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ISOMORPHISMS BETWEEN QUANTUM GROUPS

Uq(sln+1) AND Up(sln+1)

LI-BIN LI AND JIE-TAI YU

Abstract. Let K be a field and suppose p, q ∈ K
∗ are not roots

of unity. We prove that the two quantum groups Uq(sln+1) and
Up(sln+1) are isomorphic as K-algebras implies that p = ±q±1

when n is even. This new result answers a classical question of
Jimbo.

1. Introduction and the main results

The Drinfeld-Jimbo quantum group Uq(g) over a field K (see [D1, D2,
Ji1, Ja]), associated with a simple finite dimensional Lie algebra g, plays
a crucial role in the study of the quantum Yang-Baxter equations, two
dimensional solvable lattice models, the invariants of 3-manifolds, the
fusion rules of conformal field theory, and the modular representations
(see, for instance, [Ka, Lu1, LZ, RT]). In his fundamental paper [Ji2],
Jimbo raised the following

Problem 1.1. When are the two quantum groups Uq(g) and Up(g) over
a field K isomorphic as K-algebras?

In [Ji2], Jimbo discovered a close connection between quantum groups
and finite dimensional Hecke algebras via R-matrices, then motivated
by the connection and the classical result that two finite dimensional
Hecke algebras Hq and Hp of same type are always isomorphic by Tits
(see Bourbaki [B], see also Lusztig [Lu2] for such an explicit isomor-
phism), Jimbo conjectured that Uq(g) and Up(g) are always isomorphic
as K-algebras, at least ‘after appropriate completion’. The above prob-
lem is closely related to
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Problem 1.2. Describe the structure of AutK(Uq(g)) for the quantum

group Uq(g) over a field K.

See, for instance, Alev and Chamarie [AC] and Zha [Z1] for descriptions
of AutK(Uq(sl2)). See Zha [Z2] for some results about AutK(Uq(g)).
See also Launois [La1, La2], and Launois and Lopes [LL] and refer-
ences therein for related description of AutK(U

+
q (g)). In particular, we

formulate

Problem 1.3. When are the two quantum groups Uq(sln+1) and Up(sln+1)
over a field K isomorphic as K-algebras?

The above problems are also motivated by the similar questions regard-
ing the isomorphisms between affine Hecke algebras Hq and Hp over a
field K recently considered by Nanhua Xi and Jie-Tai Yu [XY]. See
also Rong Yan [Y].
In this paper, we give a necessary condition for the quantum groups
Uq(sln+1) isomorphic to Up(sln+1) as K-algebras for even n, provided
both q and p are not roots of unity in K. This new result answers the
classical question of Jimbo.

Theorem 1.4. Suppose q ∈ K
∗ is not a root of unity in a field K,

n is even, then Uq(sln+1) and Up(sln+1) are isomorphic as K-algebras

impplies that p = ±q±1.

Based on some more involved methodology, we will prove an ‘analogue’
of Theorem 1.4 for odd n in a forthcoming paper [LY2], where one sees
that for odd n, the situation becomes much more complicated. For the
simplest odd case n = 1, see L.-B.Li and J.-T.Yu [LY1].

2. Preliminaries

In this section, we recall some fundamental facts about the quantum
group Uq(sln+1) over a field K, where q ∈ K

∗ is not a root of unity
in K (see, for instance, Jantzen [Ja], or Kassel [Ka]). We also prove
two technical lemmas, the first classifies the unit elements in Uq(sln+1),
the second describes a subset of n algebraically independent elements
in γρ((U

0
ev)

W ) as a minimal generating set of the fractional field of
γρ((U

0
ev)

W ) for even n by the multiplicative invariant theory. All of
these will be used in the proof of the main results in the next section.
Let ε1, ε2, · · · , εn+1 be the usual orthogonal unit vectors which form a
basis of Euclidean space R

n+1 with the usual inner product. It follows
that Φ = {εi − εj | 1 ≤ i 6= j ≤ n + 1} is the root system of sln+1

and Π = {αi = εi − εi+1 | 1 ≤ i ≤ n} is a base of Φ. Note that the
reflection si corresponding to αi permutes the subscripts i, i + 1 and
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leave all other subscripts fixed. Thus we get that the Weyl group W
of sln+1 is just the symmetric group Sn+1.

