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Abstract

Let A be a 0 − 1 matrix with precisely two 1’s in each column and let 1 be the all-one vector. We

show that the problems of deciding whether the linear system Ax ≥ 1, x ≥ 0

(1) defines an integral polyhedron,

(2) is totally dual integral (TDI), and

(3) is box-totally dual integral (box-TDI)

are all co-NP-complete, thereby confirming the conjecture on NP-hardness of recognizing TDI systems

made by Edmonds and Giles in 1984.
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1 Introduction

Many combinatorial optimization problems can be naturally formulated as integer linear programs. Due

to the special feature of such a problem, sometimes the corresponding linear programming (LP) relaxation

yields an optimal solution that is integral, thus solving the problem; sometimes both the LP relaxation

and its dual have integral optimal solutions; sometimes box-integrality property holds for the LP relaxation

and its dual. While a basic theme in combinatorial optimization is to identify various problems with these

properties, the present paper is concerned with hardness of recognizing such scenarios.

A rational linear system Ax ≥ b, x ≥ 0 is called totally dual integral (TDI) if the maximization problem

in the LP-duality equation

min{wT x |Ax ≥ b, x ≥ 0} = max{yT b |yT A ≤ wT , y ≥ 0}

has an integral optimal solution y for every integral vector w for which the maximum is finite. Furthermore,

system Ax ≥ b, x ≥ 0 is called box-totally dual integral (box-TDI) if the system Ax ≥ b, x ≥ 0, u ≥ x ≥ l

is TDI for all rational vectors u and l, where coordinates of u are allowed to be +∞. The model of TDI

systems plays a crucial role in polyhedral combinatorics, and serves as a general framework for establishing

many important results, in particular, min-max relations since, as shown by Edmonds and Giles [8], total

dual integrality implies primal integrality: if Ax ≥ b, x ≥ 0 is a TDI system and b is integral, then the

polyhedron {x |Ax ≥ b, x ≥ 0} is integral. (As usual, a polyhedron P is called integral if each face of P

contains integral vectors.)

A number of well-known results and difficult conjectures in combinatorial optimization can be rephrased

by saying that certain polyhedra are integral or certain linear systems are TDI, for instance, the celebrated

strong perfect graph theorem obtained recently by Chudnovsky, Robertson, Seymour, and Thomas [4]. So

the following recognition problems, all proposed in Schrijver [13], are of both great theoretical interest and

practical value.

Problem 1.1 Given a rational linear system, does it determine an integral polyhedron?

Problem 1.2 Given a rational linear system, is it TDI?

Problem 1.3 Given a rational linear system, is it box-TDI?

In connection with Problem 1.2, Edmonds and Giles [9] made the following conjecture.

Conjecture 1.4 It is co-NP-complete to decide whether a given rational linear system is TDI.

The main purpose of this paper is to establish the following result.

Theorem 1.5 Let A be a 0− 1 matrix with precisely two 1’s in each column and let 1 be the all-one vector.

Then the problems of deciding whether the linear system Ax ≥ 1, x ≥ 0

(1) defines an integral polyhedron,

(2) is totally dual integral (TDI), and

(3) is box-totally dual integral (box-TDI)

are all co-NP-complete.
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From this theorem we deduce that Problems 1.1-1.3 are all NP-hard. Hence the NP-hardness addressed

in Conjecture 1.4 is confirmed. In Schrijver [13], it was shown that Problem 1.1 is in co-NP, and so are

Problems 1.2 and 1.3 if the matrix involved in the linear system is integral. In general, however, the question

whether Problems 1.2 and 1.3 are in NP or co-NP is still unanswered.

It is worthwhile pointing out that, first, Problems 1.1-1.3 can all be solved in polynomial time if the rank

of the matrix involved in the linear system is a fixed constant, as shown by Cook, Lovász, and Schrijver

[6]; second, classical results of Chvátal [5], Fulkerson [10], and Lovász [12] imply that for any 0 − 1 matrix

A, the system Ax ≤ 1, x ≥ 0 defines an integral polyhedron if and only if it is TDI if and only if A is the

clique-vertex incidence matrix of a perfect graph. Since clique-vertex incidence matrices of graphs can be

recognized in polynomial time, according to a result of Gilmore on conformal hypergraphs (see page 396 of

Berge [1]), the recent breakthrough on perfect graphs [3, 4] implies that such a TDI system can be recognized

in polynomial time.

The remainder of this paper is organized as follows. In section 2, we show that the problems addressed in

Theorem 1.5 are essentially equivalent to the problem of recognizing the so-called quasi-bipartite graphs. In

section 3, we verify that it is co-NP-complete to recognize quasi-bipartite graphs, thus proving the theorem.

