terms of the chosen systems of coordinates. We say
in this case that the smooth O(m)-structure is flat. On complex manifolds we have the
following analogous notion of flat holomorphic G-structures.

Definition 2 (flat G-structures). Let M be a complex manifold and {(Uα, ϕα)}α∈A

be any atlas of holomorphic coordinate charts on M . In terms of Euclidean coordinates
we identify F(Uα) with the product GL(V )×Uα. We say that a holomorphic G-structure
G(M) on M is flat if and only if there exists an atlas of holomorphic coordinate charts
{ϕα : Uα → V } such that the restriction G(Uα) of G(M) to Uα is the product G×Uα ⊂
GL(V )× Uα.

Let (S, g) be an irreducible Hermitian symmetric space of the compact type and
of rank≥ 2. Let Gc = Aut0(S, gc) and write K ⊂ Gc for the isotropy subgroup at
an arbitrary base point 0 ∈ S. For x ∈ S write Kx ⊂ Gc for the isotropy subgroup
at x ∈ S, so that K0 = K. Denote by Wx ⊂ PTx(S) the variety of highest weight
tangents of Kx on Tx(S). Let Lx ⊂ GL(Tx(S)) be the identity component of the linear
subgroup consisting of linear isomorphisms preserving Wx. Lx is isomorphic to KC

x ,
where γ ∈ KC

x corresponds to dγ(x) ∈ Lx. By an S-structure we mean a G-structure
with G = L0 ⊂ GL(T0(S)). As L0 is identified with KC we also called an S-structure
a KC structure. (Note that the notation G is a generic symbol for a group in ‘G-
structures’ and has nothing to do with the notations G and Gc.) In a slight variation to
the terminology of Mok [Mk 1] a highest weight vector in W̃x will be called a minimal
characteristic vector. (In [Mk 1] it is called a characteristic vector.)

The S-structure thus defined on S is flat in the sense of Definition 2. That this
is so can be seen by using Harish-Chandra coordinates, by which S is realized as a
compactification of a complex vector space U such that for each x ∈ U, the Euclidean
translation Tx(z) = z + x extends holomorphically to a biholomorphic automorphism
of S. In particular, the holomorphic reduction of the frame bundle FS to GS is realized
over U by a constant subbundle in terms of Harish-Chandra coordinates.

Given an S-structure on a complex manifold X we have an associated bundle
W ⊂ PTX of varieties of highest weight tangents of the isotropy representations of
(the semisimple parts of) the reductive groups Kx on Tx(X). The assumption that X

admits a flat S-structure means that given any x ∈ X, some neighborhood Ux of x can
be identified with an open set U on S in such a way that W|Ux agrees with the bundle
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W|U over U of the varieties of highest weight tangents on S. In this direction we have
the following basic result of Ochiai [Oc] in the theory of geometric structures.

Theorem B (Ochiai [Oc]). Let S be an irreducible Hermitian symmetric space of
the compact type and of rank ≥ 2. Denote by π : W → S the bundle of varieties of
highest weight tangents. Let U , V ⊂ S be two connected open sets and f : U → V

be a biholomorphism such that f∗W|U = W|V . Then, f extends to a biholomorphic
automorphism of S.

An immediate corollary is the characterization of the model spaces S in terms of
flat S-structures.

Corollary to Theorem B. Let S be an irreducible Hermitian symmetric space of the
compact type and of rank ≥ 2. A simply connected compact complex manifold carrying
a flat S-structure must be biholomorphically isomorphic to S.

Proof of Corollary. Let X be a complex manifold carrying a flat S-structure. X is
covered by open subset {Uα}α∈A. Each Uα, α ∈ A, is identified with some open subset
Vα ⊂ S by coordinate charts ϕα : Uα → Vα such that dϕα transforms the given flat
S-structure on Uα ⊂ X to the standard S-structure on Vα. Starting with one chart,
one can correct overlapping charts as follows. Given ϕβ : Uβ → Vβ , on the overlap
Uαβ := Uα ∩ Uβ , the two charts ϕα|Uαβ

: Uαβ → S, ϕβ |Uαβ
: Uαβ → S are related by

ϕβ |Uαβ
= fαβ ◦ϕα|Uαβ

for some fαβ : ϕα(Uαβ) → ϕβ(Uαβ). By Theorem B, fαβ extends
to a biholomorphism Fαβ : S → S. If Uαβ is connected then we have a holomorphic
mapping h : Uα ∪ Uβ → S given by h|Uα = ϕα; h|Uβ

= F−1
αβ ◦ ϕβ . When X is simply

connected, starting with a single ϕα, by the usual argument of developing the initial
map ϕα : Uα → Vα ⊂ S along paths, the contractibility of each closed path allows one
to prove that extension to any point is independent of the choice of the path and open
subsets covering the path, thereby defining a global local biholomorphism. Φ : X → S.
When X is compact, Φ is a covering map, and must therefore be a biholomorphism
since S is simply connected. ¤

We now specialize to the situation of Grassmann manifolds. Let p, q be positive
integers and W be a (p+q)-dimensional complex vectors space. We denote by Gr(p,W )
the Grassmann manifold of p-planes in W . When the reference to a specific background
vector space W is unimportant we write G(p, q) for Gr(p,W ). Denote by M(q, p) the
complex vector space of q-by-p matrices, and by Ip the p-by-p identity matrix. Consider
the subset U ⊂ G(p, q) consisting of all p-planes EZ generated by the column vectors

of
[

Z
Ip

]
, Z ∈ M(q, p), with respect to a fixed ordered basis (ep+1, . . . , ep+q; e1, . . . , ep).

Then the map ϕ : M(q, p) ∼= Cpq ⊂ G(p, q) is such a chart. An open subset U ⊂ G(p, q)
obtained with respect to some choice of ordered basis of W will be called a Euclidean
cell.

Any linear automorphism of W induces a biholomorphic automorphism of G(p, q).
All biholomorphic automorphisms of G(p, q) in the identity component Aut0(G(p, q)) are
obtained this way, and we have Aut0(G(p, q)) ∼= GL(p+q;C)/C∗. For Φ ∈ Aut0(G(p, q)),
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the restriction of Φ to a Euclidean cell U ∼= M(q, p) can be described as a frac-
tional linear transformation, as follows. Φ ∈ Aut0(G(p, q)) is defined by a linear

transformation Φ0 ∈ GL(W ), represented by
[

A B
C D

]
with respect to the ordered

basis (ep+1, . . . , en; e1, . . . , ep), where A ∈ GL(q,C), etc. Then Φ0 transforms the

p-plane EZ , represented by
[

Z
Ip

]
, to the p-plane spanned by the column vectors of

[
A B
C D

] [
Z
I

]
=

[
AZ + B
CZ + D

]
. Provided that CZ + D is invertible, Φ0(EZ) = EΦ(Z),

where Φ(Z) = (AZ + B)(CZ + D)−1.

G(p, q) is covered by a finite number of charts consisting of Euclidean cells U ob-
tained by permutations on the ordered basis. On the overlapping regions the transition
maps, which are induced by automorphisms of W corresponding to a change of basis,
are thus given by fractional linear transformations. The Jacobian matrices of the tran-
sition maps are of a particular type, as follows. Let Z ′ = Φ(Z) = (AZ +B)(CZ +D)−1,[

A B
C D

]
∈ GL(p + q,C), be a fractional linear transformation. The tangent space at

each point of a Euclidean cell can be identified with the complex vector space M(q, p).
Whenever det(CZ + D) 6= 0, Φ is holomorphically defined at Z and dΦZ is invertible.
For the differential dΦZ , identified as a Jacobian matrix, we have

dΦ(z)(X) = AX(CZ + D)−1 − (AZ + B)(CZ + D)−1CX(CZ + D)−1

= [A− (AZ + B)(CZ + D)−1C]X(CZ + D)−1 .

Hence, dΦ(z)(X) = Q(Z)XP (Z), where Q(Z) ∈ GL(q,C), P (Z) ∈ GL(p,C). Thus the
charts consisting of Euclidean cells endow G(p, q) with a special structure as a complex
manifold. It gives in particular a trivialization of the holomorphic tangent bundle over
each Euclidean cell, so that the transition functions for the holomorphic tangent bundle
takes values in a proper subgroup G & GL(pq,C) where G consists of linear transforma-
tions γ on M(q, p) ∼= Cpq of the form γ(X) = QXP , Q ∈ GL(q,C), P ∈ GL(p,C). This
gives an S-structure in the case where S is the Grassmannian G(p, q), which will be ref-
ereed to as a Grassmann structure. Here we take V = M(q, p), and G ⊂ GL(V,C) to be
the image under the homomorphism Θ : GL(q,C)×GL(p,C) → GL(M(q, p)) defined by
Θ(P,Q)(X) = QXP for all X. G is isomorphic to the quotient of GL(q,C)×GL(p,C)
by a copy of C∗, and is reductive, with the semisimple part being isomorphic to the quo-
tient of SL(q,C)×SL(p,C) by a finite group. That the standard Grassmann structure on
G(p, q) thus defined is flat follows from the fact that translations on the Euclidean cells U
are special cases of fractional linear transformations, which extends to automorphisms of
G(p, q). Grassmann structures are thus G-structures with G = Θ(GL(q,C)×GL(p,C)).
On G(p, q) we have a holomorphic decomposition TG(p,q) = A(p) ⊗ B(q) of the holo-
morphic tangent bundle into the tensor product of universal vector bundles, where the
superscript denotes the rank of the bundle. A complex manifold M admits a Grass-
mann structure if and only if the holomorphic tangent bundle TM admits a non-trivial
decomposition into the tensor product of two holomorphic vector bundles each of rank
≥ 2.
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Given a (p + q)-dimensional complex vector space W the Grassmannian Gr(p,W )
of p-planes π in W is canonically isomorphic to the Grassmannian Gr(q,W ∗) = G(q, p)
of q-planes in the dual vector space W ∗, by the isomorphism which assigns the p-plane
π ⊂ W to its annihilator π⊥ ⊂ W ∗, π⊥ ∼= Cq. In the sequel following standard practice
we will interchange the roles of p and q (and thus the roles of P and Q) and make use
of p-by-q matrices to parametrize Euclidean cells in G(q, p), which is identified with
G(p, q) as described.