Recall that for given q ∈ K
∗ and q2 6= 1, the quantum group

U := Uq := Uq(sln+1)

is the associative algebra over K generated by Ki, K−1
i , Ei, Fi for

1 ≤ i, j ≤ n subject to the following defining relations:

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEj = qaijEjKi, KiFj = q−aijFjKi,

EiFj − FjEi = δij(Ki −K−1
i )/(q − q−1),

EiEj = EjEi, FiFj = FjFi, |i− j| 6= 1,

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0, |i− j| = 1,

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0, |i− j| = 1,

where A = (aij) be the Cartan matrix of type An+1.
The following lemma describe the unit elements in Uq(sln+1). See, for
instance, J.-G. Zha [Z1], for a proof..

Lemma 2.1. An element u ∈ Uq(sln+1) is multiplicative invertible if

and only if there exists λ ∈ K
∗,mi ∈ Z such that u = λKm1

1 Km2

2 . . . Kmn
n .

Denote by U0 the subalgebra of U := Uq(sln+1) generated by K±1
i , and

U+ (U−) respectively) the subalgebra generated by Ei (Fi respectively)
for 1 ≤ i ≤ n. It follows that U0 is the laurent polynomial algebra
K[K±1

1 , · · · , K±1
n ]. For each λ in the root lattice ZΦ = ZΠ = Zα1 ⊕

Zα2 ⊕ · · ·Zαn, we define an element Kλ in U0 by

Kλ = Kλ1

1 Kλ2

2 · · ·Kλn
n , if λ = λ1α1 + λ2α2 + · · ·+ λnαn ∈ ZΦ.

The Weyl group W = Sn+1 acts naturally on U0 such that

w ·Kλ = Kω(λ), for all w ∈ W and λ ∈ ZΦ.

Recall that the quantum group U = Uq(sln+1) is a ZΦ-gradedK-algebra
with the grading on the generators via deg(Ki) = deg(K−1

i ) = 0 and
deg(Ei) = αi, deg(Fi) = −αi. Suppose that q is not a root of unity,
then for ν ∈ ZΦ we have

Uν = {u ∈ U | Kλu = uKλ}.

According to the triangular decomposition U = U−U0U+, we have a
direct decomposition

U = U0 ⊕
⊕

ν>0

U−

−νU
0U+

ν .
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Denote π : U0 → U0 the projection with respect to this decomposition.
Then it is easy to check that π is a K-algebra homomorphism. For all
λ ∈ Λ, define the K-algebra automorphism

γλ(Kµ) = q(λ,µ), forallµ ∈ ZΦ.

We call
γ−ρ ◦ π : Z(U) → U0

the Harish-Chandra homomorphism for U , where ρ is half the sum of
the positive roots. So we have

ρ =
1

2
Σn+1

i=1 (n+ 2− 2i)εi

and (ρ, αi) = 1 for all 1 ≤ i ≤ n.
Set U0

ev =
⊕

λ∈ZΦ∩2Λ

kKλ, where Λ is the weight lattice (when we specify

the parameter q, we will write U0
q,ev). Note that ZΦ∩ 2Λ is a subgroup

of ZΦ ∩ Λ and ZΦ ∩ 2Λ is W -stable. It follows that the action of W
maps U0

ev to itself. The following result is well-known (see [Ja]).

Proposition 2.2. The Harish-Chandra homomorphism is an isomor-

phism between between Z(Uq(sln+1)) and (U0
ev)

W , where

(U0
ev)

W = {h ∈ U0
ev | w · h = h, ∀ w ∈ W}.

The following technical lemma is essential for us to obtain the alge-
braically independent generators of γρ((U

0
ev)

W ). Note that in case the
parameter q is to be specified, we will write γρ,q((U

0
ev)

W ) instead of
γρ((U

0
ev)

W ).

Lemma 2.3. For the simple Lie algebra sln+1 of type An+1, we have

ZΦ ∩ 2Λ =

{⊕n

i=1 Z(2αi), for evenn,⊕n−1
i=1 Z(2αi)⊕ Z(α1 + α3 + · · ·+ αn), for oddn.

Proof. Since αi ∈ Λ for 1 6 i 6 n, it follows that 2αi ∈ ZΦ ∩ 2Λ and
n⊕

i=1

Z(2αi) ⊆ ZΦ ∩ 2Λ,
n−1⊕

i=1

Z(2αi) ⊆ ZΦ ∩ 2Λ.