In section 4, we extend two classical min-max theorems on bipartite graphs proved by Kőnig and Gupta,

respectively, to general graphs, and demonstrate that such a min-max relation holds on a graph G if and

only if G is essentially a quasi-bipartite graph.

2 Equivalence

To establish the desired complexity results, we shall appeal to a graph recognition problem. A graph G is

called quasi-bipartite if for any odd cycle C in G, the deletion of all vertices on C from G results in at least

one isolated vertex (in other words, G− V (C) contains at least one component which has only one vertex).

Note that any bipartite graph is quasi-bipartite. We shall prove that the three problems in our consideration

are essentially equivalent to the problem of recognizing quasi-bipartite graphs.

The following theorem gives a structural description of quasi-bipartite graphs.

Theorem 2.1 Let G = (V, E) be a connected simple graph. Then G is quasi-bipartite if and only if either

G is K4 (the complete graph with four vertices) or there is a partition (X1, X2, Y, Z1, Z2, . . . , Zt) (possibly

X1 ∪X2 = ∅ and t = 0) of V such that

(i) for each x ∈ X1, the degree d(x) = 1 and the only neighbor of x is in X2;
(ii) each vertex in X2 is adjacent to at least one vertex in X1, and there is no edge between X2 and

Z1 ∪ Z2 ∪ . . . ∪ Zt;
(iii) there are t distinct unordered pairs {y1

1 , y2
1}, {y1

2 , y2
2}, . . . , {y1

t , y2
t } of vertices in Y such that

(a) y1
i 6= y2

i for i = 1, 2, . . . , t;

(b) both y1
i and y2

i are adjacent to all vertices in Zi for i = 1, 2, . . . , t;

(c) each odd cycle of G− (X1 ∪X2) contains both y1
i and y2

i for at least one i with 1 ≤ i ≤ t;
(iv) |Zi| ≥ 2 for i = 1, 2, . . . , t, and the degree d(z) = 2 for all z ∈ Z1 ∪ Z2 ∪ . . . ∪ Zt.
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Proof. The “if” part follows instantly from the conditions (i)-(iv) listed above. So we proceed to the

“only if” part and assume G 6= K4. We need to identify a required partition of V .

The choices for X1 and X2 are clear. Let X1 denote the set of all vertices x of G with d(x) = 1, and let

X2 denote the set of all vertices in V −X1 which are adjacent to at least one vertex of X1 in G.

(1) For each odd cycle D in G− (X1 ∪X2), there exists a vertex w in G− (X1 ∪X2 ∪ V (D)) such that

the neighbors of w in G are all contained in D.

Since G is quasi-bipartite and D is an odd cycle, by definition there exists a vertex w ∈ G− V (D) such

that the neighbors of w in G are all contained in D. Note that w /∈ X1 (for otherwise D would contain

vertices in X2) and that w /∈ X2 (for otherwise w has a neighbor in X1, which is outside D). Thus (1) holds.

The main part of this proof is to show the following, which will give us the desired partition.

(2) For each odd cycle C in G− (X1∪X2), there exist a pair of distinct vertices {u, v} on C and a subset

W of V − (X1 ∪X2 ∪ {u, v}) (possibly W ∩ V (C) 6= ∅) such that

• |W | ≥ 2; and

• each vertex w ∈ W has degree two in G and is adjacent to both u and v.

We prove (2) by contradiction. Suppose some odd cycle C in G− (X1 ∪X2) is a counterexample to (2)

with the shortest length.

(3) We may assume that C is an induced cycle in G, for otherwise let C ′ be an odd cycle formed by a

chord and a segment of C. Then |V (C ′)| < |V (C)|. By the minimality of C, there exist a pair of distinct

vertices {u, v} on C ′ and a subset W of V − (X1 ∪X2 ∪{u, v}) with the properties as described in (2). Thus

(2) holds for C with respect to {u, v} and W , a contradiction.

(4) C is not a triangle (a cycle of length three).

Suppose the contrary: C is a triangle abc. We claim that

(5) There exists a vertex w /∈ X1 ∪X2 ∪ {a, b, c} which has degree two in G and is adjacent to precisely

two of a, b, c.