In the case of Grassmann structures we have the following non-equidimensional
version of Ochiai’s Theorem due to Neretin ([Ne, 1999]). For its formulation by a
standard embedding τ : Gr(p,W ) → Gr(p′,W ′), p′ ≥ p, between Grassmann manifolds
we mean a holomorphic embedding induced by a linear embedding of λ : W → W ′

and given by τ(π) = λ(π)⊕ ν, where ν ⊂ W ′ is a (p′ − p)-dimensional vector subspace
transversal to λ(W ), or one of the form τ = τ0 ◦ ι, where ι : Gr(p,W ) ∼= Gr(q, W ∗)
in which q = dim(W ) − p, and τ0 : Gr(q, W ∗) → Gr(p′, W ′) is obtained as in the
former procedure. In terms of Harish-Chandra coordinates, an example of a standard

embedding from G(p, q) to G(r, s) is obtained p ≤ r, q ≤ s is given by τ1(Z) =
[

Z 0

0 0

]
,

or by τ2(Z) =
[

Zt 0

0 0

]
, where Zt stands for the transpose of Z, in the event that

p ≤ s, q ≤ r.

Theorem C (from [Ne, Thm. 2.3]). Let p, q, r, s be integers such that 2 ≤ p ≤ r

and 2 ≤ q ≤ s. Let U ⊂ M(p, q) be an open connected subset containing 0, and
Ψ : U → M(r, s) be a holomorphic immersion such that at every Z ∈ U and for every
X ∈ TZ(U) ∼= M(p, q), we have

dΨ(Z)(X) = P (Z) ·X ·Q(Z)

for some matrices P (Z) ∈ M(r, p) of rank r and Q(Z) ∈ M(q, s) of rank q. Then, there
exists K ∈ M(r, s), L ∈ M(r, p), N ∈ M(q, p), and M ∈ M(q, s) such that L is of rank
p and M is of rank q, and such that Ψ(Z) = K + LZ(I −NZ)−1M . In particular, Ψ
is of the form Ψ = µ ◦Θ ◦ γ, where γ lies in the parabolic subgroup P ⊂ Aut0(G(p, q))
at 0 ∈ G(p, q), γ ∈ Aut0(G(r, s)) and Θ : G(p, q) → G(r, s) is a standard embedding.

In the equidimensional case note that

(AZ + B)(CZ + D)−1 = BD−1 +
[
(AZ + B)−BD−1(CZ + D)

]
((CZ + D))−1

= BD−1 + (A−BD−1C)Z(CZ + D)−1

= BD−1 + (A−BD−1C)Z(I + D−1CZ)−1D−1

which is of the form as in Theorem C. In the conclusion of Theorem C, in view of the

hypothesis on dΨ the standard embedding is given by τ1(Z) =
[

Z 0

0 0

]
in terms of

Harish-Chandra coordinates.
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Identify the Grassmannian G(r, s) as a projective submanifold of some PN by means
of the Plücker embedding. Neretin’s original result is more general, and is applicable
under additional assumptions also to holomorphic maps Ψ : U → M(r, s) which are
not necessarily immersions. He required f : U → M(r, s) to be non-degenerate in
the sense that (a) df is of rank at least 2 at some point; and (b) that the image of
f does not lie in any projective linear subspace Π of PN such that Π ⊂ G(r, s). In
this general set-up the hypothesis on dΨ is the same, except that A(z) resp. B(z)
is not necessarily of rank p resp. q. The conclusion is also the same, except that L

resp. M in the conclusion is not necessarily of rank p resp. q. A mapping of the form
Φ(Z) = K + LZ(I −NZ)−1M without assuming that L and M are invertible is called
in [Ne] a generalized linear-fractional map of Krein-Smul’yan. When we impose the
condition that Ψ is an immersion and that dΨ(Z)(X) = P (Z) ·X ·Q(Z), then it follows
easily that P (Z) and Q(Z) can be taken to be invertible for every Z ∈ U .

(1.3) We now turn to the other domain of research which concerns us, viz., the geometric
theory of projective uniruled manifolds (e.g., Fano manifolds) based on the study of
varieties of minimal rational tangents. We give a brief introduction here and refer the
reader to Hwang-Mok [HM2, (2.3)] and [HM4] for an introduction to the basics of the
theory sufficient for our purpose. A general reference for rational curves in Algebraic
Geometry is Kollár [Ko].

By a parametrized rational curve on a projective manifold X we mean a nonconstant
holomorphic map f : P1 → X from the Riemann sphere P1 into X. We say that two
parametrized rational curves f1 and f2 are equivalent if and only if they are the same
up to a reparametrization of P1, i.e., if and only if there exists γ ∈ Aut(P1) such that
f2 = f1 ◦ γ. A rational curve is an equivalence class [f ] of parametrized rational curves
f : P1 → X under this equivalence relation. We will sometimes also refer to a nontrivial
holomorphic image f(P1) = C (as a cycle) of the Riemann sphere as a rational curve,
to be noted as [C]. Let X be a uniruled projective manifold, i.e., a projective manifold
covered by rational curves. Fix an ample line bundle L on X. Without explicitly
mentioning it, the degree of an algebraic curve C on X will be measured with respect
to L, i.e., it is the integral of a (positive) curvature form of L over C. The uniruled
projective manifold X is covered by rational curves of degree bounded by some integer
depending on X and L. Let f : P1 → X be a parametrized rational curve. Then, by the
Grothendieck Splitting Theorem the pull-back f∗TX of the holomorphic tangent bundle
TX splits over P1 into the direct sum of holomorphic line bundles. By definition the
equivalence class [f ] of a nonconstant holomorphic map f : P1 → X is a free rational
curve if and only if all Grothendieck direct summands of f∗TX are of nonnegative degree.
By a minimal rational curve on X we will mean a free rational curve of minimal degree
among all free rational curves on X. The set of minimal rational curves can be given
naturally the structure of a complex manifold, a connected component of which will be
called a minimal rational component K. A rational curve belonging to K will sometimes
be called a K-rational curve. The degree of K, to be denoted by deg(K), is the degree
of one and hence any K-rational curve.

9



Associated to (X,K) there is the universal family ρ : U → K of rational curves
belonging to K, where U is smooth, ρ : U → K is a holomorphic P1-bundle, and the
fiber ρ−1(κ) ∼= P1 of a point κ ∈ K gives a copy of the Riemann sphere P1 corresponding
to the rational curve represented by κ. From any choice of parametrization f : P1 → X

of κ a point on ρ−1(κ) gives a point of the cycle C = f(P1) ⊂ X defined independent
of the choice of parametrization, and we have in fact a canonical holomorphic map µ :
U → X. Thus, the universal family comes equipped with a double fibration ρ : U → K,
µ : U → X. The canonical map µ : U → X is a holomorphic submersion, and its image
contains in general a non-empty Zariski open subset of X. For a point x ∈ X, the µ-
fiber Ux corresponds to equivalence classes of parametrized rational curves f : P1 → X

such that f(0) = x, where two such parametrized rational curves f1, f2 are taken to be
equivalent if and only if they are the same up to reparametrization via an automorphism
of P1 fixing 0. For a general point x ∈ X, every rational curve passing through x of
degree ≤ deg(K) is free. For such a point x there is no possibility of a decomposition
of minimal rational curves passing through x under deformations fixing x, and Ux ⊂ U
is smooth and compact, hence projective.

By Mori’s Breaking-up Lemma, over a general point of X, a general member [f ] ∈ K
is standard in the sense that f∗TX

∼= O(2)⊕ [O(1)]p⊕Oq. Note that a standard rational
curve is in particular immersed, since any nontrivial holomorphic bundle homomorphism
λ : O(2) ∼= TP′ → f∗TX

∼= O(2)⊕ [O(1)]p⊕Oq is injective at every point. Over a general
point x ∈ X we have a rational map called the tangent map τx : Ux → PTx(X) defined by
assigning each rational curve [f ] marked at x to the complex line Cdf(T0(P1)) ⊂ Tx(X).
The total transform Cx := τx(Ux) ⊂ PTx(X) is called the variety of minimal rational
tangents, alias VMRT, of (X,K) at x. The tangent map τx is holomorphic whenever
every K-rational curve marked at x is nonsingular. By Kebekus [Ke, 2002] this is the
case at a general point. In [Ke], it is actually proven that the tangent map is a finite
holomorphic map at a general point x ∈ X. By Hwang-Mok [HM5] the tangent map
is birational onto its image under some non-degeneracy assumption on the Gauss map
at a general smooth point of Cx. In conjunction with [Ke] and Cho-Miyaoka-Shepherd-
Barron, Hwang-Mok [HM6] showed that the tangent map τx : Ux → Cx is a finite
birational holomorphic map at a general point x ∈ X. In the special case where X ⊂ PN

is uniruled by projective lines by elementary arguments it is known that at a general
point x ∈ X, Cx ⊂ PTx(X) is nonsingular and the tangent map τx is a biholomorphism.

For a projective subvariety A ⊂ PN we will sometimes consider its lifting Ã :=
π−1(PN ) to CN+1 under the canonical map π : CN+1 − {0} → PN . Ã ∪ {0} ⊂ CN+1 is
called the affine cone over A. Thus at general point x ∈ X, C̃x ⊂ Tx(X) is the set of
nonzero vectors tangent to K-rational curves passing through x.