Note that when n = 2m− 1 is odd,

λm =
1

2m
[mα1+2mα2+· · ·+(m−1)mαm−1+m2αm+m(m−1)αm+1+· · ·+mαm].

Thus, we have

2λm = (2α2 + 2α3 + 4α4 + · · ·+ 2αn−1) + (α1 + α3 + . . . αn).
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It follows that 2λm ∈ ZΦ ∩ 2Λ and

α1 + α3 + . . . αn ∈ ZΦ ∩ 2Λ.

So we have
n−1⊕

i=1

Z(2αi)
⊕

Z(α1 + α3 + · · ·+ αn) ∈ ZΦ ∩ 2Λ.

On the other hand, since
α1 = 2λ1 − λ2, α2 = −λ1 + 2λ2 − λ3, · · · , αn = −λn−1 + 2λn,
now for any α =

∑n

i=1 kiαi ∈ ZΦ ∩ 2Λ, where ki ∈ Z. Then we have

α = (2k1 − k2)λ1 + (2k2 − k1 − k3)λ2 + · · ·+ (2kn − kn−1)λn ∈ 2Λ.

It follows that

k2 ∈ 2Z, k1 + k3 ∈ 2Z, k2 + k4 ∈ 2Z, · · ·

and
kn−1 ∈ 2Z, kn + kn−2 ∈ 2Z, kn−1 + kn−3 ∈ 2Z, · · ·.

When n is even, then ki ∈ 2Z for 1 ≤ i ≤ n. So we have

Z ∩ 2Λ ⊆

n⊕

i=1

Z(2αi).

When n is odd, then k2, k4, · · ·, kn−1 ∈ 2Z and k1, k3, · · ·, kn are all odd
or all even. Thus, we have

α =

(k1−kn)α1+k2α2+(k3−kn)α3+k4α4+···+kn−1αn−1+kn(α1+α3+···+αn),

where k1 − kn, k2, k3 − kn, k4, · · · , kn−1 ∈ 2Z.
So we have

n−1⊕

i=1

Z(2αi)
⊕

Z(α1 + α3 + · · ·+ αn) ⊇ ZΦ ∩ 2∧,

when n is odd. �

Remark 2.4. From the above lemma we have already seen for odd n,
the situation is more complicated. For details and related multiplicative
invariant theory, see L.-B.Li and J.-T.Yu [LY2].

Next we determine a subset of n algebraically independent elements in
γρ((U

0
ev)

W ) as a minimal generating set of γρ((U
0
ev)

W ) for even n by the
multiplicative invariant theory, see [Lo]. In the sequel we assume that
n is even, by Lemma 3.1, we have

U0
ev = K[K±2

1 , K±2
2 , · · · , K±2

n ].



6 LI-BIN LI AND JIE-TAI YU

Put K2
i = yi =

xi

xi+1
for 1 6 i 6 n. Define

si =
∑

j1<j2<···<ji

xj1xj2 · · · xji ,

1 6 i 6 n + 1. Then by multiplicative invariant theory (see [Lo]), for
m = 1, 2, · · · , n− 1, n+ 1 we obtain the fundamental invariants

sm1 sn−m+1

sn+1

∈ (U0
ev)

Sn+1 .

Notice that

(x1 + x2 + · · ·+ xn+1)
m =

∑

06i1,i2,··· ,in+16n+1
i1+i2+···+in+1=m

m!

i1!i2! · · · in+1!
xi1
1 · · · x

in+1

n+1 .

By direct calculation, we have

sm1 sn−m+1

sn+1

=
∑

i1,i2,··· ,in+1

i1+i2+···+in+1=m
16j1<j2<···<jn−m+1

m!xi1
1 · · · x

ij1
j1

· · · x
in−m+1+1
jn−m+1

· · · x
in+1

n+1

i1!i2! · · · in+1!x1x2 · · · xn+1

=

∑

i1,i2,··· ,in+1

i1+i2+···+in+1=m
16j1<j2<···<jn−m+1

m!yi1−1
1 yi1+i2−1

2 · · · y
i1+i2+···ijn−m+1

−(n−m+1)

jn−m+1
· · · yin+1−1

n

i1!i2! · · · in+1!

Then substitute yi = (qKi)
2, we obtain a subset of n algebraically

independent elements in γρ((U
0
ev)

W ) as a minimal generating set of the
fractional field of γρ((U

0
ev)

W ), which are algebraically independent as
follows.

