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Abstract

After reviewing geometric quantisation of linear bosonic and fermionic systems, we study the holon-
omy of the projectively flat connection on the bundle of Hilbert spaces over the space of compatible
complex structures and relate it to the Maslov index and its various generalisations. We also consider
bosonic and fermionic harmonic oscillators parametrised by compatible complex structures and compare
Berry’s phase with the above holonomy.
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1 Introduction

In geometric quantisation, quantum Hilbert space is constructed from the classical phase space (a symplectic
manifold) together with a choice of polarisation. An important question is whether the Hilbert spaces from
different polarisations can be naturally identified. For linear bosonic systems, there is a projectively flat
connection on the bundle of Hilbert spaces over the space of compatible linear complex structures [1]. This
identifies vectors in various Hilbert spaces up to a phase. In [8], parallel transport along geodesics in the
space of polarisations was calculated and shown to agree with the Bogoliubov transformation [17, 18] and
other definitions of intertwining operators [14, 11]. The real Lagrangian subspaces are on the boundary
(at the infinity) of the space of complex structures. When the geodesic is extended to infinity, the parallel
transport yields the Segal-Bargmann and Fourier transforms [8].

For linear fermionic systems, pre-quantisation and quantisation was considered [9, 17] and the space
of compatible complex structures is a compact Hermitian symmetric space. The bundle of Hilbert spaces
again admits a projectively flat connection whose curvature is proportional to the standard Kähler form on
the base [22]. The parallel transport along the geodesics in the space of polarisations yields intertwining
operators between various constructions of the spinor representation [22].

In this paper, we study the holonomy of these projectively flat connections and explore its geometric
significance. In the bosonic case, the holonomy along a geodesic triangle is related to the generalised Maslov
index in [11]. When the vertices of the triangle approach three mutually transverse Lagrangian subspaces
at infinity, the holonomy becomes the composition of three Fourier transformations, which is known to be
related to the triple Maslov index of Kashiwara [10]. Thus we get interesting formulae for the Maslov index
and its generalisation in terms of integrations of curvature on a surface bounded by three geodesics. In the
fermionic case, the holonomy along a geodesic triangle is related to the orthogonal counterpart of the Maslov
index [12] and we obtain similar results using the holonomy.

We also consider bosonic and fermionic harmonic oscillators whose Hamiltonians are parametrised by
compatible complex structures. As the parameter changes adiabatically, the energy eigenstates acquire a
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geometric phase called Berry’s phase [2], which we study using the its relation [20] with the universal con-
nection [13]. We find that Berry’s phase on the vacuum vector is inverse to the holonomy of the projectively
flat connection discussed above. However, the connection responsible for (non-Abelian) Berry’s phase when
the energy eigenvalue is degenerate is not projectively flat.

The rest of the paper is organised as follows. In §2, we review the work on geometric quantisation of
linear bosonic and fermionic systems. In §3, we study the holonomy of the projectively flat connection on
the bundle of Hilbert spaces over the space of compatible complex structures and relate it to the triple
Maslov index and its various generalisations. In §4, we consider bosonic and fermionic harmonic oscillators
parametrised by compatible complex structures and compare Berry’s phase with the holonomy in §3.

2 Quantisation of bosonic and fermionic systems

2.1 Quantisation of linear bosonic systems

Let (V, ω) be a symplectic vector space of dimension 2n. The pre-quantum line bundle `→ V is a complex
line bundle with a connection whose curvature is ω/

√
−1 . The pre-quantum Hilbert space H0 is the space

of L2-integrable sections (with respect to the Liouville measure) of `. It can be identified with L2(V,C) upon
choosing a trivialisation of `. A complex structure J on V is compatible with ω if ω(J ·, J ·) = ω(·, ·) and
ω(·, J ·) > 0. Each such J determines a complex polarisation: a complex Lagrangian subspace V 1,0

J of V C.
The corresponding quantum Hilbert space is

HJ = {ψ ∈ H0 | ∇xψ = 0, ∀x ∈ V 0,1
J }.

The Heisenberg algebra (generated by V subject to the canonical commutation relation) acts on HJ by an
irreducible representation.

The space Jω of compatible complex structures is a non-compact Hermitian symmetric space isomorphic
to Sp(2n,R)/U(n). Fixing J0 ∈ Jω and choosing a unitary basis of V , the space Jω can be identified with a
bounded symmetric domain parametrised by n × n complex symmetric matrices Z such that I − Z̄Z > 0.
(The subspace V 1,0

J is the graph of Z under this basis.) The natural Kähler form on Jω is

σω = −
√
−1
4 trV 1,0

J
(d J ∧ d J) =

√
−1 tr((1− ZZ̄)−1 dZ ∧ (In − Z̄Z)−1 d Z̄).