Now let X be a Fano manifold of Picard number 1, K be a minimal rational com-
ponent on X. We say that Cartan-Fubini extension holds for the pair (X,K), if for
any Fano manifold X ′ of Picard number 1 equipped with a minimal rational component
(X ′,K′), any VMRT-preserving biholomorphism ϕ : U ∼= U ′ ⊂ X ′ on a domain U ⊂ X

extends to a global biholomorphism Φ : X → X ′. In this direction our main result is is
the following.
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Theorem D (Hwang-Mok [HM6]). Let X be a Fano manifold of Picard number
1. Suppose there exists a minimal rational component K such that for a general point
x ∈ X the variety of minimal rational tangents Cx ⊂ PTx(X) is not a finite union of
projective linear subspaces. Then, Cartan-Fubini extension holds for (X,K). Namely,
for any choice of Fano manifold X ′ of Picard number 1, any minimal rational component
K′ with C′ ⊂ PT (X ′) and any connected open subsets U ⊂ X,U ′ ⊂ X ′, if there exists
a biholomorphic map ϕ : U → U ′ satisfying ϕ∗(Cx) = C′ϕ(x) for all generic x ∈ U , then
there exists a biholomorphic map Φ : X → X ′ such that ϕ is the restriction of Φ to U .

Regarding the Cartan-Fubini Extension Principle most relevant to our discussion in
the current article is the special case, first proven in Hwang-Mok [5], where the variety of
minimal rational tangents Cx ⊂ PTx(X) is of dimension p ≥ 1 satisfying the additional
condition (†) that the Gauss map is generically finite. This is always the case by a result
of Ein [Ei] whenever each irreducible component of Cx ⊂ PTx(X) is nonsingular and
different from a projective linear subspace. (In fact the Gauss map is actually finite by
Zak’s Tangency Theorem [Za].) The condition (†) is equivalently the requirement that
at a general smooth point of [α] ∈ Cx, the kernel of the projective second fundamental
form σ[α] is trivial.

The special case of Theorem D under the additional hypothesis (†) is already a
far-reaching generalization of [(1.2), Theorem B] of Ochiai [Oc]. In fact, representing
an irreducible bounded symmetric domain Ω of rank ≥ 2 as G/K in the usual notations
as in (1.1), and embedding Ω as a domain of its compact dual M , the variety of highest
weight tangents of the isotropy representation of K on PT0(X) agrees with the variety of
minimal rational tangents C0 (cf. Mok [Mk]). In particular C0 ⊂ PT0(M) is a nonlinear
homogeneous projective submanifold, and the kernel of the second fundamental form
σ[α] vanishes at every point [α] ∈ C0.

§2 Rational saturation of a germ of complex submanifold of the Grassmann
manifold
(2.1) We examine now the classification of complex linear maps between tangent spaces
of bounded symmetric domains.

Definition 3. Let Ω resp. Ω′ be an irreducible bounded symmetric domain. Write G

resp. G′ for the identity component of the group of biholomorphic automorphisms of
Ω resp. Ω′. Let x, y ∈ Ω resp. x′, y′ ∈ Ω′ be arbitrary points, and write Kx ⊂ G

resp. K ′
x′ ⊂ G′ for the isotropy subgroup at x resp. x′. Let λ1 : Tx(Ω) → Tx′(Ω′) and

λ2 : Ty(Ω) → Ty′(Ω′) be complex linear maps. We say that λ1 is complex equivalent to
λ2 if and only if there exist θ ∈ G, θ′ ∈ G′, ϕ ∈ KC

x and ϕ′ ∈ K ′C
x′ such that θ(x) = y,

θ′(y′) = x′ and such that λ1 = dϕ′x′ ◦ (dθ′y′ ◦λ2 ◦ dθx) ◦ dϕx. In particular, if x = x′ and
y = y′, then λ1 is complex equivalent to λ2 if and only if there exists ϕ ∈ KC

x , ϕ′ ∈ K ′C
x′

such that λ1 = dϕ′x′ ◦ λ2 ◦ dϕx.

The notion of complex equivalence of λ1 and λ2 is formulated in such a way that it
is by definition invariant under Aut0(Ω) and Aut0(Ω′). Embedding bounded symmetric
domains canonically into their compact duals Ω ⊂ M resp. Ω′ ⊂ M ′, the following
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lemma shows that in fact the notion of complex equivalence of linear maps between
tangent spaces is properly a notion depending only on the compact duals M and M ′,
and it is in fact invariant under automorphisms of M and those of M ′, noting that
Aut0(M) is the complexification of Aut0(Ω), etc.

Lemma 1. Let Ω resp. Ω′ be an irreducible bounded symmetric domain, and M resp. M ′

be its compact dual (which is an irreducible Hermitian symmetric manifold of the com-
pact type ). Denote by Ω ⊂ M resp. Ω′ ⊂ M ′ the Borel embedding. Let x, x′ ∈ Ω ⊂ M ;
y, y′ ∈ Ω ⊂ M ′ and let λ1 : Tx(Ω) → Tx′(Ω′), λ2 : Ty(Ω) → Ty′(Ω′) be complex linear
maps. Then, λ1 is complex equivalent to λ2 if and only if there exists ψ ∈ Aut0(M),
ψ′ ∈ Aut0(M ′) such that ψ(x) = y, ψ′(y′) = x′ and such that λ1 = dψ′y′ ◦ λ2 ◦ dψx.

Proof. Suppose λ1 is complex equivalent to λ2 in the sense of Definition 3. Then, in
the notations there we have

λ1 = dϕ′x′ ◦ (dθ′y′ ◦ λ2 ◦ dθx) ◦ dϕx = (dϕ′x′ ◦ dθ′y′) ◦ λ2 ◦ (dθx ◦ dϕx) = dψ′y′ ◦ λ2 ◦ dψx,

where we define ψ := θ◦ϕ, ψ′ := ϕ′◦θ′. Clearly, ψ(x) = y, ψ′(y′) = x′ and ψ ∈ Aut0(M),
ψ′ ∈ Aut0(M ′). Conversely, given λ1 = dψ′y′ ◦λ2 ◦dψx as in the statement of Lemma 1,
we assert that λ1 is complex equivalent to λ2. By the homogeneity of Ω resp. Ω′ under
Aut0(Ω) = G resp. Aut0(Ω′) = G′, we deduce that λ1 = dϕ̃′x′ ◦ (dθ′ ◦ λ2 ◦ dθ) ◦ dϕ̃x

for some θ ∈ G, θ(x) = y; θ′ ∈ G′, θ′(y′) = x′; and ϕ̃ ∈ Px resp. ϕ̃′ ∈ Px′ , where
Px ⊂ GC is the (parabolic) isotropy subgroup at x, and Px′ ⊂ GC

′
is the (parabolic)

isotropy subgroup at x′. KC
x ⊂ Px is a Levi factor of the parabolic subgroup Px ⊂

Aut0(M) = GC; an analogous statement applies to x′ ∈ Ω′ ⊂ M ′. We have a Levi
decomposition Px = KC

x · M−, where M− ⊂ Px is the unipotent radical (which is
abelian). Here M− = exp(m−), where m− is the vector space of holomorphic vector
fields vanishing at x to the order 2. It follows that dγx = idTx(M). Thus, writing
ϕ̃ = ϕ · γ, where ϕ ∈ KC

x and γ ∈ M−, it follows that dϕ̃x = dϕx. The same argument
applies to dϕ̃′ ∈ Px′ , and we conclude that there exists ϕ ∈ KC

x and ϕ′ ∈ K ′C
x′ such that

λ1 = dϕ′x′ ◦ (dθ′y′ ◦ λ2 ◦ dθy) ◦ dϕx, i.e., λi : Tx(M) → Tx′(M ′); i = 1, 2; are complex
equivalent to each other according to Definition 1, as asserted. ¤

Regarding linear maps between Grassmann manifolds the following two lemmas are
well-known. To be self-contained we include elementary and direct proofs. Lemma 2 is
purely a statement about linear maps between nontrivial tensor product spaces.

Lemma 2. Let A(p), B(q), E(r), F (s) be finite-dimensional complex vector spaces, where
the superscript indicates the complex dimension and will sometimes be omitted. Assume
p, q, r, s ≥ 2. Suppose λ : A⊗B → E ⊗ F is an injective complex linear map such that
λ transforms decomposable vectors in A ⊗ B to decomposable vectors in E ⊗ F . In
other words, for any nonzero vectors α ∈ A, β ∈ B, λ(α ⊗ β) = γ(α, β) ⊗ δ(α, β) for
some nonzero vectors γ(α, β) ∈ E, δ(α, β) ∈ F . Suppose there exist (α1, β1), (α2, β2) ∈
A×B such that γ(α1, β1) and γ(α2, β2) are linearly independent, and likewise there exist
(α′1, β

′
1), (α′2, β

′
2) ∈ A × B such that δ(α′1, β

′
1) and δ(α′2, β

′
2) are linearly independent.

Then, either there exist complex linear maps µ : A(p) → E(r), ν : B(q) → F (s) such
12



that λ(α ⊗ β) = µ(α) ⊗ ν(β); or there exist complex linear maps ϕ : A(p) → F (s) and
ψ : B(q) → E(r) such that λ(α⊗ β) = ψ(β)⊗ ϕ(α).

In the statement of Lemma 2 note that γ(α, β) and δ(α, β) are each well-defined
only up to multiplication by a nonzero complex number.