σ1 = q2K2
1 + q4K2

1K
2
2 + · · ·+ qnK2

1K
2
2 . . . K

2
n

+ q−nK−2
1 K−2

2 . . . K−2
n + · · ·+ q−4K−2

1 K−2
2 + q−2K−2

1 ,

σ2 = q6K4
1K

2
2 + · · ·+ q−6K−2

1 K−4
2 ,

· · · · · · · · ·

σn−1 =

qn(n−1)K
2(n−1)
1 K

2(n−2)
2 · · ·K2

n−1 + · · ·+ q−n(n−1)K−2
1 K−4

2 · · ·K−2(n−1)
n ,

σn+1 = qn(n+1)K2n
1 K

2(n−1)
2 · · ·K2

n + · · ·+ q−n(n+1)K−2
1 K−4

2 · · ·K−2n
n .

Then by the expression of the these elements, it is easy to see that
each element admits some special ‘symmetry’, which means that, if we
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replace qKi by (qKi)
−1 for all i in σj as functions for qKi i = 1, . . . , n

for all j, then

σj(qK1, . . . , qKn) = σj((qK1)
−1, . . . , (qKn)

−1).

Consequently, if we denote by fj(qK) for the function of qK obtained
by substituting K = Ki for all i = 1, 2, · · · , n in σj, then fj(qK) =
fj((qK)−1) for all j. For example, we write explicitly down these ele-
ments for n = 2 as follows (see [LWP, LWW, Lo] for details) below.

σ1 = q2K2
1 + q4K2

1K
2
2 + q2K2

2 + q−2K−2
2 + q−4K−2

1 K−2
2 + q−2K−2

1 + 3,

σ3 = q6K4
1K

2
2 +K−2

1 K2
2 + q−6K−2

1 K−4
2

+ 3(q2K2
1 + q4K2

1K
2
2 + q2K2

2 + q−2K−2
2 + q−4K−2

1 K−2
2 + q−2K−2

1 ) + 6.

By the multiplicative invariant theory (see, for instance, [Lo]), we know
that the set of these n elements is a minimal (algebraically independent)
generating set of the fraction field of γρ((U

0
ev)

W ).

3. Proof of the main result

Suppose U =: Uq := Uq(sln+1) and Up := Up(sln+1) are isomorphic
as K-algebras. Then we may assume U = Uq = Up. In other words,
U := Uq(sln+1) has a Up(sln+1)-structure. Namely, U = Uq is also
generated by ki, k

−1
i , ei, fi for 1 ≤ i, j ≤ n subject to the following

defining relations:

kikj = kjki, kik
−1
i = k−1

i ki = 1,

kiej = paijejki, kifj = p−aijfjki,

eifj − fjei = δij(ki − k−1
i )/(p− p−1),

eiej = ejei, fifj = fjfi |i− j| 6= 1,

e2i ej − (p+ p−1)eiejei + eje
2
i = 0, |i− j| = 1,

f 2
i fj − (p+ p−1)fifjfi + fjf

2
i = 0, for |i− j| = 1,

where A = (aij) be the Cartan matrix of type An+1.

Lemma 3.1. In U = Uq(sln+1) = Up(sln+1),

K[K±1
1 , . . . , K±1

n ] = K[k±1
1 , . . . , k±1

n ].

Proof. Obviously there exists a K-isomorphism from K[K±1
1 , . . . , K±1

n ]
onto K[k±1

1 , . . . , k±1
n ] taking Ki to ki which induces an isomorphism

from the free abelian group generated by Ki (i = 1, . . . , n) to the
free abelian group generated by ki (i = 1, . . . , n). But the second
isomorphism is indeed a (group) automorphism by Lemma 2.1, so is
the first one. Therefore

K[K±1
1 , . . . , K±1

n ] = K[k±1
1 , . . . , k±1

n ]
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in U = Uq(sln+1) = Up(sln+1). �

Lemma 3.2.

γρ,q((U
0
q,ev)

W ) = γρ,p((U
0
p,ev)

W ).

Proof. We may assume

U := Uq = Uq(sln+1) = Up = Up(sln+1).