Since HJ is a subspace of H0 for each J ∈ Jω, there is a bundle of Hilbert spaces H→ Jω whose fibre over J
is HJ . The trivial connection on the product bundle Jω×H0 projects orthogonally to a natural, projectively
flat connection on H whose curvature is [1]

FH = (σω/2
√
−1 ) idH = − 1

8 trV 1,0
J

(d J ∧ d J) idH, (2.1)

where idH is the section of End(H) which is the identity operator on HJ at J ∈ Jω. Parallel transport in
the bundle H identifies, up to a phase, states in the quantum Hilbert spaces HJ constructed from various
polarisations J .

Since Jω is contractible and non-positively curved, there is a unique geodesic γJ1J2 from J1 to J2 for any
J1, J2 ∈ Jω. The parallel transport UJ2J1 : HJ1 → HJ2 along γJ1J2 was calculated in [8]. For example, the
parallel transport of the coherent state

cαJ1(x) = exp[
√
−1ω(ᾱ, x1,0J1 )− 1

4 ω(x, J1x)],

where α ∈ V 1,0
J1

is a parameter and x = x1,0J1 + x0,1J1 ∈ V according to V C = V 1,0
J1
⊕ V 0,1

J1
, is [8, 22]

(UH
J2J1c

α
J1)(x) =

(
det J1+J22

)−1/4
e−

1
4ω(x,J2x) exp

[
1
2 ω
(
x1,0J2 − ᾱ,

(
J1+J2

2

)−1
(x1,0J2 − ᾱ)

)]
.

The operator UJ2J1 is, up to a rescaling by positive constant, the orthogonal projection from HJ1 to HJ2 in
H0 [8]. Therefore UJ2J1 coincides with the Bogoliubov transformation defined in [17, 18]. It also agrees with
the operator studied in [14, 11] that intertwines the two equivalent irreducible representations HJ1 and HJ2

of the Heisenberg algebra.
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We now include metaplectic correction. Let V→ Jω be a vector bundle whose fibre over J ∈ Jω is V 1,0
J .

This is a sub-bundle of the product bundle Jω × V C, and the trivial connection on the latter projects to one
on V. Its curvature is

FV = − 1
4 (d J ∧ d J)

∣∣
V

= −
(

1

Z

)
(1− Z̄Z)−1 d Z̄ ∧ (1− ZZ̄)−1 dZ(1− Z̄Z)−1(1, −Z̄). (2.2)

Consider the line bundle K = detV∗; the fibre over J ∈ Jω is KJ =
∧n

(V 1,0
J )∗. The induced connection on

K is compatible with the Hermitian structure and its curvature is FK =
√
−1σω. Since Jω is contractible,

there is a unique line bundle
√
K→ Jω such that (

√
K)⊗2 = K. A half-form on V 1,0

J is an element of
√
KJ .

The Hilbert space of half-form quantisation (with the polarisation J) is ĤJ = HJ ⊗
√
KJ . As J varies, they

form a flat bundle Ĥ = H ⊗
√
K over Jω, i.e., the curvature FĤ = 0 [18, 8]. Thus all the fibres ĤJ can be

canonically identified. For any J1, J2 ∈ Jω, there is a natural non-degenerate sesquilinear pairing between√
KJ1 and

√
KJ2 and hence between ĤJ1 and ĤJ2 . The parallel transport ÛJ2J1 : ĤJ1 → ĤJ2 is in fact the

operator determined by the pairing between them [8].
Next, we consider half-density quantisation. We associate to the vector space V 1,0

J a real line |KJ | on

which a linear transformation A ∈ EndC(V 1,0
J ) acts as multiplication by |detA|−1. An element of |KJ | is

called a density on V 1,0
J . A half-density on V 1,0

J is an element of
√
|KJ |, a line such that (

√
|KJ |)⊗2 = |KJ |

and on which the linear transformation A acts by |detA|−1/2. The lines |KJ | (
√
|KJ |, respectively) form real

line bundles |K| (
√
|K|, respectively) over Jω, which are naturally flat. In a good open covering, the transition

functions of |K| (
√
|K|, respectively) are the norm of those of K (

√
K, respectively). For any J ∈ Jω, the

Hilbert space of half-density quantisation is H̃J = HJ ⊗
√
|KJ |. They form a bundle H̃ = H ⊗

√
|K| of

Hilbert spaces over Jω. It has a natural projectively flat connection with curvature

FH̃ = FH = σω/2
√
−1 .

For any J1, J2 ∈ Jω, there is a natural non-degenerate pairing between
√
|KJ1 | and

√
|KJ2 | and hence

between H̃J1 and H̃J2 . The parallel transport ŨJ2J1 : H̃J1 → H̃J2 is also the operator determined by the
pairing between them.