Proof of Lemma 2. Pick α1, α2 ∈ A(p) which are linearly independent, and β0 ∈ B(q) to
be a nonzero vector. Then λ((α1 + α2) ⊗ β0) = λ(α1, β0) + λ(α2, β0) = γ(α1, β0) ⊗
δ(α1, β0) + γ(α2, β0) ⊗ δ(α2, β0). By hypothesis the latter is decomposable. As a
consequence, either (a) δ(α1, β0) and δ(α2, β0) are proportional to each other, or (b)
γ(α1, β0) and γ(α2, β0) are proportional to each other. Interchanging E(r) and F (s) if
necessary we may assume without loss of generality that (a) holds, and we may write
λ(αi, β0) = γ(αi, β0)⊗ ξ(β0) for some ξ(β0) ∈ F and for both i = 1, 2. When β0 ∈ B is
fixed, for each pair (α1, α2) of linearly independent elements of A either Alternative (a)
or (b) but not both must hold. Let Γ1 (resp. Γ2) be the subset of the Grassmannian
Gr(2, A) over which Alternative (a) holds (resp. over which Alternative (b) holds). It
is clear that Γ1 and Γ2 are both closed. Since Gr(2, A) is the disjoint union of Γ1 and
Γ2 it follows that one of them is all of Gr(2, A). Since Γ1 is nonempty we must have
Γ1 = Gr(2, A). In other words, Alternative (a) holds for every α ∈ A when β = β0 is
fixed. and we may write λ(α, β0) = γ(α, β0)⊗ξ(β0). If we allow β0 to vary then a similar
argument as in the above (in analogy to Alternatives (a) and (b)) shows that the same
formula holds true with β0 replaced by any nonzero β ∈ B, i.e., λ(α, β) = γ(α, β)⊗ξ(β)
for any α ∈ A.

Likewise fixing a nonzero α ∈ A by the same argument we must have (c) λ(α, β) =
η(α)⊗ δ(α, β) or (d) λ(α, β) = γ(α, β)⊗ χ(α) for any β ∈ B, and Alternative (c) holds
for every nonzero α ∈ A or Alternative (d) holds for every nonzero α ∈ A. In the
latter case since λ(α, β0) = γ(α, β0) ⊗ ξ(β0) we may take χ(α) = ξ(β0), and we have
λ(α, β) = γ(α, β)⊗ξ(β0) for every α ∈ A, β ∈ B0, contradicting with the hypothesis that
δ(α′1, β

′
1) and δ(α′2, β

′
2) are linearly independent for some (α′1, β

′
1) and (α′2, β

′
2). Thus,

Alternative (c) holds true for every nonzero α and we have λ(α, β) = η(α)⊗ δ(α, β), so
that for nonzero α ∈ A, β ∈ B, λ(α, β) must both be of the form γ(α, β)⊗ ξ(β) and of
the form η(α)⊗ δ(α, β). Pick any nonzero α0 ∈ A, β0 ∈ B. In some open neighborhood
U = U1 × U2 of (α0, β0) in A × B we can choose η(α) varying holomorphically with
α, ξ(β) varying holomorphically with β and a holomorphic function f : U → C∗ such
that λ(α, β) = f(α, β)η(α)⊗ ξ(β). Finally, as η(α) and ξ(β) are only determined up to
scalar multiples we fix them by writing λ(α, β0) = η(α) ⊗ ξ(β0) for α ∈ U1 (so that in
particular η(α0) is fixed, and then writing λ(α0, β) = η(α0) ⊗ ξ(β) for β ∈ U2. ¿From
the linearity of λ it follows that both η : A(p) → E(r) and ξ : B(q) → F (s) are linear.
Defining λ0 : A(p) ⊗ B(q) → E(p) ⊗ F (s) by λ0(α ⊗ β) = η(α) ⊗ ξ(β), we have two
linear maps λ, λ0 such that λ(α ⊗ β) = f(α, β)λ0, where f(α0, β0) = 1. Since any two
pointwise proportional linear maps on a vector space must be the same up to a scalar
multiple, restricting to the linear subspaces of the form Cα ⊗ B and then A ⊗ Cβ we
conclude that f(α, β) is independent of both α and β. Thus, f ≡ 1 as f(α0, β0) = 1.
The proof of Lemma 2 is complete. ¤
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Lemma 3 concerns germs of complex submanifolds of the Grassmann manifold
whose tangent spaces consist only of decomposable vectors. The question is whether
they lie in some projective linear subspaces. The latter indeed holds true as proved by
Mirollo [Mi, 1985], and it is a special case of Choe-Hong [CH, 2004]. In [CH] complex
submanifolds of the Grassmann manifold X with the property stated above are called
integral submanifolds of the cone structure. Here the cone structure refers to the affine
cones W̃x ∪ {0} ⊂ Tx(X). In what follows we say that a submanifold Π ⊂ G(r, s) is a
projective linear subspace if and only if, identifying G(r, s) as a projective submanifold
of some projective space PN by means of the Plücker embedding, Π ⊂ G(r, s) ⊂ PN is a
projective linear subspace of PN . We note that, identifying a Euclidean cell U ⊂ G(r, s)
as the tensor product E(r) ⊗ F (s), where E(r) is identified with the fiber E

(r)
0 of the

universal bundle F(r) at 0, and F (s) is identified with the fiber F
(s)
0 of the universal

bundle F(s) at 0, then the projective linear subspaces of G(r, s) passing through 0 are
the topological closures in G(r, s) of a linear subspace of either of the forms H ⊗ Cϕ0,
Cε0 ⊗ J ⊂ E(r) ⊗ F (s) = U, where H ⊂ E(r) and J ⊂ F (s) are linear subspaces.

Lemma 3. Let r, s ≥ 2 be integers, U ⊂ G(r, s) be an open subset and S ⊂ U be an m-
dimensional complex submanifold. Let E(r) and F(s) be universal bundles over G(r, s)
so that TG(r,s) ≡ E(r) ⊗ F(s) canonically. Suppose m > 1 and assume that for any
x ∈ S, Tx(S) ⊂ E

(r)
x ⊗Cξ(x) for some nowhere zero holomorphic section ξ ∈ Γ(S,F(s)).

Then, S is contained in some projective linear subspace of G(r, s).

Proof. Without loss of generality assume that U ⊂ U ⊂ G(r, s) is an open subset
of a Euclidean cell U, on which we make use of Harish-Chandra coordinates Z =(
zij

)
1≤i≤r,1≤j≤s

in the usual identification of points on U as r-by-s matrices. Let

(ei)1≤i≤r resp. (εj)1≤j≤s be the standard basis of E(r)|W resp. F(s)|W , ∂
∂zij

= ei⊗εj . By
assumption TS = H⊗Cξ for some rank-m holomorphic vector subbundle H. Let x ∈ S.
Assume without loss of generality that Hx = Span{e1, · · · em} ⊂ E

(r)
x , m ≥ 2, ξ(x) = ε1.

Let η and ϕ be linearly independent holomorphic sections of H on a neighborhood of
x on S. Using the Einstein convention write η̃ = η ⊗ ξ = ηiei ⊗ ξjεj = ηiξj ∂

∂zij
,

ϕ̃ = ϕ ⊗ ξ = ϕkek ⊗ ξ`ε` = ϕkξ` ∂
∂zk`

. We claim that dξ`(x) = 0 for ` > 1. Assum-
ing this, since x ∈ S is arbitrary it follows that Cξ is constant over S with respect
to Harish-Chandra coordinates, and hence S must lie in the projective linear subspace
E(r) × Cξ0 ⊂ G(r, s), where ξ0 = ξ(y) for any point y ∈ S, proving Lemma 3. To prove
our claim we compute Lie brackets of the vector fields η̃ and ϕ̃. We have

[
η̃, ϕ̃

]
=

[
ηiξj ∂

∂zij
, ϕkξ` ∂

∂zk`

]

= ηiξj ∂

∂zij
(ϕkξ`)

∂

∂zk`
− ϕiξj ∂

∂zij
(ηkξ`)

∂

∂zk`

= ξj(ηiϕk − ϕiηk)
∂ξ`

∂zij

∂

∂zk`
+

(
ηiξj ∂ϕk

∂zij
− ϕiξj ∂ηk

∂zij

)(
ξ` ∂

∂zk`

)

= ξj(ηiϕk − ϕiηk)
∂ξ`

∂zij

∂

∂zk`
+ µkξ` ∂

∂zk`
(1)
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for some holomorphic vector field µ on a neighborhood of x on S. Since by definition
TS is integrable, it follows that

[
η̃, ϕ̃

]
(x) ∈ E(r)

x ⊗ Cξ(x) . (2)

By (1) and specializing to the case where η(x) = ea, ϕ(x) = eb, 1 ≤ a, b ≤ m, a 6= b,
and noting that ξ(x) = ε1, we have

[
η̃, ϕ̃

]
(x) =

∂ξ`

∂za1

∂

∂zb`
− ∂ξ`

∂zb1

∂

∂za`
+ µkξ` ∂

∂zk`
. (3)

Since µkξ` ∂
∂zk`

∈ E(r) ⊗ Cξ it follows from (2) and (3) that

∂ξ`

∂za1
=

∂ξ`

∂zb1
= 0 for all ` > 1 . (4)

Now Tx(S) = Hx ⊗ Cε1 = Span{e1, . . . , em} ⊗ Cε1 = Span
{

∂
∂zc1

: 1 ≤ c ≤ m
}
. It

follows from (4) that
dξ`(x) = 0 for all ` > 1 . (5)

This proves our claim and completes the proof of Lemma 3. ¤.