To justify (5), let s be a vertex in G − (X1 ∪ X2 ∪ V (C)) such that the neighbors of s in G are all

contained in C (recall (1)). Since s /∈ X1 and |V (C)| = 3, we have d(s) = 2 or 3. If d(s) = 2 then w = s is

as desired. So we assume d(s) = 3. For any pair of vertices {p, q} on C, by (1), there exist a vertex tpq in

G− (X1∪X2∪{p, q, s}) such that the neighbors of tpq in G are all contained in {p, q, s}. Observe that for at

least one such pair {p, q}, vertex tpq is not the one in {a, b, c} − {p, q}, for otherwise s, a, b, c all have degree

three in G and hence G = K4, a contradiction. Since the neighbors of s are a, b, c, this tpq is not adjacent to

s. From tpq /∈ X1 ∪X2 ∪ {a, b, c}, we deduce that w = tpq is as desired. Thus claim (5) is established.

Let w be the vertex as specified in (5). Rename the vertices if necessary, we may assume that a, b are

the only neighbors of w. Then (1) guarantees the existence of a vertex w′ in G− (X1 ∪X2 ∪{a, b, w}) which

is adjacent to no vertex outside {a, b, w} in G. Since w′ /∈ X1, we see that w′ has degree two in G and is

adjacent to both a and b. Set W = {w, w′}. Then (2) holds with respect to vertex pair {a, b} and W , this

contradiction yields (4).
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Let c0, c1, . . . , c2k be all the vertices on C in cyclic order. By (4), we have

(6) k ≥ 2.

(7) Let p be an arbitrary vertex outside C. If p is adjacent to no vertex outside C, then p has degree two

in G and is adjacent to ci and ci+2 for some i with 0 ≤ i ≤ k, where the subscripts are taken modulo 2k + 1.

To justify (7), note first that p /∈ X1 ∪ X2 for C contains no vertex in X1 ∪ X2 (recall the definitions

of X1 and X2). So d(p) ≥ 2. If d(p) = 2 but the neighbors of p are not of distance two on C or if

d(p) ≥ 3 then, by (6), we can find an induced odd cycle C ′ formed by p and a segment of C such that

|V (C ′)| < |V (C)|. Thus the minimality of C guarantees the existence of a vertex pair {u, v} on C ′ and a

subset W of V − (X1∪X2∪{u, v}) with properties as described in (2). Since all neighbors of p are contained

in C, they must have degree at least three and hence must be all outside W . So p /∈ {u, v}. It follows that

(2) also holds for C with respect to {u, v} and W , this contradiction establishes (7).

Suppose p is a vertex outside C such that p has degree two in G and is adjacent to both ci and ci+2

for some i with 0 ≤ i ≤ k, where the subscripts are taken modulo 2k + 1. Notice that there is no second

vertex q (6= p) outside C such that q has degree two in G and also has ci and ci+2 as its neighbors, since

otherwise the vertex pair {ci, ci+2} and set W = {p, q} would satisfy (2) with respect to C, a contradiction.

For convenience, let pi+1 denote the unique vertex outside C (if any) such that pi+1 has degree two in G

and is adjacent to both ci and ci+2, and let P denote the set of all these pi+1’s. Since G is quasi-bipartite,

by (7) we have P 6= ∅. Rename the vertices of C if necessary, we may assume that p0 exists. Let i0, i1, . . . , il

be the longest subsequence of the sequence 0, 1, . . . , 2k with the following properties:

(a) i0 < i1 < . . . < il, i0 = 0, and il ≤ 2k − 1;

(b) for each j with j ≥ 1, term ij is the smallest subscript t such that t ≥ ij−1 + 2 and that pt ∈ P .

Observe that

(8) d(cij ) ≥ 3 for each j = 0, 1, . . . , l, since otherwise the vertex pair {cij−1, cij+1} and set W = {pij , cij}
would satisfy (2) with respect to C, a contradiction.

Let C ′ be the odd cycle obtained from C by replacing all cij with pij for 0 ≤ j ≤ l. We propose to show

that

(9) There is no vertex outside C ′ whose neighbors are all contained in C ′.

To justify (9), we assume the contrary: some vertex q outside C ′ has all neighbors in C ′. Since d(pij ) = 2,

vertex q is not adjacent to pij for any j = 0, 1, . . . , l. So q has all neighbors in C. In view of (3) and (8),

vertex q 6= cij for any j = 0, 1, . . . , l, and so q is outside C. It follows from (7) that q is some pt in P .

According to selection (b), we must either have some j with 0 ≤ j ≤ l such that t = ij + 1 or have t = 2k.

Thus q has at least one neighbor cij or c0 outside C ′, contradicting the choice of q. Thus (9) follows.

From (9) we conclude that G is not a quasi-bipartite graph, this contradiction completes the proof of (2).

Let us call a pair {u, v} of vertices a blocking pair if there exist an odd cycle C in G− (X1 ∪X2) and a set

W of vertices that have the properties as described in (2).

