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Abstract

A Boolean network (BN) is a mathematical model of genetic networks. In this paper,

we propose several algorithms for control of singleton attractors of BN. We theoretically

estimate the average case time complexities of the proposed algorithms and confirm them

by computer experiments. The results suggest the importance of gene ordering. Especially,

setting internal nodes ahead yields shorter computational time than setting external nodes

ahead in various types of algorithms. We also present a heuristic algorithm which does not

look for the optimal solution but the computational time is shorter than the exact algorithms.

1Corresponding authors. These authors contributed equally to the work.
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1 Introduction

One of the important challenges of computational systems biology and bioinformatics is to de-

velop a control theory for biological systems [21, 22]. Development of such a control theory is

interesting both from a theoretical viewpoint and from a practical viewpoint. From a theoretical

viewpoint, biological systems are highly nonlinear. For control of linear systems, extensive stud-

ies have been done and rigorous theories and useful methods have been developed. Furthermore,

many of these methods have been applied to control of various kinds of real systems. However,

it is recognized that control of nonlinear systems is far more difficult than control of linear

systems. Though there are some established methods for control of non-linear systems [16, 27],

these can only be applied to certain classes/special cases. In particular, it is very difficult to

control large scale nonlinear systems. From a practical viewpoint, as Kitano wrote [21, 22],

identification of a set of perturbations that induces desired changes in cellular behaviors may

be useful for systems-based drug discovery and cancer treatment. For example, Yamanaka et

al. developed induced pluripotent stem cells (iPS cells) by introducing 4 kinds of transcription

factors (Oct3/4, Sox2, c-Myc, Klf4) into fibroblast cells of mouse [34]. Furthermore, Yamanaka

et al. [35] and Thomson et al. [37] independently succeeded to develop iPS cells by introduc-

ing 4 kinds of factors into human cells. It is to be noted that Yamanaka et al. introduced 4

transcription factors of Oct3/4, Sox2, c-Myc and Klf4 into fibroblast cells, whereas Thomson et

al. introduced 4 factors of OCT4, SOX2, NANOG and LIN28 into somatic cells. Though these

seminal discoveries were achieved based on their knowledge, experience, and many experiments,

systematic methods might help such kind of works. Therefore, we study systematic methods

for control of biological systems. In this paper, we focus on control of gene regulatory networks

because these networks play a fundamental role in cells and may be efficiently controlled by

over-expression and suppression of genes.

Various kinds of mathematical models have been proposed for modeling gene regulatory

networks. These models include neural networks, differential equations, Petri nets, Boolean

networks, probabilistic Boolean networks (PBNs) and multivariate Markov chain model [5, 17,

33, 24]. Among these models, Boolean network (BN) [18, 19, 20] has been well-studied. BN is a

very simple model: each node (e.g., gene) takes either 0 (inactive) or 1 (active) and the states of

nodes change synchronously. Although BN is very simple, its dynamic process is complex and
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can give insight to the global behavior of large genetic regulatory networks [36].

The total number of possible global states for a Boolean network with n genes is 2n. However,

for any initial condition, the system will eventually evolve into a limited set of stable states called

attractors. The set of states that can lead the system to a specific attractor is called the basin of

attraction. Each attractor can contain one or many states. An attractor having only one state is

called a singleton attractor. Otherwise, it is called a cyclic attractor. Attractors are biologically

interpreted so that different attractors correspond to different cell types [20] or different cell

states [14].

Motivated by this biological interpretation, extensive studies have been done on the average

case analysis of the number and length of attractors in randomly generated BNs [3, 9, 20, 31],

although there is no conclusive result. Recently, several methods have been developed for effi-

ciently finding or enumerating attractors in BNs [8, 11, 15, 38], whereas it is known that finding

a singleton attractor (i.e., a fixed point) is NP-hard [1, 23]. Devloo et al. developed a method

using transformation to a constraint satisfaction problem [8]. Garg et al. developed a method

based on Binary Decision Diagrams (BDDs) [11]. Irons developed a method that makes use of

small subnetworks [15]. However, theoretical analysis of the average case complexity was not

addressed in these works. We recently developed algorithms for identifying singleton attractors

and small attractors and analyzed the average case time complexities of these algorithms [38].

Finding a sequence of control actions for BNs is another important topic on BNs. Datta

et al. proposed methods for finding control actions for probabilistic Boolean networks (PBN)

[6, 7, 29], where a PBN is a probabilistic extension of a BN [32]. In their approach, the control

problem is defined as minimization of the total of the control cost and the cost of terminal state.

The control cost is defined as the cost of applying control inputs in some particular states, and

higher terminal costs are usually assigned to those undesirable states. Their approach is based

on the theory of controlled Markov chains and makes use of the theory of probabilistic dynamic

programming. They extended their approach for handling context-sensitive PBNs [28] and/or

infinite-horizon optimal control [30]. Since BNs are special cases of PBNs, their methods can also

be applied to finding control actions for BNs. However, all of these approaches need to handle

2n × 2n matrices, which limits application of these approaches only to small size (e.g., less than

20 nodes) networks. Therefore, we studied computational complexity of the control problem

on BN and PBN, and proved that finding an optimal control strategy is NP-hard for both BN
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and PBN [2]. In order to break the barrier of computational complexity, an approximate finite-

horizon optimal control has been introduced [26] and a heuristic method based on Q-learning

algorithm for approximating the optimal infinite-horizon control policy has been proposed [10].

However, application of these approaches is still limited to small networks.

In this paper, we propose a new model for control of BN: control of attractors of BN. Though

our model can be extended to cyclic attractors to some extent (as shown in Section 3.9), here we

focus on singleton attractors. Since cyclic attractors correspond to cell cycles appearing in such

cases as cell division and cell growth whereas singleton attractors correspond to steady states of

cells or cell types, it is reasonable to begin with singleton attractors. We assume that a BN and

a score function are given as an input, where the score function indicates the closeness of the

attractor state to the desired state. We also assume that nodes in a BN are divided to internal

nodes and external nodes, where states of external nodes can only be controlled. Then, our

objective is to determine 0/1 states of external nodes so that the score of the resulting singleton

attractor is maximized. However, if there exist multiple attractors, the attractor into which a

BN is evolved depends on an initial state of a BN. Since it is very difficult to know the initial

state exactly, we modify the objective so that the minimum score of the singleton attractors is

maximized or exceeds a given threshold. In this model, external nodes correspond to candidate

genes and/or transcription factors to be added or to be deleted (suppressed) and the objective

is to make a cell to go to a preferable state regardless of the current state of the cell.