Combining Lemma 2 and Lemma 3 we have obtained

Proposition 1. Let M and M ′ be Grassmann manifolds of rank ≥ 2, 0 ∈ M and
0 ∈ M ′ be arbitrary base points. Let f : (M, 0) → (M ′, 0) be a germ of holomorphic
embedding such that df transforms decomposable tangent vectors into decomposable tan-
gent vectors. Then, either dfx is complex equivalent at every point x on the domain of
definition of f to a standard holomorphic embedding τx,x′ : M → M ′ between Grass-
mannians, τx,x′(x) = x′, x′ := f(x), or the image of f lies on some projective linear
subspace of M ′.

(2.2) To prove Theorem B (from Ochiai [Oc]) by means of varieties of minimal rational
tangents we note first of all that on an irreducible Hermitian symmetric space S of rank
≥ 2, the variety of highest weight tangents Wx ⊂ PTx(S) at x ∈ S agrees with the
variety of minimal rational tangents Cx ⊂ PTx(S) (Hwang-Mok [HM1], cf. Mok [Mk2,
(1.4)]). Here S is embedded by the first canonical embedding into some projective space
PN , and the minimal rational component K is the space of projective lines lying on S.

In Hwang-Mok [HM5] as a first step towards proving Cartan-Fubini type extension
results we proved the uniqueness of tautological foliations on fibered spaces C of varieties
of minimal rational tangents under a non-degeneracy assumption on Gauss maps. The
proof relies on determining Cauchy characteristics of distributions defined on C, and
as such does not readily apply to the non-equidimensional case. To proceed along the
argument of [HM5] one would either have to work on the submanifold and prove that
the tautological foliation of the ambient manifold restricts to one of the submanifold, or
else one works on the ambient manifold and finds a method of extending the tautological
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foliation on the submanifold to a neighborhood of the submanifold in such a way that
the extended foliation (equivalently 1-dimensional distribution) belongs to the Cauchy
characteristic of the relevant distribution defined on the cone of the ambient manifold.
Neither of these appears to be an easy problem. In their place in the case of germs of
holomorphic mappings between irreducible Hermitian symmetric spaces of the compact
type and of rank ≥ 2 we derived in Mok [Mk2] a local differential-geometric method
to compare tautological foliations under the effect of a local holomorphic maps which
respects the varieties of minimal rational tangents. This proof leads especially to a new
proof of Ochiai’s Theorem and readily to a partial non-equidimensional generalization.
We recall first of all the relevant result of Mok [Mk2].

Proposition 2 (Mok [Mk2]). Let X and Z be two irreducible Hermitian symmetric
spaces of the compact type and of rank ≥ 2. Let U ⊂ Z be a Euclidean cell in Harish-
Chandra coordinates, U ⊂ U be a connected open neighborhood of 0 ∈ U, and f : U → X

be a holomorphic map such that f(0) = 0 and dfz

(C̃z(Z)
) ⊂ C̃f(z)(X) for every z ∈ U .

For any x ∈ X, β ∈ C̃x(X), write

σβ : Tβ

(C̃0(X)
)× Tβ

(C̃0(X)
) → Tβ

(
Tx(X)

)
/Tβ

(C̃0(X)
)

for the second fundamental form with respect to the Euclidean flat connection ∇ on
Tx(X). For any subspace V ⊂ Tβ

(C̃0(X)
)
, define

Ker σβ(V, ·) :=
{
δ ∈ Tβ

(C̃0(Ω2)
)

: σβ(δ, γ) = 0 , ∀ γ ∈ V
}

.

For any 2 ∈ U , and α ∈ C̃z(Z), denote by α̃ the constant vector field on Z which is α

at x and identify Tdf(α)

(
T0(X)

)
with T0(X). Then, we have

∇df(α)df(α̃) ∈ Kerσdf(α)

(
Tdf(α)

(
df(C̃x(Ω1))

)
, ·) .

Proposition 2 was used in Tu [Tu, 2002] to obtain a generalization in special cases
of Tsai [Ts] to give rigidity results on proper holomorphic maps in which the domain
and the target are both type I domains of rank ≥ 2, while the rank of the target exceeds
that of the domain by 1.

We briefly recall how Ochiai’s result [(1.2), Theorem B] follows from Proposition 2.
In what follows we adopt the notations in Theorem B. On a Hermitian symmetric space
S of the compact type and of rank ≥ 2 the varieties of highest weight vectors W agrees
with the varieties of minimal rational tangents C. Consider the 1-dimensional foliation
F on π : C → S whose integral curves are the tautological liftings of minimal rational
curves (lines) on S. If f : U → V is VMRT-preserving, then Proposition 2 implies
that the two foliations F|π−1(V ) and f∗

(F|π−1(V )

)
agree with each other. From this

the arguments of Hwang-Mok [HM4,5] imply that f can be analytically continued along
minimal rational curves emanating from U . There it was proven that the process of
analytic continuation can be iterated to give a birational isomorphism F on S. It follows
then from the VMRT-preserving property of F at general points of S and deformation
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theory of rational curves that F and its inverse are biregular outside subvarieties of
codimension 2. Embed S by the anticanonical line bundle into a projective space. By
pulling-back anticanonical sections and by Hartogs extension F induces a biholomorphic
automorphism of S.

In the non-equidimensional case we will now apply Proposition 2 to study germs
of holomorphic embeddings between bounded symmetric domains of type I satisfying
local differential-geometric conditions. To start with in Hwang-Mok [HM5] (cf. (1.3)
here) we introduced a non-degeneracy condition on the Gauss map of the variety of
minimal rational tangents Cx at a general point x of a uniruled projective manifold
(X,K) equipped with a minimal rational component, viz., we require that (†) the Gauss
map is generically finite on Cx, equivalently (†) is satisfied if and only if at a general
smooth point [α] of Cx, the kernel Kerσ[α] = 0 for the projective second fundamental
form σ[α] at [α] ∈ Reg(Cx). We extend this to the situation of a linear section of Cx and
define a non-degeneracy condition (††) which reduces to (†) when the linear section is
Cx itself. Recall that a complex-analytic variety is said to be of pure dimension n if and
only if each irreducible component is of the same dimension n.

Definition 4. Let m ≥ 2, A ⊂ Pm be a projective subvariety of pure dimension a ≥ 1.
Let Π ⊂ Pm be a projective linear subspace, and B := Π ∩ A be a non-empty projective
subvariety of pure dimension b ≥ 1. We say that the pair (B,A) satisfies the non-
degeneracy condition (††) if and only if for every general smooth point [β] ∈ B, [β] is
also a smooth point of A and Kerσ[β]

(
T[β](B), ·) = 0.

Adopting the notations in Proposition 2 in the above, except that we pass from affine
cones to their projectivizations and make use of the projective second fundamental form
σ[β] of A ⊂ Pm at [β], the last sentence in Definition 4 means that σ[β](ξ, η) = 0 for
every ξ ∈ T[β](B) implies that η = 0. Taking B to mean Cx, when Π equals Pm the
condition (††) reduces to (†).

Let U ⊂ G(p, q) be a domain and f : U → G(r, s) be a holomorphic map such
that df(x) : Tx(G(p, q)) → Tf(x)(G(r, s)) is complex equivalent to dτ(x) for a standard
embedding τ : G(p, q) → G(r, s). To apply Proposition 2 in the non-equidimensional
case the first problem is to check that the non-degeneracy condition (††) at a general
point is satisfied for the pair

(
f∗Cx(G(p, q)), Cf(x)(G(r, s))

)
. For this purpose we note

the following simple fact about the second fundamental form in the case of Grassmann
manifolds, where the VMRT C0 at 0 ∈ G(r, s) is the image of the Segre embedding
ζ : P(Er)× P(F (s)) ↪→ P(E(r) ⊗ F (s)) defined by ζ([α], [β]) = [α⊗ β]). Here E(r) resp.
F (s) stands for E

(r)
0 resp. F

(s)
0 , which is the fiber of the universal bundle E(r) resp. F(s)

over 0.

Lemma 4. Let γ ∈ E(r)⊗F (s) be a non-zero decomposable vector, γ = a⊗b. Then, the
tangent space Tα(C̃0) is naturally identified with Ca⊗ F (s) ⊕E(r) ⊗Cb, and the second
fundamental form σ of C̃0 ⊂ E(r) ⊗ F (s) ∼= M(r, s) ∼= Crs is given by

σγ

(
a⊗ ϕ1 + ε1 ⊗ b, a⊗ ϕ2 + ε2 ⊗ b

)

= ϕ1 ⊗ ε2 + ε1 ⊗ ϕ2 mod
(
a⊗ F (s)

)
+

(
E(r) ⊗ b

)
.
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Here ε1, ε2 ∈ E(r), ϕ1, ϕ2 ∈ F (s) are arbitrary vectors.

Proof. We note that
(
E(r) ⊗ Cb

) ∩ (
Ca ⊗ F (s)

)
= C(a ⊗ b) = Cγ, so that ϕi resp. εi;

i = 1, 2; is uniquely determined only up to Ca, resp. Cb, It follows nonetheless that
ϕ1 ⊗ ε2 + ε1 ⊗ ϕ2 is uniquely determined up to

(
a ⊗ F (s)

)
+

(
E(r) ⊗ b

)
, so that the

expression for σγ in Lemma 4 is indeed well-defined. The Segre embedding ζ lifts to
ζ̃ :

(
E(r)−{0})× (

F (s)−{0}) → E(r)⊗F (s) given by ζ̃(a, b) = a⊗ b. By definition for
ε ∈ E(r), ϕ ∈ F (s) we have

ζ̃(a + ε, b + ϕ) = (a + ε)⊗ (b + ϕ) = a⊗ b + (a⊗ ϕ + ε⊗ b) + ε⊗ ϕ .

It follows from standard calculations that

σγ

(
a⊗ ϕ + ε⊗ b, a⊗ ϕ + ε⊗ b

)

= ϕ⊗ ε + ε⊗ ϕ mod
(
a⊗ F (s)

)
+

(
E(r) ⊗ b

)
.