(10) If {u, v} is a blocking pair then d(u) ≥ 3 and d(v) ≥ 3.
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If (10) was false then at least one of u and v, say u, has degree at most two, which implies d(u) = 2 since

u 6∈ X1. By the definition of a blocking pair, the corresponding set W must contain precisely two vertices,

say w1 and w2. Since d(w1) = d(w2) = 2, it follows that the only cycle containing u is the one induced

by {u, v, w1, w2}, contradicting the assumption that {u, v}, as a blocking pair, is contained in an odd cycle.

This contradiction proves (10).

Let {u1, v1}, {u2, v2}, ..., {ut, vt} be all the blocking pairs and let W1, W2, ..., Wt be the corresponding

sets of vertices. For any two distinct indices i, j ∈ {1, 2, ..., t}, we have Wi ∩Wj = ∅ since {ui, vi} 6= {uj , vj}.
Moreover, Wi ∩ {uj , vj} = ∅ since vertices in Wi have degree two while, by (10), uj and vj each has

degree at least three. Therefore, setting {y1
i , y2

i } = {ui, vi} and Zi = Wi for i = 1, 2, ..., t, and then

Y = V (G)− (X1 ∪X2 ∪ Z1 ∪ Z2 ∪ ... ∪ Zt) defines a required partition.

Let A be a 0− 1 matrix with precisely two 1’s in each column and with dimension m× n. To matrix A,

we associate a graph G[A] = (V,E) with m vertices and n edges as follows: each vertex i corresponds to row

i of A, and each edge ij corresponds to a column of A in which the two 1’s are contained in row i and row

j. (Possibly G[A] contains parallel edges.) From the definition we see that A is nothing but the vertex-edge

incidence graph of G[A].

Lemma 2.2 Let A be a 0−1 matrix with precisely two 1’s in each column, let 1 be the all-one vector, and let

G[A] = (V,E) be the graph associated with A. If the system Ax ≥ 1, x ≥ 0 defines an integral polyhedron,

then G[A] is quasi-bipartite.

Proof. Assume the contrary: for some odd cycle C of G[A], no component of G[A]−V (C) contains only

one vertex. Let w be the following weight function defined on E: we = 0 for all edges e in G[A]− V (C) and

1 otherwise. Next, let x∗ be the vector defined on E such that x∗e = 1/2 if e is an edge on C, x∗e = 1 if e is

an edge in G[A]−V (C), and x∗e = 0 otherwise. Finally, let y∗ be the vector defined on V such that y∗v = 1/2

if v is a vertex on C and 0 otherwise. Since each component of G[A]− V (C) contains at least one edge, x∗

and y∗ are feasible solutions to the primal and dual in the following LP-duality equation, respectively.

min{wT x |Ax ≥ 1, x ≥ 0} = max{yT 1 |yT A ≤ wT , y ≥ 0} (2.1)

Note that wT x∗ = (y∗)T 1 = (2k + 1)/2, where 2k + 1 is the length of C. By the LP-duality theorem, x∗

and y∗ are optimal solutions to the primal and dual in (2.1), respectively. Since w is an integral vector while

the optimal value of (2.1) is (2k + 1)/2 (not integral), the system Ax ≥ 1, x ≥ 0 does not define an integral

polyhedron, a contradiction.

The following theorems assert that the problems addressed in Theorem 1.5 are essentially equivalent to

the problem of recognizing quasi-bipartite graphs.

Theorem 2.3 Let A be a 0−1 matrix with precisely two 1’s in each column, let 1 be the all-one vector, and

let G[A] = (V,E) be the graph associated with A. Then the following statements are equivalent:

(i) The system Ax ≥ 1, x ≥ 0 is TDI;

(ii) The system Ax ≥ 1, x ≥ 0 is box-TDI;

(iii) The graph G[A] is quasi-bipartite, and no component of G[A] contains K4 as a spanning subgraph.
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Theorem 2.4 Let A be a 0−1 matrix with precisely two 1’s in each column, let 1 be the all-one vector, and

let G[A] = (V,E) be the graph associated with A. Then the following statements are equivalent:

(i) The system Ax ≥ 1, x ≥ 0 defines an integral polyhedron;

(ii) The graph G[A] is quasi-bipartite.

Let us present the proofs of these two theorems.

Proof of Theorem 2.3. It is well known that (ii)⇒(i).

(i)⇒(iii). By Lemma 2.2, G[A] is quasi-bipartite. To show the remaining statement, we assume the

contrary: some component Ω of G[A] contains K4 as a spanning subgraph. Let w be the following weight

function defined on E: we = 1 for all edges e in Ω and 0 otherwise. Then min{wT x |Ax ≥ 1, x ≥
0, integer} = 2, while max{yT 1 |yT A ≤ wT , y ≥ 0, integer} = 1. Thus, by the Edmonds-Giles theorem [8],

Ax ≥ 1, x ≥ 0 is not TDI, a contradiction.