In order to solve the proposed problem, we develop several algorithms based on our previous

work [38]. In [38], we developed a series of algorithms for finding singleton and small attractors

in a BN. The most important feature of the algorithms is that the average case time complexity

was theoretically analyzed and was experimentally corroborated. It was shown that most of

these are much faster than O(2n) if the maximum indegree is bounded by some constant K.

For example, one of the algorithms works in O(1.19n) time and O(1.27n) time (in the average

case) for K = 2 and K = 3 respectively, which are much faster than O(2n). Many of the

algorithms proposed in this paper have similar properties. For example, it is shown that one

of the algorithms works in O(1.266n) and O(1.393n) time for K = 2 and K = 3 respectively

under some reasonable conditions. Though these time complexities are worse than those in

[38], the problem considered in this paper is much more difficult than one in [38]. Therefore,

these results are reasonable and are still much faster than O(2n). It is to be noted that some
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of the proposed algorithms are far from straight-forward extensions of [38] and novel ideas are

introduced in some of the theoretical analyses. Most of the theoretical results are corroborated

through computational experiments.

It is to be noted that the state-space based methods [6, 7, 26, 29, 30] need at least O(2n)

time. Though a Q-learning based method [10] needs polynomial update time, it seems that an

exponential number of repetitions are required to obtain preferable control actions. Our proposed

model may be interpreted as a variant of the infinite-horizon control model [30]. However, our

developed algorithms are quite different from those in [30]. Though our proposed algorithms

are based on [38], the problems to be solved are different from those in [38] and several new

ideas are introduced in development of the algorithms. As a related work, Pal et al. studied the

problem of generating BNs with a prescribed attractor structure [29]. Though their model has

some similarity with our model, applicability of their methods is limited to small size networks.

The organization of the paper is as follows. First, we briefly review BN and then give a

formal definition of the problem. Next, we present our proposed algorithms, their theoretical

analyses and the results on computational experiments. Then, we present an approximate but

faster heuristic algorithm. Finally, we conclude with future work.

2 Problem of controlling singleton attractors

In this section, we briefly review the Boolean network model and then formulate the problem

explained above. After that we present enumeration-based algorithms and perform theoretical

and empirical analyses.

2.1 Boolean network and attractor

Let G(V, F ) represent a Boolean network which consists of a set of n nodes V = {v1, v2, . . . , vn}
and n Boolean functions F = {f1, f2, . . . , fn}. Generally, V and F are regarded as genes and a set

of regulatory rules of genes respectively. Let vi(t) denote the state of vi at the time step t, where

vi(t) = 0 means that the ith gene is not expressed and vi(t) = 1 means that it is expressed. The

overall expression level of all genes in the BN is represented by gap(t) = [v1(t), v2(t), . . . , vn(t)],

which is called the Gene Activity Profile (GAP) of the network at time t. Since gap(t) ranges

from [0, 0, . . . , 0] to [1, 1, . . . , 1], there are 2n possible global states. Regulatory rules of gene
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states are given as follows:

vi(t + 1) = fi(vi1(t), vi2(t), . . . , viki
(t)), i = 1, . . . , n.

This rule means that the state of gene vi at time t + 1 depends on the states of ki genes at time

t, where ki is called the indegree of vi. Furthermore, the maximum indegree of a BN is defined

as K = maxi{ki}. The number of genes which are directly influenced by gene vi is called the

outdegree of gene vi. The states of all genes are changed synchronously according to the corre-

sponding Boolean functions. A consecutive sequence of GAPs “gap(t), gap(t+1), . . . , gap(t+p)”

is called an attractor with period p if gap(t) = gap(t + p). When p = 1, an attractor is called a

singleton attractor. When p > 1, it is called a cyclic attractor.

An example of a truth table of a BN is shown in Table 1. Every gene vi updates its state ac-

cording to a regulatory rule fi. Since the state transitions of this BN are as shown in Figure 1, the

system will eventually evolve into one of three attractors. Two of them are singleton attractors,

[0, 1, 1] and [1, 1, 0]. The other is a cyclic attractor with period 3, [0, 0, 0]→[1, 0, 0]→[0, 1, 0].

In this paper, we assume that there are two types of nodes in a BN; external nodes and

internal nodes. Let ve,1, ve,2, . . . , ve,m and vi,1, vi,2, . . . , vi,n be external and internal nodes of

a BN respectively. Note that the total number of nodes in a BN is m + n hereafter. When

it is not necessary to distinguish internal and external nodes, v1, v2, . . . , vm+n are used to

specify nodes. Furthermore, let gap(t, ex) and gap(t, in) denote [ve,1(t), ve,2(t), . . . , ve,m(t)] and

[vi,1(t), vi,2(t), . . . , vi,n(t)] respectively.

Now, we formulate the main problem of this paper.

Singleton Attractor Controlling Problem (SACP)

• Input: a Boolean network which consists of m external nodes and n internal nodes, and

a score function S(vi, a), that is, a function from V × {0, 1} to real. We assume that

Boolean functions are randomly assigned to nodes and the parent nodes of each node are

also randomly determined with ki ≤ K.

• Output: a 0-1 assignment to external nodes which maximizes the minimum score of

singleton attractors, where the score of an attractor is given as
∑

vi∈V S(vi, a).
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For example, in a BN of Table 1, let v1 be an external node and let v2 and v3 be internal

nodes. Furthermore, assume that score functions of nodes of this BN are given as Table 2. If v1

is fixed as 0, the BN of Table 1 is converted to as shown in Table 3 and its state transition is

shown in Figure 2. In this BN, there are three singleton attractors, [0, 0, 0], [0, 0, 1] and [0, 1, 1],

and their scores are 3+1+2=6, 3+1+4=8 and 3+5+4=12 respectively. Therefore, when v1 is

fixed as 0 in the BN of Table 1, the minimum score of singleton attractors is 6. On the other

hand, if v1 is fixed as 1, the BN of Table 1 is converted to as shown in Table 4 and its state

transition is as shown in Figure 3. In this BN, there are two singleton attractors, [1, 1, 0] and

[1, 1, 1], and their scores are 0+5+2=7 and 0+5+4=9 respectively. Therefore, when v1 is fixed

as 1 in the BN of Table 1, the minimum score of singleton attractors is 7. Thus, in order to

maximize the minimum score of singleton attractors, we should fix the external node v1 as 1

since 6 < 7.