A real Lagrangian subspace L ⊂ V is a real polarisation selecting the sections of ` that are covariantly
constant along L; such a section can be identified with a complex-valued function on V/L. Let KL =∧n

(V/L)∗. We have, respectively, the spaces
√
KL and

√
|KL| of half-forms and half-densities on V/L, and

the Hilbert spaces ĤL and H̃L of half-form and half-density quantisation. The spaces ĤL and H̃L have
natural inner products and are irreducible representations of the Heisenberg algebra. If J ∈ Jω, there is a
Segal-Bargmann transformation B̃JL : H̃L → H̃J (or B̂JL : ĤL → ĤJ) that intertwines the two equivalent
irreducible representations. Let L1, L2 ⊂ V be two transverse Lagrangian subspaces. Then the intertwining
operator F̃L2L1

: H̃L1
→ H̃L2

(or F̂L2L1
: ĤL1

→ ĤL2
) is a Fourier transformation [10].

The real Lagrangian subspaces in V form the Shilov boundary Lω of Jω (as a bounded domain). The
rest of the topological boundary consists of polarisations that are partly real and partly complex. For any
J0 ∈ Jω and L ∈ Lω, there is a geodesic {Jt} in Jω from J0 such that limt→+∞ Jt = L. We have

lim
t→+∞

ŨJtJ0 = (B̃J0L)−1, lim
t→+∞

ÛJtJ0 = (B̂J0L)−1.

(See [8] for half-form quantisation; the result for half-density quantisation is then straightforward.) Two
Lagrangian subspaces L+, L− ∈ Lω are transverse if and only if there is a geodesic {Jt} in Jω such that
limt→±∞ Jt = L± [8]. In this case, we have

lim
t→+∞

ŨJtJ−t
= F̃L+L− , lim

t→+∞
ÛJtJ−t

= F̂L+L− .

The above limits are in the sense of tempered distributions on V [8].

2.2 Quantisation of linear fermionic systems

Let (V, g) be an oriented Euclidean vector space of dimension 2n. Despite the absence of an honest pre-
quantum line bundle, the pre-quantum Hilbert space can be taken as H0 =

∧n
(V C)∗, on which covariant
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derivative operators act [9, 17, 22]. A compatible complex structure J on (V, g) is one that is compatible with
the orientation of V and such that g(J ·, J ·) = g(·, ·). Each such J determines a polarisation: a maximally
isotropic complex subspace V 1,0

J of V . The corresponding quantum Hilbert space is

HJ = {ψ ∈ H0 | ∇xψ = 0, ∀x ∈ V 0,1
J }.

The Clifford algebra (generated by V subject to the canonical anti-commutation relation) acts on HJ by
an irreducible representation. In fact, up to a fermionic Gaussian factor, HJ agrees with the standard
construction of the spinor representation [17, 22].

The space Jg of compatible complex structures on (V, g) is a compact Hermitian symmetric space iso-
morphic to SO(2n)/U(n). Fixing J0 ∈ Jg and choosing a unitary basis of V , the complement of the cut locus
of J0 in Jg, which is an open dense subset, can be parametrised by n× n complex skew-symmetric matrices

Z. (Again, the subspace V 1,0
J corresponds to the graph of Z.) The natural Kähler form on Jg is

σg =
√
−1
4 trV 1,0

J
(d J ∧ d J) = −

√
−1 tr((1− ZZ̄)−1 dZ ∧ (In − Z̄Z)−1 d Z̄).

Since HJ is a subspace of H0 for each J ∈ Jg, there is a bundle of Hilbert spaces H→ Jg whose fibre over J
is HJ . The trivial connection on the product bundle Jg ×H0 projects orthogonally to a natural connection
on H. Just like the bosonic case, the connection is projectively flat and the curvature is [22]

FH = (σg/2
√
−1 ) idH = 1

8 trV 1,0
J

(d J ∧ d J) idH. (2.3)

Parallel transport in the bundle H identifies, up to a phase, states in the quantum Hilbert spaces HJ from
various polarisations J .

Unlike Jω, the space Jg is compact and non-negatively curved. Geodesics from J1 to J2, where J1, J2 ∈ Jg,
are not unique. However, if J2 is not in the cut locus of J1, there is a unique length-minimising geodesic
γJ2J1 from J1 to J2. The parallel transport UJ2J1 : HJ1 → HJ2 along γJ1J2 was calculated in [22]. For the
coherent state

cαJ1(θ) = exp[−g(θ1,0J1 , ᾱ) +
√
−1
4 g(J1θ, θ)],

where θ = θ1,0J1 + θ0,1J1 is a fermionic vector in V and α ∈ V 1,0
J1

is a fermionic parameter, the parallel transport
from J1 to J2 is [22]

(UH
J1J0c

α
J0)(θ) =

(
det J1+J22

)1/4
e
√
−1
4 g(J2θ,θ) exp

[√−1
2 g

(
θ1,0J2 − ᾱ,

(
J1+J2

2

)−1
(θ1,0J2 − ᾱ)

)]
.