(iii)⇒(ii). We aim to show that the system Ax ≥ 1, u ≥ x ≥ l, x ≥ 0 is TDI for all rational vectors
u and l defined on E. This amounts to showing that for any integral vector w defined on E such that the
maximum (and hence the optimal value) of the following LP-duality equation

min

8
>><
>>:

wT x

��������

2
664

A

I

−I

3
775x ≥

2
664

1

l

−u

3
775, x ≥ 0

9
>>=
>>;

= max

8
>><
>>:

yT

2
664

1

l

−u

3
775

��������
yT

2
664

A

I

−I

3
775≤wT , y ≥ 0

9
>>=
>>;

(2.2)

is finite, the maximization problem in (2.2) has an integral optimal solution. To this end, let y∗ be an

optimal solution to the maximization problem in (2.2) and let η∗i denote the ith entry of y∗. (We shall also

use ηi to denote the ith entry of y.)

For convenience, let G′ = (V,E′) be the simple graph defined as follows: ij ∈ E′ if and only if there is

at least one edge between i and j in G. Clearly G′ is quasi-bipartite if and only if so is G. From hypothesis

(iii), it can be seen that no component of G′ is K4. So the vertex set V of G′ (and hence of G[A]) admits a

partition (X1, X2, Y, Z1, Z2, . . . , Zt) (possibly X1 ∪X2 = ∅ and t = 0) with properties (i)-(iv) as described

in Theorem 2.1.

(1) We may assume that η∗i = 0 for any vertex i ∈ X2.

Otherwise, let j be a vertex in X1 such that i is the only neighbor of j in G. Define a vector ȳ such

that η̄i = 0, η̄j = η∗i + η∗j , and η̄k = η∗k for any k 6= i, j. Clearly, ȳ is a feasible solution to the maximization

problem in (2.2) and has the same objective value as y∗. So ȳ is also an optimal solution to the maximization

problem. Repeatedly applying the same procedure, we have (1).

(2) We may assume that for each odd cycle C in G[A], there is a vertex i on C such that η∗i = 0.

Otherwise, C contains no vertex in X1 ∪X2 by the definition of X1 and by (1). In view of Theorem 2.1,

there exist a vertex pair {y1
k, y2

k} on C and a vertex subset Zk outside X1 ∪X2 ∪ {y1
k, y2

k} such that

• each vertex in Zk is adjacent to both y1
k and y2

k but nonadjacent to any other vertex in G;

• there is no edge between any two vertices in Zk; and

• |Zk| ≥ 2.
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Let z1, z2 be two vertices in Zk, and let η∗p , η∗q , η∗r , η∗s be the entries of y∗ corresponding to vertices y1
k, y2

k, z1, z2,

respectively. Set δ = min{η∗p , η∗q}, and define a vector ȳ such that η̄i = η∗i − δ if i = p or q, η̄i = η∗i + δ if

i = r or s, and η̄i = η∗i for any i 6= p, q, r, s. Clearly, ȳ is a feasible solution to the maximization problem in

(2.2) and has the same objective value as y∗. So ȳ is also an optimal solution to the maximization problem.

Note that at least one of η̄p and η̄q is zero. Repeatedly applying the same procedure, we get (2).

Let U denote the set of all vertices i with η∗i = 0, and let Ā be the matrix obtained from A by deleting

the rows corresponding to all vertices i in U . Then

(3) Ā is a totally unimodular matrix.

To justify (3), notice that G − U is a bipartite graph by (2). It follows that the vertex-edge incidence

matrix M of G−U is totally unimodular (see page 273 of Schrijver [13]). Clearly, Ā is obtained from M by

adding 0− 1 columns with at most one 1. By definition, it is easy to see that Ā is also a totally unimodular

matrix, so (3) is proved.

Once again from the definition we deduce that

(4)




Ā

I

−I


 is also a totally unimodular matrix.

Consider the following LP problem

max

8
>><
>>:

zT

2
664

1

l

−u

3
775

��������
zT

2
664

Ā

I

−I

3
775≤wT , z ≥ 0

9
>>=
>>;

. (2.3)

Let z̄ be the vector obtained from y∗ by deleting all entries η∗i with i ∈ U . Clearly z̄ is a feasible solution

to (2.3). So

(5) The optimal value of (2.2) = the objective value of (2.2) corresponding to y∗ = the objective value

of (2.3) corresponding to z̄ ≤ the optimal value of (2.3).