Hence Z(Uq) = Z(Up). By Lemma 3.1,

K[K±1
1 , . . . , K±1

n ] = K[k±1
1 , . . . , k±1

n ],

hence γρ,q(U
0
q,ev)

W ), as the image πq(Z(Uq)) of Z(Uq) under the projec-
tion

πq : Uq,0 → U0
q = K[K±1

1 , . . . , K±1
n ],

is equal to γρ,p(U
0
p,ev)

W ), as the image πp(Z(Up)) of Z(Up) under the
projection

πp : Up,0 → U0
p = K[k±1

1 , . . . , k±1
n ]

by the definition of the Harish-Chandra isomorphism. �

In Section 2 we already got a subset of n algebraic independent elements
σj, j = 1, . . . , n in γρ,q((U

0
q,ev)

W ) as a minimal generating set of the

fractional field γρ,q((U
0
q,ev)

W ). Similarly, we can write a subset of n

algebraic independent elements τj, j = 1, . . . , n in γρ,p((U
0
p,ev)

W ) as a

minimal generating set of the fraction field of γρ,p((U
0
p,ev)

W ) as follows.

τ1 = p2k2
1 + p4k2

1k
2
2 + · · ·+ pnk2

1k
2
2 . . . k

2
n

+ p−nk−2
1 k−2

2 . . . k−2
n + · · ·+ p−4k−2

1 k−2
2 + p−2k−2

1 ,

τ2 = p6k4
1k

2
2 + · · ·+ p−6k−2

1 k−4
2 ,

· · · · · · · · ·

τn−1

= pn(n−1)k
2(n−1)
1 k

2(n−2)
2 · · · k2

n−1 + · · ·+ p−n(n−1)k−2
1 k−4

2 · · · k−2(n−1)
n ,

τn+1 = pn(n+1)k2n
1 k

2(n−1)
2 · · · k2

n + · · ·+ p−n(n+1)k−2
1 k−4

2 · · · k−2n
n .

By Lemma 3.2, there exists aK-birational automorphism of the fraction
field

K(σ1, . . . , σn) = K(τ1, . . . , τn)

of γρ,q((U
0
ev,q)

W ) = γρ,p((U
0
ev,p)

W ) induced by the K-automorphism α of

K[K±1
1 , . . . , K±1

n ] = K[k±1
1 , . . . , k±1

n ]
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taking qKi to α(qKi) = pki for all i and taking σj to α(σj) = τj for all j.
On the other hand, By Galois theory, any K-birational automorphism
of

K(σ1, . . . , σn) = K(τ1, . . . , τn)

taking σj to τj for all j can be lifted a birational K-automorphism of

K(K1, . . . , Kn) = K(k1, . . . , kn)

taking qKi to pki for all i via the finite Galois extension

K(K1, . . . , Kn)/K(σ1, . . . , σn) = K(k1, . . . , kn)/K(τ1, . . . , τn).

Put K := K1 = · · · = Kn, consequently, k := k1 = · · · = kn, then α
induces an automorphism of K(qK + q−1K−1) taking qK + q−1K−1 to
pk + p−1k−1, and we obtain

K(qK + q−1K−1) = K(pk + p−1k−1),

which forces qK = (±pk)±1. Therefore q2K2
i = p2k±2

θ(i) for some θ ∈ Sn

and all i. By definition of σ1 and τ1, we see that

σ1 = τ1(kθ(1), . . . , kθ(n)),

if we view τ1 := τ1(k1, . . . , kn) as a polynomial function of k1, . . . , kn.
Consider the scalar action of the central element in Z(Uq) = Z(Up)
corresponding to

σ1 = τ1(kθ(1), . . . , kθ(n)) ∈ γρ,q((U
0
ev,q)

W ) = γρ,p((U
0
ev,p)

W )

on the (Uq = Up =) U -simple module L(λ), where λ =
∑n

i=1 miλi ∈ Λ
for nonnegative integers m1, . . . ,mn, we get

q2+2m1 + q4+2m1+2m2 + · · ·+ q2n(n+1)+2m1+2m2+···+2mn

+q−2n(n+1)−2m1−2m2−···−2mn + q−4−2m1−2m2 + q−2−2m1

= p2+2m1 + p4+2m1+2m2 + · · ·+ p2n(n+1)+2m1+2m2+···+2mn

+p−2n(n+1)−2m1−2m2−···−2mn + p−4−2m1−2m2 + p−2−2m1

for all nonnegative integers m1,m2, . . . ,mn. That forces q2 + q−2 =
p2 + p−2, hence p2 = q±2, therefore p = ±q±1. �
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