The operator UJ2J1 is, up to a rescaling by positive constant, the orthogonal projection from HJ1 to HJ2 in
H0 [22]. Like the bosonic case, UJ2J1 coincides with the Bogoliubov transformation defined in [17]. It is the
operator that intertwines the two equivalent irreducible representations HJ1 and HJ2 of the Clifford algebra.

Metaplectic correction of fermionic systems was introduced in [22]. Consider the line bundle K−1 = detV
whose fibre over J ∈ Jg is K−1J =

∧n
V 1,0
J . The natural connection on K−1 is compatible with the Hermitian

structure and its curvature is FK−1

=
√
−1σg. Since Jg is simply connected and since c1(K) is even, there

is a unique line bundle
√
K → Jg such that (

√
K)⊗2 = K [22]. The Hilbert space of half-form quantisation

(with the polarisation J) is ĤJ = HJ ⊗
√

K−1J [22]. (Notice the opposite power of K as in the bosonic case.)

When J varies, they form a flat bundle Ĥ = H ⊗
√
K over Jg, i.e., FĤ = 0 [22]. Thus all the fibres ĤJ

(that is, the spinor representation spaces from various polarisations) can be canonically identified. For any
J1, J2 ∈ Jg, the natural sesquilinear pairing between

√
KJ1 and

√
KJ2 is non-degenerate if and only if J1

and J2 are not in the cut locus of each other [22]. In this case, there is a sesquilinear pairing between ĤJ1

and ĤJ2 . The parallel transport ÛJ2J1 : ĤJ1 → ĤJ2 along the length-minimising geodesic γJ2J1 from J1 to
J2 is in fact the operator determined by the pairing between them [22].

Half-density quantisation can also be established in the fermionic setting. Associated to the vector space
V 1,0
J is a real line |K−1J | on which a linear transformation A ∈ EndC(V 1,0

J ) acts as multiplication by |detA|.
An element of |K−1J | is called a fermionic density of V 1,0

J . A fermionic half-density on V 1,0
J is an element of√

|K−1J |, a line such that
(√
|K−1J |

)⊗2
= |K−1J | and on which the linear transformation A acts by

√
|detA|.

4



The lines |K−1J | (
√
|K−1J |, respectively) form real line bundles |K−1| (

√
|K−1|, respectively) over Jg, which

are naturally flat. For any J ∈ Jg, the Hilbert space of half-density quantisation is H̃J = HJ ⊗
√
|K−1J |.

They form a bundle H̃ = H⊗
√
|K−1| of Hilbert spaces over Jg. It has a natural projectively flat connection

with curvature
FH̃ = FH = σg/2

√
−1 .

When J1 and J2 are not in the cut locus of each other, there is a non-degenerate pairing between
√
|K−1J1 |

and
√
|K−1J2 | and hence between H̃J1 and H̃J2 . The parallel transport ŨJ2J1 : H̃J1 → H̃J2 along the length-

minimising geodesic γJ2J1 from J1 to J2 is also the operator determined by the pairing between them.

3 Holonomy of the bundle of Hilbert spaces

3.1 Bosonic systems: Maslov index and its generalisation

We recall that if L is a real Lagrangian subspace of V , we have a Hilbert space H̃L from half-density
quantisation. For two transverse real Lagrangian subspaces L1, L2 ∈ Lω, the Fourier transform operator
F̃L2L1

: H̃L1
→ H̃L2

intertwines the two equivalent irreducible representations of the Heisenberg algebra.
The operator F̃L2L1

is also the limit, in a certain sense, of the parallel transport in the bundle H̃ → Jω
along a geodesic in Jω extending to L1 and L2 [8]. Suppose there are three mutually transverse Lagrangian
subspaces L1, L2, L3 ∈ Lω, then we have [10]

F̃L1L3
◦ F̃L3L1

◦ F̃L2L1
= exp[

√
−1π
4 αω(L1, L2, L3)] idH̃L1

, (3.1)

where αω(L1, L2, L3) is the triple Maslov index of Kashiwara (see [10]). It is defined as the signature of the
quadratic form ω(x1, x2) + ω(x2, x3) + ω(x3, x1) on L1 ⊕ L2 ⊕ L3, where xi ∈ Li (i = 1, 2, 3). The triple
Maslov index takes integer values in [−n, n] and satisfies the properties [10] that for any mutually transverse
Lagrangian subspaces L1, L2, L3, L4 ∈ Lω,

(a) αω(gL1, gL2, gL3) = αω(L1, L2, L3), ∀g ∈ Sp(V, ω);
(b) αω(L1, L2, L3) = αω(L2, L3, L1) = −αω(L2, L1, L3);
(c) αω(L1, L2, L3) + αω(L2, L4, L3) + αω(L3, L4, L1) + αω(L4, L2, L1) = 0.