Lemma 4 follows by polarization of the symmetric bilinear map σγ . ¤

Proposition 3. Let p, q, r, s be integers such that 2 ≤ p ≤ r and 2 ≤ q ≤ s. Let
f :

(
G(p, q); 0

) → (
G(r, s); 0

)
be a germ of holomorphic embedding and denote by S ⊂

G(r, s) the germ of pq-dimensional complex submanifold at 0 ∈ G(r, s) which is the
germ of the image of f at 0. Assume that for any x in the domain of definition of f ,
dfx : Tx(G(p, q)) → Ty(G(r, s)), y := f(x), is complex equivalent to dτ0 : T0(G(p, q)) →
T0(G(r, s)) for a standard embedding τ : G(p, q) → G(r, s), τ(0) = 0. Then, for any
y ∈ S and for any minimal characteristic vector β at y tangent to S, the germ of the
line Cβ at y actually lies on S.

The assumption that dfx : Tx(G(p, q)) → Ty(G(r, s)), y := f(x), is complex equiv-
alent to dτ0 : T0(G(p, q)) ↪→ T0(G(r, s)) translates into an algebraic statement about
dfx, as follows. Identify the holomorphic tangent bundle TG(p,q) as the tensor product
A(p) ⊗B(q) of its (nonnegative) universal bundles, so that Tx

(
G(r, s)

) ∼= A(p) ⊗B(q) for
the fibers A(p) resp. B(q) at x of A(p) resp. B(q). Similarly, identify the holomorphic tan-
gent bundle TG(r,s) as the tensor product Er⊗Fs of its (nonnegative) universal bundles,
so that Ty

(
G(r, s)

) ∼= E(r) ⊗ F (s) for the fibers E(r) resp. F (s) at y of E(r) resp. F(s).
Then dfx complex equivalent to dτ0 if and only if dfx = µ⊗ ν for some injective linear
maps µ : A(p) → E(r), ν : B(q) → F (s).

Proof of Proposition 3. The germ of holomorphic map f :
(
G(p, q); 0

) → (
G(r, s); 0

)

induces on S a subbundle R ⊂ PTS such that for x sufficiently close to 0 so that
y = f(x) ∈ S, we have R̃y = dfx(C̃x). R comes equipped with a tautological foliation
E corresponding to the tautological foliation on CG(p,q). Denote by F the tautological
foliation on the target Grassmann manifold G(r, s). A leaf of F is the tautological
lifting of a line on G(r, s), while a leaf of E on S is the tautological lifting of the image
under f of a nonempty connected open subset of a line on G(p, q). Let x ∈ G(p, q)
be sufficiently close to 0, and α ∈ Tx

(
G(p, q)

)
be a minimal characteristic vector.

β := df(α) ∈ T
(
G(r, s)

)
is by hypothesis a minimal characteristic vector at y = f(x).
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Let β] ∈ T[β](E) and β[ ∈ T[β](F) be such that dπ(β]) = dπ(β[) = β for the canonical
projection π : PTG(p,q) → G(p, q). Thus π(β] − β[) = 0, β] − β[ ∈ T[β]

(
PTy

(
G(r, s)

))
,

which is canonically identified with Ty

(
G(r, s)

)
/Cβ. From the hypothesis we have

df
(
C̃y

(
G(p, q)

)
⊂ C̃x

(
G(r, s)

)
. Proposition 2 applies to the germ of holomorphic em-

bedding f :
(
G(p, q); 0

) → G
(
(r, s); 0

)
. In the notations there, ∇df(α)df(α̃), regarded as

a vector in Ty

(
G(r, s)

)
, agrees mod Cβ with η := β] − β[, noting that β = df(α). Here

η ∈ T[β]

(C0

(
G(r, s)

))
= Tβ

(C̃0

(
G(r, s)

))
mod Cβ. Pick any η ∈ Tβ

(C̃0(G(r, s)
)

such
that η = η mod Cβ. Then,

η ∈ Ker σβ

(
Tβ

(
df

(C̃0

(
G(r, s)

))
, ·)

)
. (1)

Note here that Cβ is in the kernel of σβ at β, and the choice of the representative η

modulo Cβ is immaterial. Now by hypothesis dfx

(C̃x

(
G(p, q)

))
=

(
V (p) ⊗W (q)

) ∩ C̃y

for some p-plane V (p) ⊂ E(r) and some q-plane W (q) ⊂ F (s). The second fundamental
form on C̃y

(
G(r, s)

)
at γ = a⊗ b, a ∈ E(r), b ∈ F (s), is given as follows. We have

Tγ

(C̃y

(
G(r, s)

))
=

(
a⊗ F (s)

)
+

(
E(r) ⊗ b

)
. (2)

Since (a⊗ F (s)) ∩ (E(r) ⊗ b) = C(a⊗ b) = Cγ, so that dim Tγ

(C̃y

(
G(r, s)

))
= r + s− 1,

which is 1 +
(
(r− 1) + (s− 1)

)
= 1 + dim

(Cy

(
G(r, s)

))
. For ϕi ∈ F (s), εi ∈ E; i = 1, 2;

we have by Lemma 4

σγ

(
a⊗ ϕ1 + ε1 ⊗ b, a⊗ ϕ2 + ε2 ⊗ b

)

= ϕ1 ⊗ ε2 + ε1 ⊗ ϕ2 mod
(
a⊗ F (s)

)
+

(
E(r) ⊗ b

)
. (3)

Consider now γ = β = df(α). By (1), σβ(ξ, η) = 0 for every

ξ ∈ Tβ

(
df

(C̃x

(
G(p, q)

))
=

(
a⊗W (q)

)
+

(
V (p) ⊗ b

)
. (4)

In other words, for any v ∈ V (p), w ∈ W (q), writing η = a⊗ϕ+ ε⊗ b, ϕ ∈ F (s), ε ∈ E(r)

we have

0 = σβ(a⊗w + v ⊗ b, a⊗ ϕ + ε⊗ b) = ε⊗w + v ⊗ ϕ mod
(
a⊗ F (s)

)
+

(
E(r) ⊗ b

)
. (5)

In particular, taking v = 0 we have

ε⊗ w ∈ (
a⊗ F (s)

)
+

(
E(r) ⊗ b

)
(6)

for every w ∈ W (q). By assumption, dimW (q) ≥ 2. Taking w to be linearly independent
of b, (6) is possible only if ε ∈ Ca. Similarly, taking w = 0 in (5) we have

v ⊗ ϕ ∈ (
a⊗ F (s)

)
+

(
E(r) ⊗ b

)
(7)
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for every v ∈ V (p), dim V (q) ≥ 2, which is possible only if ϕ ∈ Cb. As a consequence,
we must have

η = a⊗ ϕ + ε⊗ b ∈ (
a⊗ Cb

)
+

(
Ca⊗ b

)
= C(a⊗ b) = Cβ ;

η = η mod Cβ = 0 . (8)

In other words, we have proven that β] = β[, showing that the leaves of E and F at [β]
are tangent to each other at [β]. It follows by integrating holomorphic vector fields that
a local leaf of E is necessarily a local leaf of F , proving Proposition 3, as desired. ¤

(2.3) Let X be a Fano manifold of Picard number 1. There is a procedure of recovering
X from a space of minimal rational curves by a process of adjunction, as follows (Hwang-
Mok [HM2]). Let K be a minimal rational component on X. Let x ∈ X be a general
point and let V1 be the union of minimal rational curves emanating from x. At a general
point x1 of V1 let V2(x1) be the union of minimal rational curves emanating from x1

and write V2 for the closure of
⋃ {V2(x1) : x1 ∈ V1}. This process can be iterated in an

obvious way to define V1,V2,V3, . . . ,Vk, . . . . From the condition that X is of Picard
number 1 it follows using deformation theory of rational curves that Vn = X ([HM2,
(4.2), Proposition 13]).

With respect to the process of adjunction of minimal rational curves there is a class
of projective subvarieties which deserve attention in the context of a geometric theory
basing on varieties of minimal rational tangents. To formulate it we introduce a notion
of saturation with respect to minimal rational curves which applies in general to the
situation of Fano manifolds and more generally to uniruled projective manifolds, but
we will specialize to the case of a rational homogeneous space of Picard number 1, in
which case there is a unique choice of minimal rational component K whose members are
precisely projective lines with respect to the first canonical embedding. In particular,
all minimal rational curves are nonsingular. We will denote by CX ⊂ PTX the total
space of its varieties of minimal rational tangents, which is a holomorphic bundle of
projective submanifolds. We have

Definition 5. Let (X,K) be a rational homogeneous space of Picard number 1 equipped
with the unique minimal rational component K whose members are of degree 1 with
respect to O(1). Denote by CX ⊂ PTX the total space of its varieties of K-tangents. Let
Σ ⊂ X be an irreducible projective subvariety and E ⊂ CX

∣∣
Σ

be a subvariety. For y ∈ Σ
denote by Ey the fiber of E over y. We say that (Σ, E) ↪→ (X, CX) is rationally saturated
if
(a) Ey = PTy(Σ) ∩ CX 6= ∅ for a smooth point y ∈ Σ, and
(b) for every smooth point y on Σ, and for every minimal rational curve C (i.e.

projective line) on X passing through y, C must necessarily lie on Σ whenever[
Ty(C)

] ∈ Ey.
More generally, if Σ is an irreducible complex-analytic subvariety of some domain
U ⊂ X, we say that (Σ, E) ↪→ (X, CX) is rationally saturated if and only if the same
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conditions (a) and (b) are satisfied, except that for (b) we require only that the germ of
the minimal rational curve C at y must necessarily lie on Σ whenever [Ty(C)] ∈ Ey.