For this problem, one of the robust algorithms is to enumerate all singleton attractors and

check the score of every singleton attractor. For this strategy, it is reasonable to utilize the basic

recursive algorithm [38] as a subroutine. Although algorithms proposed in this paper are to some

extent similar to those in [38], further observations and different approaches are necessary to

estimate their computational time since [38] does not include the notion of external and internal

nodes.

3 Enumeration based algorithms

Before presenting enumeration-based algorithms for SACP, we briefly review the basic recursive

algorithm in [38]. In this algorithm, a partial GAP is extended one by one towards a complete

GAP according to a given gene ordering. If it is found that a partial GAP cannot be extended

to a singleton attractor, the next partial GAP is examined. Although all proposed algorithms

in this section are based on the same framework which includes the basic recursive algorithm as

a subroutine, gene orderings are different from each other. Therefore we explain only methods

of gene ordering for most algorithms although we present the whole pseudo-code of the first

algorithm.

In the following, we present algorithms for SACP and estimate their average computational

time. Since some approximations are used for these theoretical analyses, each estimated compu-
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tational time is not exactly the same as the result of the computer experiments shown in Section

3.8.

3.1 Algorithm 1 : ExternalAhead

Algorithm for gene ordering: First, all external nodes are examined. After that all internal

nodes are examined.

Pseudo code

Input: Boolean network (V, F ) and score function S(vi, a)

Output: 0-1 assignment to external nodes which maximizes the minimum score of single-

ton attractors

Begin

Initialize maxmin = −∞;

for z = 0 to 2m − 1 do

for d = 1 to m do

ve,m−d+1(t) = the d-th digit of the binary number representation of z.

Initialize min = ∞; g = 1;

Procedure MinScoreAttractor(v, g)

if g = n + 1 and score(ve,1(t), . . . , ve,m(t), vi,1(t), . . . , vi,n(t)) < min, then

min =score(ve,1(t), . . . , ve,m(t), vi,1(t), . . . , vi,n(t));

for h = 0 to 1 do vi,g(t) = h;

if it is found that vi,j(t + 1) 6= vi,j(t) for some j ≤ g, then continue;

else MinScoreAttractor(v, g + 1);

if min 6= ∞ and maxmin < min,

then maxmin = min;

for d = 1 to m do
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v′e,d(t) = ve,d(t)

if maxmin 6= −∞, then return {v′e,1(t), . . . , v′e,m(t)};

else return null;

End

Theoretical analysis: Assume that b of n internal nodes have already been examined. The

overall computational time can be represented by

time(b = 0) + time(b = 1) + · · ·+ time(b = n− 1).

The number of terms is n and each term will be exponential of n as shown below. The overall

average time complexity will only be affected by the largest term in the above formula since

n ·an ¿ (a+ ε)n holds for arbitrary ε > 0 when a > 1 and n is large enough. Similar discussions

will also be applied to the other algorithms.

For internal nodes, we have

P (vj(t) 6= vj(t + 1)) = 0.5 ·


m + b

ki





m + n

ki



≈ 0.5 ·

( m + b

m + n

)ki ≥ 0.5 ·
( m + b

m + n

)K
.

The probability that the algorithm examines the (m + b + 1)-th gene is no more than

{
1− 0.5 ·

( m + b

m + n

)K}b
.

The number of recursive calls executed for the first (m + b) genes is at most

2m+b ·
{

1− 0.5 ·
( m + b

m + n

)K}b
= 2m ·

{
2−

( m + b

m + n

)K}b
. (1)

By setting s = m+b
m+n , we can obtain b = sm + sn −m. Furthermore, we assume that m = αn.

Therefore Eq. (1) is rewritten as

2m · {2− sK}sm+sn−m = 2αn · (2− sK){(1+α)s−α}n = {f(s)}n. (2)
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Thus, the average computational time can be estimated as

n · max
α

1+α
≤s≤1

{f(s)}n ∼ O
(

max
α

1+α
≤s≤1

{f(s)}n
)
.

With simple numerical calculations, we can confirm that the maximum values of (2) for fixed K

and α are as shown in Tables 5 and 7.

3.2 Algorithm 2: Basic

Algorithm for gene ordering: Nodes are chosen at random.

Theoretical analysis: Assume that a of m external nodes and b of n internal nodes have

already been examined. We can assume m/n = a/b holds approximately. When a + b is large

(compared with k),

P (vj(t) 6= vj(t + 1)) = 0.5 ·


a + b

ki





m + n

ki



≈ 0.5 ·

( a + b

m + n

)ki ≥ 0.5 ·
( a + b

m + n

)K
.

The probability that the algorithm examines the (a + b + 1)-th gene is no more than

{
1− 0.5 ·

( a + b

m + n

)K}b
.

The number of recursive calls executed for the first (a + b) genes is at most

2a+b ·
{

1− 0.5 ·
( a + b

m + n

)K}b
.

Note that the above term can be ignored when a + b is small. By setting a = mb
n and m = αn,

the above term can be rewritten as

2(1+α)b ·
[
1− 0.5 ·

{ (1 + α)b
(1 + α)n

}K]b
= 2αb ·

{
2−

( b

n

)k}b
.

By setting s = b/n,

2αsn(2− sK)sn = [{2α(2− sK)}s]n = g(s).

As similar to the analysis of the previous algorithm, the average computational time can be

estimated as max0≤s≤1{g(s)} and its maximum values for fixed K and α are shown in Tables 5

and 7. Note that the range of s is different from that of the previous algorithm.
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Intuitively, this algorithm is the same as the basic recursive algorithm in [38]. However,

the computational time depends on α since vi(t) = vi(t + 1) always holds for an external node.

Therefore, assigning an external node always leads to the next recursive loop and thus the

computational time becomes higher than that of the basic recursive algorithm in [38].

3.3 Algorithm 3 : ExternalBehind

Algorithm for gene ordering: First, all internal nodes are examined (STEP1). After that

all external nodes are examined (STEP2).

Theoretical analysis: At STEP1, the number of recursive calls executed for the first b genes

is at most

2b ·
{

1− 0.5 ·
( b

m + n

)K}b
=

{
2−

( b

m + n

)K}b
= f(b).