The last property is a cocycle condition on αω.
For each complex structure J ∈ Jω, we have a quantum Hilbert space HJ . Given any two complex

structures J1, J2 ∈ Jω, the parallel transport UJ2J1 : HJ1 → HJ2 in the bundle H → Jω along the geodesic
γJ2J1 from J1 to J2 is equal to the intertwining operator between the representations of the Heisenberg
algebra on HJ1 and HJ2 [8]. We can use the same notation UJ2J1 for the latter. For any three complex
structures J1, J2, J3 ∈ Jω, we have [11]

UJ1J3 ◦ UJ3J2 ◦ UJ2J1 = exp[
√
−1π
4 αω(J1, J2, J3)] idHJ1

, (3.2)

where αω(J1, J2, J3) is called the generalised Maslov index. The above formula also holds for half-density
quantisation. Representing Ji by symmetric matrices Zi (i = 1, 2, 3), we have [11]

αω(J1, J2, J3) = − 2
π [arg det(In − Z̄1Z2) + arg det(In − Z̄2Z3) + arg det(In − Z̄3Z1)]. (3.3)

Since Jω is contractible, the function “arg” can be defined continuously so that arg det(In − Z̄Z ′) = 0 when
either Z or Z ′ is zero. We also note that the Bergman kernel function of the domain can be expressed
explicitly in terms of det(In − Z̄Z ′) [7]. The generalised Maslov index takes real values and satisfies the
properties [11] that for any J1, J2, J3, J4 ∈ Jω,

(a) αω(gJ1g
−1, gJ2g

−1, gJ3g
−1) = αω(J1, J2, J3), ∀g ∈ Sp(V, ω);

(b) αω(J1, J2, J3) = αω(J2, J3, J1) = −αω(J2, J1, J3);
(c) αω(J1, J2, J3) + αω(J2, J4, J3) + αω(J3, J4, J1) + αω(J4, J2, J1) = 0.

The last property means that αω is a 2-cocycle on the Sp(V, ω)-space Jω with values in R [11].
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Our observation is that (3.2) is the holonomy of the projectively flat bundle H → Jω along a loop
that consists of three geodesics γJ2J1 , γJ3J2 , γJ1J3 . Using the curvature (2.1), the holonomy is equal to

exp[
√
−1
2

∫
∆
σω], where ∆ is an oriented surface bounded by the three geodesics. This implies that

αω(J1, J2, J3) =
2

π

∫
∆

σω. (3.4)

(It is clear that the equality holds modulo 8π; the additive constant is 0 by continuity when ∆ shrinks to a
point.) A direct proof of this result is also possible. We write σω = dφω, where

φω =
√
−1 (∂̄ − ∂) log det(In − Z̄Z).

It is easy to show that ∫
γJ2J1

φω = − arg det(In − Z̄1Z2) (3.5)

using for example the transformation of both sides under the symplectic group [6]. Formula (3.4) then follows
from (3.3) and Stokes’ theorem. Therefore |α(J1, J2, J3)| ≤ n by [6]. The properties of αω listed above also
follow easily from (3.4).

We want to establish the analogue of (3.3) for the triple Maslov index αω(L1, L2, L3). A real Lagrangian
subspace L ∈ Lω, being on the Shilov boundary of Jω, is represented by an n×n complex symmetric matrix
that is unitary. Two Lagrangian subspaces L1, L2 are transverse if and only if their corresponding matrices
Z1, Z2 satisfy det(In − Z̄1Z2) 6= 0. (The vanishing of this determinant implies the existence of a non-zero
vector v ∈ Cn such that Z1v = Z2v, and hence a non-zero vector in L1∩L2. The converse is also true.) When
the Lagrangian subspaces L1, L2, L3 (parametrised by Z1, Z2, Z3, respectively) are mutually transverse, we
claim that

αω(L1, L2, L3) = − 2
π [arg det(In − Z̄1Z2) + arg det(In − Z̄2Z3) + arg det(In − Z̄3Z1)]. (3.6)

Consequently, the triple Maslov index can be expressed as the limit of the integration
∫
∆
σω when the vertices

of ∆ approach the Shilov boundary from the interior Jω. This result, together with its generalisation to
Hermitian symmetric tube domains, appeared in [21]. See also [4] for the case n = 1 and [5] for the general
case. However, the surface ∆ itself (as well as its boundaries and vertices) moves in this limit procedure.