In view of (4), (2.3) has an integral optimal solution z∗ (see Theorem 19.3 (ii) of Schrijver [13]). Let ȳ

be the vector obtained from z∗ by adding entries η̄i = 0 for all i ∈ U . Clearly ȳ is a feasible solution to (2.2)

and is integral. So

(6) The optimal value of (2.3) = the objective value of (2.3) corresponding to z∗ = the objective value

of (2.2) corresponding to ȳ ≤ the optimal value of (2.2).

Combining (5) and (6), we see that all inequalities in (5) and (6) hold with equalities, and hence ȳ is an

integral optimal solution to the maximization problem in (2.2), completing the proof.

Proof of Theorem 2.4. The implication (i)⇒(ii) is already established in Lemma 2.2. Let us show

that (ii)⇒(i). For this purpose, we turn to prove that

(1) If G[A] contains K4 as a spanning subgraph, then (i) holds.

Let Q6 be the vertex-edge incidence matrix of K4, which is also the triangle-edge incidence matrix of K4

(since the planar dual of K4 is also K4). Then A is obtained from Q6 by duplicating some columns. Let w
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be an arbitrary nonnegative integral weight function defined on E. We define a vector w̄ on the edge set

of K4, such that w̄ij is the smallest weight of all edges between i and j in G for all 1 ≤ i < j ≤ 4. It is a

routine matter to check that

(2) The minimization problem in (2.1) has an integral optimal solution if and only if the problem

min{w̄T z |Q6z ≥ 1, z ≥ 0} has an integral optimal solution.

It was shown by Seymour [7, 15] that system Q6z ≥ 1, z ≥ 0 defines an integral polyhedron. So

min{w̄T z |Q6z ≥ 1, z ≥ 0} has an integral optimal solution, and hence so does the minimization problem

in (2.1) by (2). Therefore (1) is established.

Applying (1) and Theorem 2.3 to each component of G[A], we get the desired statement.

3 Complexity

Given the equivalence established in the preceding section, we are ready to prove Theorem 1.5. Let us first

consider the aforementioned graph recognition problem, and then we shall reduce the problems addressed in

Theorem 1.5 to this one.

Quasi-bipartite recognition problem

Instance: A connected simple graph G = (V, E) with minimum degree at least three and

a set of vertex pairs in G.

Question: Does every odd cycle in G contain at least one of these pairs?

Theorem 3.1 The quasi-bipartite recognition problem is co-NP-complete.

Proof. Obviously, the quasi-bipartite recognition problem is in co-NP . To prove the assertion, it

suffices to reduce the 3-SATISFIABILITY problem (3SAT ) [11] to the complement of this problem. Let

U = {u1, u2, . . . , un} be the set of variables and let C = {C1, C2, . . . , Cm} be the set of clauses in an arbitrary

instance of 3SAT in CNF. We aim to construct a connected simple graph G = (V,E) with minimum degree

at least three and a set of vertex pairs in G so that there exists an odd cycle in G that contains none of these

vertex pairs if and only if C is satisfiable. The construction goes as follows:

(1) For each variable ui ∈ U , there is a truth-setting component Ti, which is obtained from the cycle

a2i−2a
1
2i−1a2ia

2
2i−1a2i−2 by adding one special edge a1

2i−1a
2
2i−1. Note that Ti and Ti+1 have precisely

one vertex a2i in common.

(2) For each clause Cj ∈ C, there is a satisfaction-testing component Sj , which is the union of three

internally disjoint paths b2j−2b
k
2j−1b2j for k = 1, 2, 3. Note that Sj and Sj+1 have precisely one vertex

b2j in common.

(3) For each clause Cj ∈ C, let z1
j , z2

j , and z3
j denote the three literals in Cj . For each literal zk

j , if zk
j = up

for some p, then add one special edge bk
2j−1a

2
2p−1; if zk

j = ūp for some p, then add one special edge

bk
2j−1a

1
2p−1.
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(4) Finally, add one edge a0b2m and identify b0 with a2n.

The construction of G is completed, and the vertex pairs are precisely endvertex pairs of special edges. An

illustration is depicted in Figure 1. It is easy to see that the construction can be accomplished in polynomial

time and the resulting graph has 3n + 4m + 1 vertices and 5n + 9m + 1 edges (in which n + 3m edges are

special).

a0

b0

b1
1

b2b4

b1
3

a1
1

a1
2

a2 a4

10= a

b12 b1
2

Figure 1. A partially constructed graph, with n = 5 and m = 6.