If we take a minimal rational curve on X to play the role of a geodesic, the notion of
rational saturation of (Σ, E) ↪→ (X, CX) is the analogue of a totally geodesic subspace in
Riemannian geometry, except that in the former notion the ‘geodesics’ (minimal rational
curves) are only defined for a distinguished set of tangent directions corresponding to
varieties of minimal rational tangents.

By an obvious adaptation of the method of proof of Hwang-Mok [HM5] on Cartan-
Fubini type extension, [(2.2), Proposition 2], and the proof of [(2.2), Proposition 3], we
have

Theorem 1. Let X resp. Z be an irreducible Hermitian symmetric spaces of the com-
pact type of rank ≥ 2 and write CX resp. CZ for the total space of its varieties of
minimal rational tangents. Let U ⊂ Z be a connected open subset and f : U → X be a
holomorphic embedding onto a complex submanifold S ⊂ V of some open subset V ⊂ X

such that [df ](CZ , z) ⊂ (CX , f(z)). Suppose at a general point of S, the non-degeneracy
condition (††) in [(2.2), Definition 4] on projective second fundamental forms is satisfied
at a general point of CX ∩PTS. Then, (S, CX ∩PTS) is rationally saturated with respect
to (X, CX). Furthermore, f extends to a rational map F : Z → X.

Since [(2.2), Proposition 2] holds true for holomorphic maps between irreducible
Hermitian symmetric spaces of the compact type, the scheme of proof of [(2.2), Propo-
sition 3] applies in the general set-up of Theorem 1 provided that (††) is satisfied. The
bulk of the proof of Proposition 3 says that it is indeed satisfied in the special case of
maps between Grassmannians of rank ≥ 2 which respect VMRTs and which satisfies
an additional non-degeneracy assumption. Together with Theorem 1 this says that in
the special case of maps between Grassmannians under consideration in Proposition 3,
the germ of holomorphic map f : (G(p, q), 0) → (G(r, s), 0) extends to a rational map
F : G(p, q) → G(r, s).

§3 Completion to a standard embedding by the adjunction of rational curves
(3.1) For the study of germs of holomorphic maps between irreducible Hermitian sym-
metric spaces of the compact type, in the last section we reach a point where one can
in principle verify analytic continuation by checking the non-degeneracy condition (††)
in terms of second fundamental forms. In the case of Grassmannians of rank ≥ 2 under
consideration in [(2.2), Proposition 3], we are going to prove that the analytic continu-
ation actually yields a standard embedding. We will accomplish this by introducing a
notion of parallel transport of VMRTs along minimal rational curves. In general, this
notion concerns the tangent spaces of VMRTs along a minimal rational curve, but in
some cases such as the Grassmannians under consideration, the parallel transport allows
us to identify VMRTs along a minimal rational curve on a given submanifold S with
those of a model submanifold M , eventually leading to an identification of S as an open
subset of M . We have
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Proposition 4. Let p, q, r, s be integers such that 2 ≤ p ≤ r, 2 ≤ q ≤ s. Let S ⊂
G(r, s) be a germ of pq-dimensional complex submanifold at 0 ∈ G(r, s) such that C :=
PTS ∩ CG(r,s) ⊂ PTS defines in a canonical way a Grassmann structure on S modeled
on G(p, q). Assume that (S, C) is rationally saturated with respect to

(
G(r, s), CG(r,s)

)
.

Then, S is an open subset of a complex submanifold M ↪→ G(r, s) such that M is
biholomorphically isomorphic to the Grassmann manifold G(p, q), and such that the
embedding M ↪→ G(r, s) is a standard embedding.

Proof. For convenience we make use of Harish-Chandra coordinates on a Zariski open
neighborhood of 0 ∈ G(r, s) where the latter point is identified with the origin of
M(r, s) ∼= Cr ⊗ Cs. By assumption C0 := PT0(S) ∩ CG(r,s) = P(Cp) × P(Cq) ↪→
P(Cr) × P(Cs) = C0

(
G(r, s)

) ⊂ PT0

(
G(r, s)

)
. There exists a Grassmann submani-

fold M ⊂ G(r, s), M ∼= G(p, q), such that T0(M) = Cp ⊗ Cq ↪→ Cr ⊗ Cs ∼= M(r, s) =
T0

(
G(r, s)

)
. We proceed to prove that S is actually an open subset of M .

We introduce a process of partial adjunction of open subsets of minimal rational
curves to recover some nonempty open subset of S, as follows. Denote by K the unique
minimal rational component on G(r, s). On G(r, s) consider the double fibration µ : C →
G(r, s) and ρ : C → K, where µ = π

∣∣
C for the canonical projection π : PTG(r,s) → G(r, s),

K is the Chow component of lines on G(r, s), and ρ : C → K defines the tautological
P1-bundle over K. We sometimes write ρ : Cρ → K to emphasize the role of C as the
total space of a holomorphic P1-bundle. For each α ∈ C̃0 recall that Cα is the unique
line on G(r, s) passing through 0 such that T0(Cα) = Cα. Write Dα := S ∩ Cα and
define U ]

1 =
⋃{Dα : α ∈ C̃0}. Clearly there exists a non-empty subset U1 ⊂ U ]

1 such
that U1 is a locally closed submanifold of G(r, s), dim(U1) = p + q + 1. Now for any
y ∈ S and β ∈ C̃y define analogously the line Cβ passing through y, Ty(Cβ) = Cβ, and
Dβ := S ∩ Cβ .

Define U ]
2 :=

⋃{Dβ : β ∈ C̃y, y ∈ U1}. Again choose a nonempty subset U2 ⊂ U ]
2

such that U2 is a locally closed submanifold of G(r, s) of maximal possible dimension, in
the following way. U ]

2 can be identified as the image under a canonical holomorphic map
γ of some open subsetW0 of the tautological P1-bundle over C∣∣U1

i.e., W0 ⊂ ρ∗Cρ
∣∣
µ−1(U1)

is an open subset. Choose a point w ∈ W0 where γ is of maximal rank and define U2 ⊂ U ]
2

to be γ(W) for a sufficiently small open neighborhood W of w in W0. We continue this
process to obtain a sequence of locally closed complex submanifolds U1,U2, . . . ,Ui, . . .

with dim(Uk+1) ≥ dim(Uk) and stop whenever dim(Uk+1) = dim(Uk). Since Cy ⊂
PTy(S) is linearly non-degenerate the process continues unless dim(Uk) = dim(S), i.e.,
Uk ⊂ S is an open subset. In what follows k will denote the first index such that
dim(Uk) = dim(S).

The crux of our proof is an argument which allows us to show inductively that
Ui ⊂ M and that for every y ∈ Ui, Cy ⊂ PTy(M), so that U ]

i+1 ⊂ M , and hence
Ui+1 ⊂ M . For this it suffices to prove the following lemma, which may be regarded
as a method of parallel transport of varieties of minimal tangents along a line. In what
follows for clarity we write Cy(S) in place of Cy for y ∈ S.

Lemma 5. In the notations of Proposition 4 let M ⊂ G(r, s) be a Grassmann subman-
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ifold, M ∼= G(p, q). Let y ∈ S be such that Cy(S) = Cy(M), and C be a line on M

passing through y. Then, for each z ∈ C ∩ S, Cz(S) = Cz(M).

Assuming the lemma, we proceed to prove that Ui ⊂ U ]
i ⊂ M for each i = 1, 2, . . . , k

by induction. Clearly U1 ⊂ M . For i ≥ 2 assume inductively that Ui ⊂ M and that
Cy(S) = Cy(M) for every y ∈ Ui−2 with the convention that U0 = {0}. By Lemma 5,
Cy(S) = Cz(M) for every z ∈ Ui−1. It follows that lines emanating from z ∈ Ui−1 and
tangent to S at z must lie on M . Since U ]

i is obtained from Ui−1 by adjoining portions
of lines emanating from Ui−1, we have Ui ⊂ U ]

i ⊂ M , as asserted. Finally, Uk ⊂ S is a
non-empty open set, and it follows that S ⊂ M , as asserted in Proposition 4. It remains
to establish Lemma 5.

Proof of Lemma 5. By assumption, S is the image of some germ of holomorphic em-
bedding f :

(
G(p, q), 0

) → (
G(r, s), 0

)
. Let U ⊂ G(p, q) be the open neighbor-

hood of 0 where f is defined such that f maps U biholomorphically onto S. Let
now y0 ∈ U be close to 0, y = f(y0), such that Cy(S) = Cy(M), and C0 be a
line on G(p, q) passing through y0, C ⊂ G(r, s) a line passing through y such that
df(Ty0(C0)) = Ty(C) ⊂ Ty(S). Let z ∈ C ∩ S be distinct from y, z0 ∈ C0 be such that
f is defined at z0, f(z0) = z. Write Tz0(C0) = Cγ0. Let Σ0 ⊂ G(p, q) be the union of
lines emanating from y0, so that Σ0 is nonsingular at z0. Define Σ = f(Σ0 ∩U), so that
Σ is nonsingular at z. Σ ⊂ G(r, s) is an open subset of the union of lines C emanating
from y such that Ty(C) ⊂ Ty(S).