To show (3.6), we observe that both sides are invariant under the symplectic group Sp(V, ω). Since
Sp(V, ω) acts transitively on transverse pairs of Lagrangian subspaces, we can assume, without loss of
generality, that L1, L2 are represented by Z1 = −In, Z2 = In, respectively. To bring L3 or Z3 to a canonical
form, we make a Cayley transform Z 7→ Ω =

√
−1 (In−Z)(In+Z)−1. The image of Jω is Siegel’s upper-half

space that consists of n × n complex symmetric matrices with a positive-definite imaginary part [15]. The
Shilov boundary Lω is mapped to the set of real symmetric matrices plus a stratum of real codimension 1
at infinity. For example, the above L1, L2 are represented by Ω1 = lima→+∞

√
−1 aIn, Ω2 = 0, respectively,

and Ω3 is finite and invertible since L3 is transverse to both L1 and L2. A symplectic group element(
A B

C D

)
∈ Sp(2n,R) acts on Ω by a fractional linear transformation Ω 7→ (AΩ + B)(CΩ + D)−1. The

subgroups that preserves Z1,2 = ∓In or Ω1,Ω2 consists of elements such that B = C = 0, D = TA−1.

Using such an element, it is possible to bring Ω3 to the form
(
Ir 0

0 −In−r

)
or Z3 to

(√−1 Ir 0

0 −
√
−1 In−r

)
, where

0 ≤ r ≤ n. By a simple calculation, both sides of (3.6) are equal to n− 2r.
It is possible to express the triple Maslov index αω(L1, L2, L3) as a generalised integral over a fixed

surface. Let ∆ be a surface with boundary in Jω. Suppose L0 ∈ Lω is in the boundary of ∆ (when Jω is
regarded as a bounded domain). We say that ∆ is admissible at L0 if
(a) there are two geodesics γ1, γ2 in Jω parametrised by t that is affine with respect to arc length on each
geodesic such that limt→+∞ γ1(t) = limt→+∞ γ2(t) = L0, and
(b) there exists T > 0 such that the boundary of ∆ in Jω contains γ1(t), γ2(t) for all t ≥ T and such that ∆
contains ∆L0,T =

⋃
t≥T γL0,t, where γL0,t is the geodesic segment joining γ1(t) and γ2(t).

Let L0, γ1(t), γ2(t) be represented by symmetric matrices Z0, Z1(t), Z2(t), respectively. Then a straightfor-
ward calculation shows that

lim
t→+∞

[arg det(In − Z̄0Z1(t)) + arg det(In − Z1(t)Z2(t)) + arg det(In − Z2(t)Z0)] = 0. (3.7)
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Roughly, this means that as t → +∞, the “symplectic area” of ∆L0,t (despite the lack of its definition as
∆L0,t is unbounded) goes to 0. Now let L1, L2, L3 ∈ Lω be three mutually transverse Lagrangian subspaces
joined by geodesics γL2L1

, γL3L2
, γL1L3

in Jω. Suppose ∆ is a surface in Jω bounded by these three geodesics,
which make ∆ admissible at L1, L2, L3. For sufficiently large t, let ∆(t) = ∆\(∆L1,t ∪∆L2,t ∪∆L3,t). Then
∆(t) is a bounded region in ∆ whose boundary is the union of six geodesic segments. Using (3.5), (3.6) and
(3.7), we obtain

αω(L1, L2, L3) =
2

π
lim

t→+∞

∫
∆(t)

σω.

In this way, the integration on the right-hand side is over a region ∆(t) that expands (as t → +∞) in a
fixed surface ∆. Alternatively, we can integrate σω over the part of ∆ that is outside three horospheres that
recede to L1, L2, L3, respectively, in the limit.

3.2 Fermionic systems: orthogonal analogue of Maslov index

For a fermionic system whose phase space is the Euclidean space (V, g) of dimension 2n, the space Jg of
polarisations is compact. The bundle of Hilbert spaces H→ Jg admits a natural projectively flat connection.
Suppose J1, J2 ∈ Jg and J2 is not in the cut locus of J1 (and vice versa). Let γJ2J1 be the unique length-
minimising geodesic from J1 to J2. Then the parallel transport UJ2J1 along γJ2J1 is the unitary intertwining
operator between the equivalent representations of the Clifford algebra on HJ1 and HJ2 [22]. Suppose
J1, J2, J3 ∈ Jg such that Ji is not in the cut locus of Jj whenever i 6= j. Then as in the bosonic case (3.2),
we have the identity

UJ1J3 ◦ UJ3J2 ◦ UJ2J1 = χg(J1, J2, J3) idHJ1
, (3.8)

where χg(J1, J2, J3) ∈ U(1). This follows from the irreducibility of HJ1 as a representation of the Clifford
algebra. The phase χg itself was constructed in [12] as a 2-cocycle on the SO(V, g)-space Jg with values in
U(1). It satisfies the properties

(a) χg(gJ1g
−1, gJ2g

−1, gJ3g
−1) = χg(J1, J2, J3), ∀g ∈ SO(V, g);

(b) χg(J1, J2, J3) = χg(J2, J3, J1) = χg(J2, J1, J3)−1;
(c) χg(J1, J2, J3)χg(J2, J4, J3)χg(J3, J4, J1)χg(J4, J2, J1) = 1

for any J1, J2, J3, J4 ∈ Jg such that Ji is not in the cut locus of Jj (i 6= j). This is the orthogonal or spinorial
counterpart of the generalised Maslov index in [11].