Let us show that there exists an odd cycle in G that contains none of these vertex pairs if and only if C
is satisfiable.

Sufficiency. Suppose that τ : U → {true, false} is a satisfying truth assignment for C. Then there

exists at least one true literal in each clause. We choose one (denote it by z
hj

j ) from each clause Cj such

that τ(zhj

j ) = true. For each variable ui, if τ(ui) = true, then we take the path Qi = a2i−2a
1
2i−1a2i; if

τ(ui) = false, then we take the path Qi = a2i−2a
2
2i−1a2i. Let D be the cycle formed by edge a0b2m, all

paths Qi for i = 1, 2, . . . , n, and all paths b2j−1b
hj

2j−1b2j for j = 1, 2, . . . ,m. Clearly D is an odd cycle in G.

For each j, if z
hj

j = up for some p, then τ(up) = true, and so Qp = a2p−2a
1
2p−1a2p. According to construction

(3), b
hj

2j−1 is nonadjacent to a1
2p−1. Similarly, if z

hj

j = ūp, then Qp = a2p−2a
2
2p−1a2p, and b

hj

2j−1 is nonadjacent

to a2
2p−1. From these two observations and the selection of Qi, we see that D contains none of the given

vertex pairs.

Necessity. Suppose D is an odd cycle in G that contains none of the given vertex pairs. Then D contains

no special edges and hence is fully contained in H, the subgraph obtained from G by deleting all special

edges. Observe that H − {a0b2m} is a bipartite graph and has a plump path-like structure. From this

observation and the given vertex pairs we deduce that D contains edge a0b2m and that

(5) For each i = 1, 2, . . . , n, either D contains the path a2i−2a
1
2i−1a2i or contains the path a2i−2a

2
2i−1a2i;

(6) For each j = 1, 2, . . . , m, there exists precisely one hj ∈ {1, 2, 3} such that D contains the path

b2j−2b
hj

2j−1b2j .

Let us now define a truth assignment τ : U → {true, false} by setting τ(ui) = true if the path specified

in (5) is a2i−2a
1
2i−1a2i, and τ(ui) = false otherwise, for i = 1, 2 . . . , n. It remains to show that each clause

Cj is satisfied by τ . Recall the subscript hj in (6), if z
hj

j = up for some p, then b
hj

2j−1 is adjacent to a2
2p−1

in G, and hence {bhj

2j−1, a
2
2p−1} is contained in the given vertex pairs by (3). So D must contain the path

a2i−2a
1
2i−1a2i by (5). According to the definition of τ , we therefore have τ(up) = 1. It follows that Cj is

10



satisfied. Similarly, we can verify that if z
hj

j = ūp for some p, then τ(up) = 0 and hence Cj is also satisfied,

completing the proof.

Now let us establish the main result of this paper.

Proof of Theorem 1.5. Since A is an integral matrix, as shown in Schrijver [13], the three problems in

our consideration are all in co-NP . To prove the assertion, we shall reduce the quasi-bipartite recognition

problem to these problems.

For this purpose, let G = (V, E) be a connected simple graph with minimum degree at least three and let

{y1
1 , y2

1}, {y1
2 , y2

2}, . . . , {y1
t , y2

t } be the given vertex pairs, where t ≥ 1. Now add 2t vertices z1
1 , z2

1 , z1
2 , z2

2 , . . . , z1
t , z2

t

to G and make both z1
i and z2

i adjacent to both y1
i and y2

i for all i with 1 ≤ i ≤ t. Let G′ denote the result-

ing graph and let A be the vertex-edge incidence graph of G′. We claim that the following statements are

equivalent:

(1) Each odd cycle in G contains at least one of the given pairs;

(2) G′ is a connected quasi-bipartite simple graph;

(3) The system Ax ≥ 1, x ≥ 0 defines an integral polyhedron;

(4) The system Ax ≥ 1, x ≥ 0 is TDI;

(5) The system Ax ≥ 1, x ≥ 0 is box-TDI.

Indeed, since the minimum degree of G is at least three, from Theorem 2.1 (with X1 ∪X2 = ∅) we deduce

that (1) and (2) are equivalent. As G′ is a connected simple graph and G′ 6= K4, the equivalence of (2)-(5)

follows instantly from Theorem 2.3 and Theorem 2.4. Thus the claim is justified.

In view of the above claim and Theorem 3.1, we conclude that the problems addressed in Theorem 1.5

are all NP -hard. This completes the proof of our theorem.

4 Min-max relations

Let G = (V, E) be a graph. An edge cover of G is a subset F of E such that each vertex of G is incident to

at least one edge in F . Clearly G has an edge cover if and only if the minimum degree of G is at least one.