By setting s1 = b
m+n , we can obtain b = s1m + s1n. Note that the definition of s is different

from those of the previous algorithms. Therefore,

f(b) = (2− s1
K)s1m+s1n.

Furthermore, by setting m = αn,

f(b) = (2− s1
K)s1(1+α)n.

At STEP2, the number of recursive calls executed for the first n + a genes is at most

2n ·
{

1− 0.5 ·
( n + a

m + n

)K}n
=

{
2−

( n + a

m + n

)K}n
= f(a).

By setting s2 = n+a
m+n ,

f(a) = (2− s2
K)n.

The whole computational time of ExternalBehind can be bounded by

n ·max
{

max
0≤b≤n

f(b), max
0≤a≤m

f(a)
}

∼ O
(
max

{
max

0≤s1≤ 1
1+α

{2− s1
K}s1(1+α)n, max

1
1+α

≤s2≤1
(2− s2

K)n
})

.

It can be confirmed that the maximum values for fixed K and α are as shown in Tables 5 and 7.
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3.4 Algorithm 4: ExternalLastOne

To achieve smaller time complexity, it is necessary to detect a contradiction for the condition

of a singleton attractor at early stage. To detect a contradiction from a node, the node and all

its parent nodes must be assigned. Therefore one of reasonable methods is to find an assigned

node vi for which ki − 1 of ki parent nodes have already been assigned and then assign the

non-assigned node so that all parent nodes of vi are assigned. We call such a non-assigned

node LastOne node. In the following three algorithms, we utilize the notion of “LastOne”. The

frameworks of these three algorithms are the same: (i) First, a non-assigned node is randomly

chosen. (ii) Second, if there is a “LastOne” node, assign it either 0 or 1. By further restricting

(i) and (ii), we developed following three algorithms as shown in Table 9.

Algorithm for gene ordering: If there is an external node vc which satisfies the following

condition, vc is chosen to be assigned either 0 or 1. Otherwise, a non-assigned internal node is

randomly chosen.

• vi and all parent nodes of vi have already been assigned except vc.

If there are multiple external nodes both of which satisfy the condition, one of them is randomly

selected to be assigned. Moreover, if some external nodes are still non-assigned when all internal

nodes have been assigned, remaining nodes will be randomly chosen one by one.

Example: Assume that v2, v3, v4 and v5 have already been assigned either 0 or 1 as shown in

Figure 4 (a). Furthermore, assume that v1 is an external node and has not been assigned yet.

In such a case, we select v1 instead of randomly selecting a non-assigned internal node.

For another example, assume that v3, v4 and v5 have been assigned as shown in Figure 4

(b). Moreover, assume that both v1 and v2 are non-assigned external nodes. If all internal nodes

have already been assigned at this point, one of v1 and v2 will randomly be chosen to be assigned

and then the other will be assigned. However, such a case rarely happens since K is small.

Theoretical analysis: Assume that a of m external nodes and b of n internal nodes have

already been assigned. The average number of edges which are from internal nodes to vi is Kn
m+n .

The average number of internal nodes of which all its parent internal nodes have already been
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assigned is

n ·
( a + b

m + n

) Kn
m+n

.

Since the average outdegree of an external node is also Kn
m+n ,

a · Kn

m + n
= n ·

( a + b

m + n

) Kn
m+n · Km

m + n

holds approximately. Therefore, we have

a = m ·
( a + b

m + n

) Kn
m+n

.

By setting s = a+b
m+n and m = αn,

a = αn · s K
1+α (3)

holds.

On the other hand,

P (vj(t) 6= vj(t + 1)) ≈ 0.5 ·


a + b

Kn
m+n





m + n

Kn
m+n



≈ 0.5 ·

( a + b

m + n

) Kn
m+n

holds when K is small. Therefore, the probability that ExternalLastOne examines the next

internal node of vi is no more than
{

1− 0.5 ·
( a + b

m + n

) Kn
m+n

}b

.

The number of recursive calls executed for the first a + b nodes is at most

2a+b ·
{

1− 0.5 ·
(

a+b
m+n

) Kn
m+n

}b

= 2a ·
{

2−
(

a+b
m+n

) Kn
m+n

}b

= 2a ·
(
2− s

K
1+α

)s(1+α)n−a
(4)

by setting s = a+b
m+n and m = αn. From (3) and (4), the computational time of ExternalLastOne

can be bounded by

n ·max0≤s≤1

{
2αn·s

K
1+α · (2− s

K
1+α )s(1+α)n−αn·s

K
1+α

}

∼ O
(
max0≤s≤1

{
2α·s

K
1+α · (2− s

K
1+α )s(1+α)−α·s

K
1+α

}n)
.

It can be confirmed that the maximum values for fixed K and α are as shown in Tables 5 and 7.
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3.5 Algorithm 5: LastOneAny

Algorithm for gene ordering: If there is a node vi of which all parent nodes have already been

assigned except vj , vj will be selected to be assigned either 0 or 1. Otherwise, a non-assigned

node is randomly chosen to be assigned. If there are multiple nodes both of which satisfy the

above condition, one of them is randomly selected to be assigned.

Example: Assume that v2, v3, v4 and v5 have already been assigned either 0 or 1 as shown in

Figure 4 (c). Furthermore, assume that v1 has not been assigned yet. In such a case, we select

v1 instead of randomly selecting a non-assigned node. Note that v1 is not limited to an external

node. Moreover, external nodes and internal nodes are not distinguished in this algorithm at

all.

Theoretical analysis:

P (vj(t) 6= vj(t + 1)) ≈ 0.5 ·


 a + b

K − 1





m + n

K − 1



≈ 0.5 ·

( a + b

m + n

)K−1

holds when K is small. The probability that LastOneAny examines the (a + b + 1)-th gene is

no more than {
1− 0.5 ·

( a + b

m + n

)K−1}b

.

The number of recursive calls executed at this step is at most

2a+b+1 ·
{

1− 0.5 ·
(

a+b
m+n

)K−1}b

= 2sm+sn+1 · (1− 0.5 · sK−1)sn

= 2s(1+α)n+1 · (1− 0.5 · sK−1)sn

= {{2α · (2− sK−1)}s}n = f(s)

by setting s = a+b
m+n , m = αn and a/m = b/n. Thus the average computational time can be

estimated as

n · max
0≤s≤1

{f(s)} ∼ O
(

max
0≤s≤1

{f(s)}
)
. (5)
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With simple numerical calculations, we can confirm that the maximum values of (5) for fixed K

and α are as shown in Tables 5 and 7.