We observe that the phase χg(J1, J2, J3) is the holonomy of the projectively flat connection on H along

the three geodesics γJ2J1 , γJ3J2 and γJ1J3 . (Here and below, we can replace H by the bundle H̃ → Jg of
half-density quantisation without changing the holonomy.) Since Jg is simply connected, there is an oriented
surface ∆ whose boundary consists of the three geodesics. Using the curvature (2.3), we get

χg(J1, J2, J3) = exp[
√
−1
2

∫
∆
σg]. (3.9)

We note that the exponent on the right-hand side is not well defined, as the integration over ∆ changes when
∆ is replaced by another surface with the same boundary but not homotopic to ∆. However, the exponential
does not depend on the choice of ∆. This is consistent with the fact that σg is a closed 2-form whose periods
are in 4πZ [22].

We can choose J0 ∈ Jg such that J1, J2, J3 are in the complement of its cut locus. Then the phase
χg(J1, J2, J3) can be lifted to be real valued, i.e.,

χg(J1, J2, J3) = exp[
√
−1π
4 αg(J1, J2, J3)],

where αg(J1, J2, J3) ∈ R depends smoothly on J1, J2, J3 and αg(J1, J2, J3) = 0 whenever any two of J1, J2, J3
coincide. This is because the complement of a cut locus is contractible. We note however that αg does
depend on the choice of J0. If we further choose ∆ as a surface that lies entirely in the complement and
whose boundary consists of the three geodesics joining J1, J2, J3, then formula (3.9) for χg(J1, J2, J3) can be
lifted to

αg(J1, J2, J3) =
2

π

∫
∆

σg, (3.10)
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an identity in R that is formally similar to (3.4). When J1, J2, J3, J4 ∈ Jg are not in the cut locus of each
other and suppose they are not in the cut locus of J0 either, we have

(a) αg(gJ1g
−1, gJ2g

−1, gJ3g
−1) = αg(J1, J2, J3), ∀g ∈ SO(V, g);

(b) αg(J1, J2, J3) = αg(J2, J3, J1) = −αg(J2, J1, J3);
(c) αg(J1, J2, J3) + αg(J2, J4, J3) + αg(J3, J4, J1) + αg(J4, J2, J1) = 0.

In (a), αg(gJ1g
−1, gJ2g

−1, gJ3g
−1) is defined because gJ1g

−1, gJ2g
−1, gJ3g

−1 are not in the cut locus of
gJ0g

−1.
Using the parametrisation of J1, J2, J3 by skew-symmetric matrices Z1, Z2, Z3, respectively, we can write

the Kähler form on the complement of the cut locus as σg = dφg, where

φg =
√
−1 (∂ − ∂̄) log det(In − Z̄Z).

So log det(In − Z̄Z) is essentially the Kähler potential on the compliment of a cut locus. As in the bosonic
case, we get a formula (cf. [12])

αg(L1, L2, L3) = 2
π [arg det(In − Z̄1Z2) + arg det(In − Z̄2Z3) + arg det(In − Z̄3Z1)].

4 Comparison with Berry’s phase

When the Hamiltonian of a quantum mechanical system undergoes an adiabatic change, an energy eigenstate
of the initial Hamiltonian evolves to that of the new Hamiltonian, multiplied by a phase. If the change is in
a cycle, the phase contains a dynamical part and Berry’s geometric phase [2]. The latter was related to the
holonomy of bundles over the space of parameters [16]. Berry’s phase was generalised to the non-Abelian
setting when the energy levels are possibly degenerate [19]. In [20], it was shown that non-Abelian Berry’s
phase is related to universal connection [13] in the following way. Let B be the space of parameters of the
system. Assume that an energy eigenvalue varies smoothly over B and its degeneracy r does not change.
This defines a map from B to the Grassmannian of r-planes in the quantum Hilbert space. Over the latter
there is a universal connection in the tautological vector bundle [13] and Berry’s phase is the holonomy of
its pull-back along a cyclic path in B [20].

The universal connection is defined by orthogonal projection of the trivial connection [13]. This is math-
ematically similar to the construction of the projectively flat connection in the bundle of Hilbert spaces over
the space of polarisations (§2). There is however an important conceptual difference. Although polarisations
provide many ways to construct the quantum Hilbert space, they are not physical parameters of the system.
On the contrary, our purpose was to show that physics is independent of the choice of polarisations by
identifying the Hilbert spaces through parallel transport. However, Berry’s phase is physical and can be
measured experimentally. It occurs when the physical parameters of the system changes, regardless of the
polarisation chosen. It is the latter that concerns us now, even though the physical systems considered below
are parametrised exactly by Jω and Jg.