A star of G consists of all the edges in G incident to a vertex. Now let w be a nonnegative integral weight

function defined on E. As defined in Schrijver [14], a w-stable set of G is a nonnegative integral function

y defined on V such that yu + yv ≤ we for each edge e = uv. Moreover, a w-edge cover packing of G is a

collection E of edge covers (repetition is allowed) so that each edge e is contained in at most we members of

E . We propose to

• call G Kőnig if the minimum weight of an edge cover in G is equal to the maximum weight of a w-stable

set, for any nonnegative integral w; and

• call G Gupta if the minimum weight of a star in G is equal to the maximum size of a w-edge cover

packing, for any nonnegative integral w.

11



Graphs are so named because of the corresponding min-max theorems on bipartite graphs proved by these

two authors; see Schrijver [14] for comprehensive information. The purpose of this section is to give complete

characterizations of Kőnig graphs and Gupta graphs.

Theorem 4.1 A graph G = (V, E) is Kőnig if and only if G is quasi-bipartite, and no component of G

contains K4 as a spanning subgraph.

Theorem 4.2 A graph G = (V, E) is Gupta if and only if G is quasi-bipartite.

Let us now proceed to the proofs of these theorems.

Proof of Theorem 4.1. Let A be the vertex-edge incidence matrix of G. By the Edmonds-Giles

theorem [8], G is Kőnig if and only if the system Ax ≥ 1, x ≥ 0 is TDI. Thus the desired statement follows

instantly from Theorem 2.3.

Proof of Theorem 4.2. Without loss of generality, we may assume that G is connected.

Necessity. Assume the contrary: G is Gupta but not quasi-bipartite. Then G contains an odd cycle

C such that no component of G − V (C) contains only one vertex. Let w be the following weight function

defined on E: we = 1 if e is an edge on C, we = 2 if e is an edge in G − V (C), and we = 0 otherwise.

Then the minimum weight of a star is two. Let E be an arbitrary w-edge cover packing in G. Then each

edge cover in E contains at least k + 1 edges from C, where 2k + 1 is the length of C. So the size of E and

hence the maximum size of a w-edge cover packing in G is at most one, which implies that G is not Gupta,

a contradiction.

Sufficiency. Let w be a nonnegative integral weight function defined on E and let G′ be the graph

obtained from G by replacing each edge e with we parallel edges. To prove that the minimum weight of a

star in G is equal to the maximum size of a w-edge cover packing, it suffices to show that

(1) G′ has a δ-edge coloring such that all δ colors are represented at each vertex, where δ is the minimum

degree of G′.

Let us introduce some notions defined in Bondy and Murty [2] before presenting a proof of (1). Given a

k-edge coloring C of G′, we denote by c(v) the number of distinct colors represented at v, and call a k-edge

coloring C′ an improvement on C if ∑

v∈V

c′(v) >
∑

v∈V

c(v),

where c′(v) is the number of distinct colors represented at v in the coloring C′. An optimal k-edge coloring

is one which cannot be improved.

To prove (1), we consider an optimal δ-edge coloring C of G′. For convenience, let G′′ be the subgraph

obtained from G′ as follows: for any vertex pair {i, j} and any color k, if there is at least one edge between

i and j with color k in G′ then there is precisely one edge between i and j in G′′ with color k. Let D denote

the restriction of C to G′′. Clearly, D is also an optimal δ-edge coloring of G′′. Let E1, E2, . . . , Eδ denote

the color classes of D.
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Suppose there exist a vertex u in G′′ and colors i and j such that i is not represented at u and j

is represented at least twice at u. Then, by Lemma 6.1.2 in Bondy and Murty [2], the component of

G′′[Ei ∪ Ej ] that contains u is an odd cycle D. Since G is a connected quasi-bipartite graph, these exists a

vertex v outside D such that the neighbors of v in G (and hence in G′) are all contained in D. From the

structure of G′′[Ei ∪ Ej ] we deduce that neither i nor j is represented at v. So there exists a color k that

is represented at least twice at v; let x be a vertex on D such that there is at least one edge e between v

and x with color k, and let y and z be the two vertices succeeding x on D if we traverse D in cyclic order.

Without loss of generality, we may assume that

(2) u = y; that is, both edges xy and yz on D are colored by j.

Otherwise, we can obviously recolor the edges on D so that xy and yz are both colored by j and the

resulting coloring of G′ remains optimal. Hence (2) holds.

Let us recolor e by j and recolor the edge xy on D by k. By (2), the resulting δ-edge coloring of G′

improves C, contradicting the optimality of C. This completes the proof of (1) and hence the theorem.
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