3.6 LastOne

Algorithm for gene ordering: If there is a node vj which satisfies the following condition,

vj is chosen to be assigned either 0 or 1. Otherwise a non-assigned internal node is randomly

chosen.

• vi and all its parent nodes have been assigned except vj .

If there are multiple nodes both of which satisfy the above condition, one of them is randomly

selected to be assigned.

Example: Assume that v2, v3, v4 and v5 have already been assigned either 0 or 1 as shown in

Figure 4 (d). Furthermore, assume that v1 has not been assigned yet. In such a case, we select

v1 instead of randomly selecting a non-assigned internal node. Note that v1 is not limited to an

external node but external nodes and internal nodes are distinguished when non-assigned nodes

are randomly selected.

Theoretical analysis: Since the average outdegree of an external node is also Kn
m+n ,

a · Kn

m + n
= n ·

( a + b

m + n

)K−1
· m

m + n

holds approximately. Therefore, we have

a =
m

K
·
( a + b

m + n

)K−1

.

By setting s = a+b
m+n and m = αn,

a =
αn · sK−1

K
(6)

holds.

On the other hand, the probability that LastOne examines the (a+ b+1)-th gene is no more

than {
1− 0.5 ·

( a + b

m + n

)K−1}b

.
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The number of recursive calls executed for the first a+b genes is at most

2a+b ·
{

1− 0.5 ·
(

a+b
m+n

)K−1}b

= 2a ·
{

2−
(

a+b
m+n

)K−1}b

= 2a · (2− sK−1)s(1+α)n−a (7)

by using s = a+b
m+n . From (6) and (7), the average computational time can be estimated as

n ·max0≤s≤1

{
2

αn·sK−1

K · (2− sK−1){s(1+α)n−αn·sK−1

K
}
}

∼ O
(
max0≤s≤1

{(
2

2−sk−1

)αsK−1

K · (2− sK−1)s(1+α)
}n)

. (8)

With simple numerical calculations, we can confirm that the maximum values of (8) for fixed K

and α are as shown in Tables 5 and 7.

3.7 OutdLastOne

In addition to the above algorithms, we tried to find faster algorithms for SACP in terms of

empirical time complexity. As a result, the following algorithm yielded the best as shown in

Tables 6 and 8 although theoretical analysis has not been performed. This algorithm is the

extension of “Outdegree-based algorithm” of [38].

Algorithm for gene ordering: If there is a node vj which satisfies the following condition, vj

is chosen to be assigned either 0 or 1. Otherwise a non-assigned internal node with the highest

outdegree is randomly chosen.

• vi and all its parent nodes have been assigned except vj .

If there are multiple nodes both of which satisfy the above condition, one with the highest

outdegree is randomly selected to be assigned.

Example: Assume that v2, v3, v4 and v5 have already been assigned either 0 or 1 as shown in

Figure 4 (d), Furthermore, assume that v1 has not been assigned yet. In such a case, we select

v1 instead of randomly selecting an internal node with the highest outdegree.
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3.8 Computer experiments for enumeration-based algorithms

In this subsection, we evaluate the proposed algorithms by performing computer experiments

on random networks and compare empirical time complexities with theoretical ones. We ran-

domly generated 100 Boolean networks with indegree K and took the average values. These

computational experiments were done on a PC with Xeon 3.6GHz CPUs and 3GB RAM under

the Linux (version 2.6.16) operating system, where the icc compiler (version 10.1) was used

with optimization option -O3 -ipo. For each K (K = 2, 3) and each α (α = 1/10, 1/6, 1/5),

we plotted 4 or 5 points for each method. For example, Figure 5 shows the experimental re-

sult for K = 2, α = 0.2. In the experiment, we randomly generated 100 Boolean networks

for (m,n) = (1, 5), (2, 10), (3, 15), (4, 20), (5, 25). We used a tool for GNUPLOT to fit the func-

tion n log a + log b to the logarithms of the experimental results. The tool uses the nonlinear

least-squares (NLLS) Marquardt-Levenberg algorithm.

As a result, empirical time complexities for each algorithm with α = 0.1, 0.167, 0.2 and

K = 2, 3 are shown in Tables 6 and 8. Since some approximations are used in the theoretical

analyses, the theoretical time complexities shown in Tables 5 and 7 are not exactly the same as

those of empirical time complexities shown in Tables 6 and 8. However, magnitude correlations

of these algorithms are the same for each K and α. Furthermore, differences between theoretical

time complexities and empirical time complexities are not very large for each K and α. Thus

we can say that our estimation of the theoretical time complexity of each algorithm is relatively

appropriate although we used several theoretical approximations to estimate them.

3.9 Comparison among proposed algorithms

As a result of theoretical and empirical analyses for the proposed algorithms for SACP, if α

is not large, it is seen that “LastOne < LastOneAny < ExternalLastOne < ExternalBehind <

Basic < ExternalAhead” holds in terms of necessary computational time where A < B means A

is faster than B. One of the reasonable methods for analyzing the above result is to distinguish

these algorithms by depending on whether external nodes or internal nodes are assigned first.

Let us classify these algorithms into the following three types: (i)First, assign internal nodes.

After that assign external nodes. (ii)First, assign external nodes. After that assign internal

nodes. (iii)Not distinguish internal and external nodes. From “ ExternalBehind < Basic <
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ExternalAhead”, it is seen that (i) < (iii) < (ii) holds for the most basic type of algorithms. Al-

though the other algorithms utilize the notion of “last one”, they can also roughly be classified

into the above three types. For example, the only difference between “LastOne” and “Las-

tOneAny” is that “LastOne” randomly selects only internal nodes when there are no special

nodes whereas “LastOneAny” randomly selects nodes from both internal and external nodes

in the same condition. Therefore, it is reasonable to regard “LastOne” and “LastOneAny” as

(i) and (iii) respectively when comparing these two and we can confirm (i) < (iii) holds again.