We start with a linear bosonic system whose phase space is a symplectic vector space (V, ω) of dimension
2n. We fix the quantum Hilbert space Hb. Consider the Hamiltonian of harmonic oscillator

HJ = 1
2 ω(·, J ·) ∈ Sym2(V ∗),

where J ∈ Jω is now a physical parameter. Its quantisation is a positive-definite self-adjoint operator ĤJ

acting on Hb, which has a Fock space decomposition as follows. Recall that the creation and annihilation
operators are the quantised linear functionals on V 1,0

J and V 0,1
J , respectively. For any polynomial f ∈

Sym(V 1,0
J )∗, its quantisation f̂ acts on Hb. (Operator ordering is not a problem here as the creation

operators commute with each other.) Let |0〉J be the vacuum state of ĤJ and let

H
(k)
J = Symk(V 1,0

J )∗|0〉J = { f̂ |0〉J | f ∈ Symk(V 1,0
J )∗}

for any k ∈ N = {0, 1, 2, . . . }. Each H
(k)
J is an eigenspace of ĤJ with energy k+ n/2. We have dimC H

(k)
J =(

n+k−1
k

)
and as a Hilbert space,

Hb =
⊕
k∈N

H
(k)
J .
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As the parameter J ∈ Jω varies, the eigenspaces H
(k)
J (for a fixed k ∈ N) of ĤJ form a vector bundle

H(k) over Jω. Each bundle H(k) has a natural connection by orthogonal projection from the product bundle
Jω ×Hb. This is also the pull-back of the universal connection from the Grassmannian. Therefore under
an adiabatic cyclic evolution in Jω, Berry’s phase in the kth eigenspace is the holonomy of the bundle H(k).

H(0) is a line bundle whose fibre over J ∈ Jω is spanned by |0〉J ∈ Hb. Its curvature is F(0) =
√
−1
2 σω;

note the opposite sign from (2.1). Therefore Berry’s phase of the vacuum state is inverse to the holonomy
considered in §3.1. The bundle H(0) with its connection is isomorphic to

√
K. For a general k, the bundle

H(k) with its connection is isomorphic to Symk(V∗)⊗
√
K; the latter has a connection induced from V, whose

curvature is given by (2.2). In particular, if n = 1, then H(k) ∼= K⊗(k+1/2) and therefore its curvature is
(cf. [3])

F(k) = (k + 1
2 )
√
−1σω.

However, unless k = 0 or n = 1 when H(k) is a line bundle, the connection on H(k) is not projectively flat.
Berry’s phase also appears in fermionic systems. Suppose the phase space is a Euclidean space (V, g) of

dimension 2n. Let Hf be the quantum Hilbert space. We consider a fermionic harmonic oscillator whose
Hamiltonian is

HJ = 1
2 g(J ·, ·) ∈

∧2
(V ∗),

where J ∈ Jg is again a physical parameter. Its quantisation ĤJ is a self-adjoint operator on Hf . As in the

bosonic case, the creation and annihilation operators are the quantised linear functionals on V 1,0
J and V 0,1

J ,

respectively. For any f ∈
∧k

(V 1,0
J )∗, the quantum operator f̂ acts on Hf . Let |0〉J be the vacuum state and,

for any k ∈ Z with 0 ≤ k ≤ n, let

H
(k)
J =

∧k
(V 1,0
J )∗ |0〉J = { f̂ |0〉J | f ∈

∧k
(V 1,0
J )∗}.

Then each H
(k)
J is an eigenspace of ĤJ with energy k − n/2. We have dimC H

(k)
J =

(
n
k

)
and

Hf =

n⊕
k=0

H
(k)
J .

The eigenspaces H
(k)
J (for a fixed k) of ĤJ form a vector bundle H(k) over Jg. The natural connection on

H(k) by orthogonal projection from the product bundle Jg×Hf coincides with the pull-back of the universal
connection from the Grassmannian. Therefore under an adiabatic cyclic evolution in Jg, Berry’s phase in the
kth eigenspace is the holonomy of the bundle H(k). H(0) is a line bundle whose fibre over J ∈ Jg is spanned

by |0〉J ∈ Hf . Its curvature is F(0) =
√
−1
2 σg; note again the opposite sign from (2.3). So Berry’s phase of the

vacuum state is inverse to the holonomy in §3.2. The line bundle H(0) is isomorphic to
√
K−1. For 0 ≤ k ≤ n,

the bundle H(k) with its connection is isomorphic to
∧k

(V∗)⊗
√
K−1, which has a connection induced from

V. In particular, H(n) ∼=
√
K a line bundle that is dual to H(0) and its curvature is F(n) = −

√
−1
2 σg. In

general cases (k 6= 0, n), the connection on H(k) is not projectively flat.
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