From the deformation theory of rational curves we have

T[γ0]

(Cz0

(
G(p, q)

))
= Tz0(Σ0)

/
Tz0(C0) = Tz0(Σ0)

/
Cγ0 . (1)

Then, writing γ = df(γ0) we have by (1)

T[γ]

(Cz(S)
)

= Tz(Σ)
/
Tz(C0) = Tz(Σ)

/
Cγ . (2)

On the other hand since Cy(S) = Cy(M) we conclude that Σ ⊂ M , so that Σ ⊂ S ∩M .
Again by the deformation theory of rational curves we have

T[γ0]

(Cz(M)
)

= Tz(Σ)
/
Cγ = T[γ]

(Cz(S)
)

. (3)

Thus we have two projective submanifolds Cz(S), Cz(M) ⊂ Cz

(
G(r, s)

)
, both of dimen-

sion p+q−1 and containing [γ] such that (3) holds, i.e., Cz(M) and Cz(S) are tangent to
each other at [γ]. We observe now that we must have from the hypothesis of Proposition
4 that Cz(S) = P(AS)× P(BS) ⊂ P(Cr)× P(Cs) ⊂ P(Cr ⊗Cs) = PTz

(
G(r, s)

)
for some

vector subspaces AS ⊂ Cr, BS ⊂ Cs, dim(AS) = p, dim(BS) = q. The analogue holds
true for Cz(M) with Cz(M) = P(AM ) × P(BM ) ⊂ P(AM ⊗ BM ). The statement that
Cz(S) and Cz(M) are tangent to each other at z translates into the fact that, writing
γ = a⊗ b,

T[γ]

(Cz(S)
)

= (a⊗BS) + (AS ⊗ b) = (a⊗BM ) + (AM ⊗ b) = T[γ]

(Cz(M)
)

. (4)
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which implies readily that AS = AM , BS = BM . In other words, tangency of Cz(S) and
Cz(M) at [γ] implies Cz(S) = Cz(M), as asserted in Lemma 5. The proof of Lemma 5
is complete, from which Proposition 4 follows. ¤

In Proposition 4 the germ of complex submanifold S ⊂ G(r, s) at 0 ∈ G(r, s) is by
hypothesis the image of the germ of G(p, q) at 0 under a holomorphic map f , and the
Grassmann structure on S modeled on G(r, s), defined by C := PTS ∩CG(r,s), was shown
to agree with the Grassmann structure on S induced by f . Starting with S ⊂ G(r, s)
and forgetting about the germ of holomorphic mapping f , we have in the hypothesis of
Proposition 4 equivalently a flat Grassmann structure on S. Combining Propositions
3 and 4 we have given a new proof of Theorem C which we formulate in terms of
Grassmann structures in view of the nature of our proof.

Theorem 2. Let X be a Grassmann manifold, CX ⊂ PTX its total space of varieties
of minimal rational tangents, and S ⊂ X be a germ of complex submanifold such that
E := TS∩CX defines canonically a flat Grassmann structure of rank ≥ 2. Then (S, E) ↪→
(X, CX) is rationally saturated, and S is an open subset of a Grassmann submanifold
M ⊂ X.

Remarks As is apparent the proofs of Proposition 4 and Theorem 2 can be easily
modified to yield Neretin’s more general result referred to after the statement of [(1.2),
Theorem C] in which the germ of map is not required to be an embedding. It suffices
to consider foliations on the image of the germ of the holomorphic map.

§4 A perspective on the study of proper holomorphic maps in terms of
geometric structure
(4.1) We are now in a position to give a proof of Tsai’s Theorem ([1.1], Theorem A]) on
proper holomorphic maps between bounded symmetric domains in the special case of
irreducible bounded symmetric domains of type I, by a proof that exploits (a) boundary
values of holomorphic functions on a bounded symmetric domain and (b) the study of
geometric structures by means of rational curves.

Proof of Theorem A in the case of Type-I domains. To make the proof self-contained
we recall the argument of taking boundary values of Mok-Tsai [MT] and Tsai [Ts]
on product domains embedded in bounded symmetric domains. We have the Borel
embedding D(p, q) ⊂ G(p, q), D(r, s) ⊂ G(r, s). Let p, q, r, s be positive integers such
that min(p, q) = min(r, s) ≥ 2 so that the Type-I domains D(p, q) and D(r, s) are of
the same rank ρ ≥ 2. Let f : D(p, q) → D(r, s) be a proper holomorphic map. For
each minimal disk ∆ ⊂ D(p, q) there exists a product domain Π ⊂ D(p, q) which can
be naturally identified with ∆ × D(p − 1, q − 1). Restricting to Π, we consider the
holomorphic mappings fz(w) = f(z, w), z ∈ ∆, w ∈ D(p − 1, q − 1). For almost every
boundary point ζ ∈ ∆, letting z converge to ζ non-tangentially we obtain a holomorphic
mapping fζ : D(p− 1, q − 1) → ∂D(r, s). We may regard fζ as being defined on a face
Φ of ∂D(p, q), Φ ∼= D(p−1, q−1). From the boundary structure of bounded symmetric
domains (cf. Wolf [Wo]) the image of fζ must lie in some face Ψ of ∂D(r, s) such that
Ψ ∼= D(r− 1, s− 1). It follows that every rank-1 vector α tangent to Φ at some b ∈ Φ is
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transformed under dfζ to a vector of rank ≤ ρ−1. The condition on the rank of a vector,
which is identified with a matrix, is given by the vanishing of a number of minors. We
have a constant vector field α̃ on a neighborhood of the topological closure of the product
domain Π which agrees with α at b. The vanishing of the minors for dfζ(α) for almost
every ζ ∈ ∂∆ forces the vanishing of df(α̃) on all of Π from the Cauchy integral formula
in terms of non-tangential boundary values of bounded holomorphic functions on the
unit disk, and we conclude that df(α̃) must also satisfy the same algebraic identities,
i.e., the vanishing of the minors. The preceding argument can be applied to any product
domain Π ⊂ D(p, q) as defined, and we conclude that df transforms any rank-1 vector
to a vector of rank ≤ ρ−1. An inductive argument allows us to conclude that in fact df

transforms rank-1 vectors to either rank-1 vectors or 0. From the properness assumption
on f it follows readily that df is injective outside some complex-analytic subvariety of
D(p, q). Thus, the map f defines a holomorphic embedding of some domain U ⊂ D(p, q)
which transforms rank-1 vectors to rank-1 vectors. By [(2.1), Lemma 3] either (a) df(x)
is complex equivalent to a standard embedding τ : D(p, q) → D(r, s) for every x ∈ U ,
or else (b) the image of f must lie on some projective linear subspace P of G(r, s).
But P ∩ D(r, s) is the complex ball B , and all boundary components in ∂B must be
0-dimensional. By the preceding restriction argument on product domains Π ⊂ D(p, q)
we conclude that f is actually constant, a plain contradiction. Having proved that
Alternative (a) holds true, by [(3.2), Theorem 2], f : D(p, q) → D(r, s) is in fact itself a
standard embedding, proving Theorem A in the special case of Type-I domains. ¤.

(4.2) We have given in the current article a proof of the special case of Theorem A (from
Tsai [Ts]) pertaining to Type-I domains of E. Cartan (hence to Grassmannians) in the
hope that this can serve as an example relating function theory on bounded symmetric
domains to the geometric theory of Fano manifolds (including Hermitian symmetric
spaces of the compact type). This involves on the one side harmonic analysis, more
specifically integral representations of boundary values of bounded holomorphic func-
tions on the one side, and on the other side the Cartan-Fubini Extension Principle in
terms of minimal rational curves as a far-reaching generalization of Theorem B (from
Ochiai [Oc]). The link between the two apparently distinct areas of research is through
a proof of Ochiai’s Theorem by means of holomorphic local differential geometry, where
certain generalized conformal structures are studied by means of the geometry of va-
rieties of minimal rational tangent as subvarieties of the projectivized tangent spaces,
and where the primary differential projective-geometric invariant utilized in the current
article is the projective second fundamental form.

The proof of Theorem A in the special case pertaining to Grassmannians suggests a
scheme of research (a) to identify bounded domains Ω which admit natural embeddings
into some (quasi-)projective manifolds X on which there exists a notion of minimal
rational curves; (b) to study the holomorphic local differential geometry of geometric
structures on X and its local complex submanifolds inherited from varieties of minimal
rational tangents; (c) to develop harmonic analysis on the bounded domains Ω for
the study of proper holomorphic maps by means of geometric structures. Possible
examples of bounded domains susceptible to a study by means of geometric structures
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and minimal rational curves may include certain classes of bounded homogeneous spaces
as defined by Pyatetskii-Shapiro [P-S] and the crown domains defined by Akhiezer
and Gindikin [AG]. The scope of study of (b) includes rigidity problems on germs
of holomorphic maps on rational homogeneous spaces independent of consideration of
any bounded domains on them. In this direction Hong-Mok [HoM] is able to make
use of geometric structures underlying varieties of minimal rational tangents to prove
rigidity results for maps between certain pairs of rational homogeneous manifolds of
Picard number 1. On the other hand for the special case of maps between irreducible
Hermitian symmetric spaces of the compact type, Hong [Ho] had established stronger
rigidity theorems characterizing certain complex submanifolds which do not necessarily
come from the image of the map. In the context of [(3.2), Theorem 2] her result says that
the complex submanifold S ⊂ X is necessarily a Grassmann submanifold provided that
it inherits a Grassmann structure of rank ≥ 2 without requiring that such a structure
comes from the holomorphic image of a Grassmann manifold. This result suggests that
for the case where ambient manifolds are irreducible Hermitian symmetric spaces of the
compact type, rigidity results for submanifolds are amenable to a proof in two steps,
viz., to prove first of all that G-structures inherited from ambient Hermitian symmetric
spaces of the compact type are necessarily flat, so that the complex submanifold can
be locally identified as the holomorphic image of some irreducible Hermitian symmetric
manifold of the compact type, and then to make use of [(3.2), Theorem 2] and its
generalizations to prove rigidity results. If this scheme is implementable, then extended
to the class of rational homogeneous spaces (for which apparently the method of [Ho]
is difficult to apply), one is led to the general question of (d) proving integrability
of inherited geometric structures modeled on rational homogeneous spaces of Picard
number 1.
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