On the other hand, the only difference between “ExternalLastOne” and “LastOne” is that the

notion of “last one node” is only applied to external nodes in “ExternalLast” whereas the notion

is applied to both internal and external nodes in “LastOne”. Therefore, it is also reasonable

to regard “ExternalLastOne” and “LastOne” as (ii) and (iii) respectively in this comparison

and we can confirm (iii) < (ii) holds. Note that “LastOne” is classified into (i) in the previous

comparison but is classified into (iii) in this time. It depends on which two are compared. Thus

we can confirm that (i) < (iii) < (ii) holds for various types of comparisons. Intuitively, to

reduce the computational time, it is necessary to detect a contradiction for the condition of a

singleton attractor at early stage. To detect a contradiction from a node, the node and all its

parent nodes must be assigned. However, since vi(t) = vi(t + 1) always holds for an external

node, algorithms cannot detect the contradiction from external nodes. That is why assigning

internal nodes first reduces the computational time.

However, if cyclic attractors are taken into consideration, the above property does not hold.

Now, we formulate the extended version of SACP as follows:

ACP(x) (Attractor Controlling Problem)

• Input: a Boolean network which consists of m external nodes and n internal nodes, and a

score function S(vi, a), that is, a function from V ×{0, 1} to real. We assume that Boolean

functions are randomly assigned to nodes and parent nodes of each node are also randomly

determined with ki ≤ K.

• Output: a 0-1 assignment to external nodes which maximizes the minimum score of

attractors whose periods are p, where p ≤ x and the score of an attractor is given as
∑p

t=1

∑
vi∈V S(vi(t), a).

18



Note that the score of a cyclic attractor is defined as the sum of the score of GAP for each t,

but it can be extended to other definitions such as the sum of the minimum score of each node.

Although our proposed algorithms were introduced for SACP, we extended and implemented

them for ACP(2) and ACP(3). A pseudo code of ExternalAhead for ACP(x) is shown in Ap-

pendix. Although the main part of each algorithm is the same as that for SACP, the process for

checking whether the partial assignments contradict the condition of attractors is different. Let

x-ancestor of vi be nodes which have a directed path to vi with length less than or equal to x.

For SACP, algorithms only check the relationship between the assignment of each node and its

parent nodes. However, for ACP(x), algorithms check the relationship between the assignment

of each node and its x-ancestors.

Empirical time complexities for ACP(2) and ACP(3) are shown in Tables 10 and 11 respec-

tively. Since the number of x-ancestors is relatively large when compared with m + n (around

30) for ACP(3), some elements in Table 11 are larger than O(2n). Note that these values would

be less than O(2n) if m + n were much larger. It seems that (ii) < (iii) < (i) holds for x ≥ 2

since “ExternalAhead < Basic < ExternalBehind” holds in Tables 10 and 11 although the com-

plexities of “LastOne” and “LastOneAny” are almost the same. It seems that the number of

x-ancestors affects the empirical time complexities largely. For example, “ExternalAhead” is

the slowest for SACP but faster than “Basic” and “ExternalBehind” for ACP(2) and ACP(3).

We believe the reason is that the number of x-ancestors of assigned nodes for “ExternalAhead”

is smaller than that for “Basic” and “ExternalBehind” in the cases of ACP(2) and ACP(3), but

it is larger in the case of SACP.

3.10 SACP in scale-free BN

It is known that gene regulatory networks have the scale-free property, that is, the degree

distribution approximately follows the power-law [4]. Moreover, it is observed that the outdegree

distribution follows the power-law and the indegree distribution follows the Poisson distribution

[12]. We implemented OutdLastOne for SACP with scale-free networks where indegrees are 2

and outdegrees are proportional to k−2. (Note that this k does not mean indegrees.) The average

empirical time complexities of randomly generated 100 BNs are shown in Table 13 and we can

confirm that OutdLastOne in scale-free networks is almost as fast as OutdLastOne in random

networks examined in Section 3.8. (m,n) = (6, 30), (8, 40), (10, 50), (12, 60), (14, 70) were used
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for α = 0.2 and similar numbers of nodes were also used for α = 0.1, 0.167.

4 Heuristic algorithms for SACP

In the previous section, we analyzed enumeration-based algorithms for SACP. Although these

algorithms are guaranteed to output optimal solutions, it may not be necessary to find the

rigorous optimal solutions in some practical cases. One of the possible approaches for this

purpose is to use a threshold. Based on it, we develop heuristic algorithms by modifying the

original algorithms. In the original algorithms, we update the minimum score whenever a new

singleton attractor is found. Instead, in the modified algorithms, we compare the score of a

new singleton attractor with a given threshold θ and output the corresponding assignment to

external nodes as an approximate solution if the score is greater than θ. Of course, there

may exist multiple attractors for each assignment to external nodes and the minimum is taken

(per assignment to external nodes) in the original algorithms. However, it is known that the

expected number of singleton attractors is 1 [13, 25]. Thus, it is expected that we can obtain

a good solution even if we stop the algorithms as soon as a singleton attractor whose score is

greater than θ is found. How to select θ is also an important issue in these heuristic algorithms.

If we know appropriate θ in advance, we can simply use such θ. Otherwise, we may examine

several values of θ from lower to upper. For each θ, we manually inspect the solution and we

stop further examinations if the solution is satisfactory.

Since there is no performance guarantee on the proposed heuristic approach, we examined

it by means of computational experiments. We implemented one of the proposed heuristic

algorithms with assuming that S(vi, a) is distributed in [−1, 1] uniformly. Furthermore, let us

call the following property selectivity: When vi is to be assigned, if S(vi, 0) > S(vi, 1) holds,

vi = 0 is examined in advance of examining vi = 1. On the other hand, if S(vi, 0) < S(vi, 1)

holds, vi = 1 is examined in advance of examining vi = 0. Note that the results in Tables 6 and

8 were not with selectivity.

Since OutdLastOne was the fastest among our proposed algorithms for SACP, we imple-

mented OutdLastOne with selectivity and θ = φ,−0.1, 0, 0.1 where θ = φ means that a threshold

is not used. As a result, empirical time complexities for each α and θ are obtained as shown

in Figure 8 and Table 12 and we can confirm that using a smaller threshold yields better time
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complexities than using a bigger threshold or not using a threshold. Furthermore, from Tables

14 and 15, it is seen that the average number of singleton attractors in a BN is less than one

with K = 2, 3. Therefore it is reasonable that the proposed algorithm stops as soon as it finds

a singleton attractor whose score is greater than θ. Tables 14 and 15 also show the average and

standard deviations of c for each case. It is seen that s2 is very close to s1 when θ = 0.1. On

the other hand, s2 is much smaller than s1 when θ = −0.1. However, it often occurs that the

algorithm cannot find desired singleton attractors when θ = 0.1. For example from Table 14,

when K = 2, α = 0.1 and θ = −0.1, it is seen that the algorithm can always find desired single-

ton attractors if it exists. On the other hand, when the algorithm is applied to 100 random BNs

with K = 2, α = 0.1, θ = 0.1, it can find desired singleton attractors only for 14 BNs although

64 of 100 BNs include singleton attractors.

We also implemented ExternalAhead with selectivity and a threshold for SACP. As shown

in Table 16, empirical time complexities for ExternalAhead were much larger than those of

OutdLastOne with θ = −0.1, 0, 0.1 and K = 2. It is seen that assigning internal nodes first and

utilizing the notion of “LastOne” are also effective for SACP with a threshold.

5 Conclusion

In this paper, we have presented fast algorithms to find a 0-1 assignment for external nodes of a

BN which maximizes the minimum score of singleton attractors. We performed theoretical and

experimental analyses for these proposed algorithms, which showed good agreements between

their theoretical results and empirical results. It was also suggested that assigning internal

nodes in advance of external nodes was the fastest. Furthermore, we have implemented some

heuristic algorithms although theoretical analysis has not been performed. One of our future

works is to extend our algorithms to a problem where it is not given which nodes are external.

Furthermore, for practical use, it is important to develop a method for controlling steady states

of a continuous model of biological networks. Although BN is not a continuous model, the idea

based on combinatorial models may be utilized in the analysis of continuous models as in [25].

Therefore, it is also our important future work to develop a method for extending our model to

continuous ones.
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Table 1: Example of a truth table of a Boolean network.

v1 v2 v3 f1 f2 f3

0 0 0 1 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 1 1 0

1 1 1 0 1 1

Table 2: Example of a score function of a Boolean network.

v1 v2 v3

0 3 1 2

1 0 5 4

Table 3: If v1 is fixed as 0 in the truth table of Table 1, the following one is obtained.

v1 v2 v3 f1 f2 f3

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 0

0 1 1 0 1 1
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Table 4: If v1 is fixed as 1 in the truth table of Table 1, the following one is obtained.

v1 v2 v3 f1 f2 f3

1 0 0 1 1 0

1 0 1 1 1 1

1 1 0 1 1 0

1 1 1 1 1 1

Table 5: Theoretical time complexities for K = 2.

α ExAhead Basic ExBehind ExLastOne LastOneAny LastOne

0.01 1.354n 1.353n 1.351n 1.350n 1.232n 1.231n

0.02 1.361n 1.359n 1.355n 1.353n 1.237n 1.234n

0.03 1.368n 1.365n 1.359n 1.357n 1.241n 1.238n

0.04 1.375n 1.370n 1.363n 1.360n 1.246n 1.242n

0.05 1.382n 1.376n 1.367n 1.363n 1.251n 1.245n

0.06 1.389n 1.383n 1.371n 1.367n 1.256n 1.249n

0.07 1.397n 1.389n 1.375n 1.370n 1.261n 1.253n

0.08 1.404n 1.395n 1.379n 1.374n 1.266n 1.256n

0.09 1.412n 1.401n 1.383n 1.377n 1.271n 1.260n

0.10 1.419n 1.407n 1.388n 1.381n 1.276n 1.264n

0.167 1.471n 1.451n 1.415n 1.406n 1.312n 1.290n

0.20 1.498n 1.473n 1.429n 1.419n 1.331n 1.303n

0.30 1.584n 1.544n 1.473n 1.464n 1.392n 1.343n

0.333 1.614n 1.569n 1.486n 1.480n 1.414n 1.357n
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Table 6: Empirical time complexities for K = 2.

α ExAhead Basic ExBehind ExLastOne LastOneAny LastOne OutdLastOne

0.10 1.521n 1.512n 1.480n 1.468n 1.282n 1.258n 1.182n

0.167 1.583n 1.559n 1.513n 1.477n 1.299n 1.272n 1.213n

0.20 1.684n 1.658n 1.581n 1.560n 1.380n 1.338n 1.284n

Table 7: Theoretical time complexities for K = 3.

α ExternalAhead Basic ExternalBehind ExternalLastOne LastOneAny LastOne

0.01 1.434n 1.434n 1.432n 1.431n 1.353n 1.351n

0.02 1.442n 1.440n 1.437n 1.434n 1.359n 1.356n

0.03 1.449n 1.447n 1.442n 1.438n 1.365n 1.361n

0.04 1.457n 1.454n 1.447n 1.442n 1.370n 1.365n

0.05 1.465n 1.461n 1.453n 1.446n 1.376n 1.370n

0.06 1.472n 1.468n 1.458n 1.450n 1.383n 1.375n

0.07 1.480n 1.475n 1.463n 1.454n 1.389n 1.379n

0.08 1.488n 1.482n 1.468n 1.457n 1.395n 1.384n

0.09 1.496n 1.489n 1.473n 1.461n 1.401n 1.389n

0.10 1.504n 1.496n 1.479n 1.465n 1.407n 1.393n

0.167 1.559n 1.545n 1.514n 1.492n 1.451n 1.426n

0.20 1.588n 1.570n 1.532n 1.506n 1.473n 1.442n

0.30 1.678n 1.649n 1.587n 1.550n 1.544n 1.493n

0.333 1.707n 1.677n 1.606n 1.566n 1.569n 1.510n
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Table 8: Empirical time complexities for K = 3.

α ExAhead Basic ExBehind ExLastOne LastOneAny LastOne OutdLastOne

0.10 1.618n 1.613n 1.597n 1.571n 1.399n 1.378n 1.266n

0.167 1.685n 1.665n 1.634n 1.584n 1.441n 1.421n 1.309n

0.20 1.753n 1.725n 1.680n 1.637n 1.486n 1.483n 1.358n

Table 9: ExternalLastOne, LastOneAny and LastOne.

(ii) is applied to (ii) is applied to both

only external nodes. external and internal nodes.

(i) is applied to ExternalLastOne LastOne

only internal nodes.

(i) is applied to both LastOneAny

external and internal nodes.

Table 10: Empirical time complexities for ACP(2) with K = 2.

α ExAhead Basic ExBehind ExLastOne LastOneAny LastOne OutdLastOne

0.10 1.722n 1.723n 1.760n 1.668n 1.472n 1.458n 1.359n

0.167 1.793n 1.808n 1.869n 1.727n 1.515n 1.510n 1.365n

0.20 1.833n 1.855n 1.918n 1.779n 1.564n 1.563n 1.395n
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Table 11: Empirical time complexities for ACP(3) with K = 2.

α ExAhead Basic ExBehind ExLastOne LastOneAny LastOne OutdLastOne

0.10 1.849n 1.882n 2.025n 1.836n 1.679n 1.651n 1.486n

0.167 1.928n 1.942n 2.090n 1.894n 1.696n 1.701n 1.571n

0.20 2.006n 2.081n 2.183n 1.962n 1.745n 1.769n 1.568n

Table 12: Empirical time complexities of OutdLastOne for K = 2 with θ = φ, 0.1, 0,−0.1 and

selectivity.

α without θ θ = 0.1 θ = 0 θ = −0.1

0.1 1.180n 1.178n 1.180n 1.166n

0.111 1.183n 1.182n 1.180n 1.170n

0.125 1.204n 1.198n 1.192n 1.183n

0.143 1.217n 1.208n 1.197n 1.181n

0.167 1.241n 1.226n 1.214n 1.197n

0.2 1.275n 1.269n 1.234n 1.219n

Table 13: Empirical time complexities of OutdLastOne for SACP in scale-free network.

α OutdLastOne

0.1 1.203n

0.167 1.262n

0.2 1.292n
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Table 14: Average and standard deviations of c by OutdLastOne for SACP with K = 2 and

selectivity.

average standard The number of all The number of singleton

α θ of c deviation of c singleton attractors attractors whose scores

in 100 BNs are more than θ in 100 BNs

0.1 -0.1 0.0228 0.0245 64 64

(m=10 0.0 0.0176 0.0242 64 54

n=100) 0.1 0.0046 0.0124 64 14

0.111 -0.1 0.0271 0.0216 66 66

(m=10 0.0 0.0235 0.0217 66 58

n=90) 0.1 0.0060 0.0133 66 18

0.125 -0.1 0.0329 0.0323 66 66

(m=10 0.0 0.0218 0.0281 66 51

n=80) 0.1 0.0060 0.0195 66 12

0.143 -0.1 0.0260 0.0252 70 70

(m=10 0.0 0.0213 0.0235 70 63

n=70) 0.1 0.0064 0.0164 70 23

0.167 -0.1 0.0294 0.0278 73 73

(m=10 0.0 0.0252 0.0272 73 66

n=60) 0.1 0.0050 0.0118 73 27

0.2 -0.1 0.0340 0.0347 66 66

(m=10 0.0 0.0305 0.0325 66 61

n=50) 0.1 0.0146 0.0236 66 37
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Table 15: Average and standard deviations of c by OutdLastOne for SACP with K = 3 and

selectivity.

average standard The number of all The number of singleton

α θ of c deviation of c singleton attractors attractors whose scores

in 100 BNs are more than θ in 100 BNs

0.1 -0.1 0.0552 0.0407 94 94

(m=10 0.0 0.0443 0.0388 94 85

n=100) 0.1 0.0108 0.0300 94 21

0.111 -0.1 0.0582 0.0403 95 95

(m=10 0.0 0.0476 0.0395 95 91

n=90) 0.1 0.0147 0.0329 95 31

0.125 -0.1 0.0619 0.0466 93 93

(m=10 0.0 0.0462 0.0422 93 86

n=80) 0.1 0.0199 0.0354 93 41

0.143 -0.1 0.0680 0.0405 94 94

(m=10 0.0 0.0526 0.0450 94 91

n=70) 0.1 0.0212 0.0376 94 32

0.167 -0.1 0.0619 0.0448 94 94

(m=10 0.0 0.0528 0.0441 94 89

n=60) 0.1 0.0206 0.0344 94 44

0.2 -0.1 0.0782 0.0502 96 96

(m=10 0.0 0.0661 0.0474 96 92

n=50) 0.1 0.0300 0.0450 96 58
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Table 16: Empirical time complexities of ExternalAhead for K = 2 with θ = 0.1, 0,−0.1 and

selectivity.

α θ = 0.1 θ = 0 θ = −0.1

0.1 1.514n 1.477n 1.492n

0.111 1.526n 1.499n 1.479n

0.125 1.560n 1.522n 1.536n

0.143 1.570n 1.574n 1.561n

0.167 1.616n 1.580n 1.577n

0.2 1.676n 1.624n 1.590n
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Figure 1: State transitions of the Boolean network shown in Table 1.

010 011

000 001

Figure 2: State transitions of the Boolean network shown in Table 3.

110 111
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Figure 3: State transitions of the Boolean network shown in Table 4.
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Figure 4: Example for gene ordering.
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Figure 5: Elapsed time of enumeration-based algorithms for SACP with K = 2 and α = 0.2.
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Figure 6: Base of the empirical time complexities of the enumeration-based algorithms for SACP

with K = 2.
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Figure 7: Base of the empirical time complexities of the enumeration-based algorithms for SACP

with K = 3.
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Appendix

Pseudo code of ExternalAhead for ACP(x)

Input: a Boolean network (V, F ) and score functions S(vi, a)

Output: 0-1 assignments to external nodes which maximize the minimum score of at-

tractors whose periods are p, where p ≤ x and the score of an attractor is given as
∑p

t=1

∑
vi∈V S(vi(t), a).

Begin

Define x-parent(vi): nodes which have length-x paths to vi.

Initialize maxmin = −∞;

for z = 0 to 2m − 1 do

for d = 1 to m do

ve,m−d+1(t) = the d-th digit of the binary number representation of z.

Initialize min = ∞; g = 1;

Procedure MinScoreAttractor(v, g)

if g = n + 1 and
∑p

t=1 score(ve,1(t), . . . , ve,m(t), vi,1(t), . . . , vi,n(t)) < min, then

min =
∑p

t=1 score(ve,1(t), . . . , ve,m(t), vi,1(t), . . . , vi,n(t));

for h = 0 to 1 do

vi,g(t) = h;

flag = 0;

for r = 1 to x do

y = 1;

while flag = 0 and y ≤ g do

if every r-parent(vi,g(t)) is assigned and vi,g(t) 6= vi,g(t + r) then

flag = 1;

y = y + 1;
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if flag = 1 then continue;

else MinScoreAttractor(v, g + 1);

if min 6= ∞ and maxmin < min,

then maxmin = min;

for d = 1 to m do

v′e,d(t) = ve,d(t)

if maxmin 6= −∞, then return {v′e,1(t), . . . , v′e,m(t)};

else return null;

End
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