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Abstract

Facility location, arising in a rich variety of applications, has been studied extensively in the fields
of operations research and computer science. In this note we consider the classical uncapacitated
facility location problem and its “prize-collecting” variant introduced by Bäıou and Barahona, and

show that the linear systems associated with these problems are totally dual integral (TDI) if and

only if the input graphs contain no certain type of odd cycles. As corollaries, we get structural
characterizations of two min-max relations on facility location. Our results strengthen the integrality
theorems on facility location polytopes proved by Bäıou and Barahona; our proofs lead to combina-
torial polynomial-time algorithms for the facility location problems in our consideration.
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1 Introduction

Given a set F of facilities and a set C of customers such that each facility i has an opening cost ci and
serving customer j by facility i incurs a cost cij , the uncapacitated facility location problem (UFLP) is to
open a subset of facilities in F and serve each customer by an open facility at minimum total cost. This
NP -hard problem, arising in a rich variety of applications, has been a subject of extensive research in
the fields of operations research and computer science over the past four decades, from the perspectives
of approximation algorithms, probability analysis, polyhedral combinatorics, and empirical heuristics.
In many settings it is necessary to modify the objective function and constraints of the UFLP to meet
practical needs. Thus various variants of this problem have also been proposed and widely studied in the
literature.

In this note we first consider the “prize-collecting” version of the UFLP introduced by Bäıou and
Barahona [1], where we are given a digraph G = (V, A) with an integer wx on each member x of V ∪A.
We wish to select a subset of vertices, called centers, and then assign some (but not necessarily all)
nonselected vertices to centers. Suppose the weight wv on a vertex v is the profit made by opening a
facility at this location, and the weight wuv on arc uv (which is from u to v) is the profit made by
serving the customer at location v with the facility at location u1. Our objective is to maximize the total
opening and service profit, where we assume that there is a customer at each location represented by
a vertex. This problem, denoted by PCLP, can be naturally formulated as an integer program, whose
linear programming (LP) relaxation is given below:

(PP) Maximize
X

uv∈A

wuvxuv +
X
v∈V

wvyv

subject to
X

uv∈A

xuv + yv ≤ 1 ∀ v ∈ V, (1.1a)

xuv − yu ≤ 0 ∀ uv ∈ A, (1.1b)

xuv ≥ 0 ∀ uv ∈ A, (1.1c)

yv ≥ 0 ∀ v ∈ V. (1.1d)

As described by Bäıou and Barahona [1], for each vertex u, variable yu = 1 if a facility is opened at
location u and 0 otherwise. For each arc uv, variable xuv = 1 if the customer at location v is served by a
facility at location u and 0 otherwise. Moreover, inequality (1.1a) indicates that either a facility can be
opened at location v or the customer at v can be served by a facility at another location u. Inequality
(1.1b) shows that if the customer at location v is assigned to location u, then a facility must be opened
at u.

Let us introduce some notions and terminology before presenting Bäıou and Barahona’s theorems [1].
A vertex of G is called a source (resp. sink) if G has no arc entering (resp. leaving) it, and is called
mixed if it is neither a source nor a sink. We follow [1] to use Ġ (resp. Ĝ) to denote the set of all sources
(resp. sinks) in G and use G̃ to denote the set of all mixed vertices. A cycle C in G is an ordered

1The only difference between the original Bäıou-Barahona formulation and ours is that the arcs in the input digraph are
all reversed here.
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sequence v0, a0, v1, a1, . . . , ak−1, vk, such that v0, v1, . . . , vk−1 are distinct vertices, vk = v0, and ai is an
arc between vi and vi+1 for 0 ≤ i ≤ k − 1, where k ≥ 1. Since C itself is a digraph, we get Ċ, Ĉ, and C̃

accordingly. Note that |Ċ| = |Ĉ|. We call C odd if k + |Ċ| (or equivalently |C̃| + |Ċ|) is odd and even
otherwise. We also call G even if each cycle of G is even. As usual, a polyhedron P is called integral if
each face of P contains integral vectors, and is called a polytope if P is bounded. It is well known that a
polytope is integral if and only if its vertices are all integral. The reader is referred to Schrijver [6, 7] for
in-depth accounts of polyhedral combinatorics.

Let π(G) denote the linear system (1.1a-d) and let P (G) denote the polytope defined by π(G). Bäıou
and Barahona obtained the following structural characterization of all digraphs G with integral P (G).

Theorem 1.1 [1] Let G be the input digraph of the PCLP. Then P (G) is integral if and only if G is
even.

By Tardos’ theorem [8] (see Corollary 15.3a in [6]), there exists a strongly polynomial-time algorithm
for LP problems with (0,±1) constraint matrices. So an optimal solution to (PP) can be found in strongly
polynomial time, which can be further transformed into an optimal basic feasible solution (x∗, y∗) in
strongly polynomial time (see, for instance, Section 2.4 in [5]). If P (G) is integral, then so is (x∗, y∗).
Hence an instant corollary of Theorem 1.1 is a strongly polynomial-time algorithm for the PCLP; see [1].
Nevertheless, Bäıou and Barahona’s method [1] does not seem to yield a combinatorial polynomial-time
algorithm for solving the PCLP.

A linear system Ax ≤ b is called totally dual integral (TDI) if the minimum in the LP-duality equation

max{cT x : Ax ≤ b} = min{yT b : yT A = cT, y ≥ 0}
has an integral optimal solution, for every integral vector c for which the optimum is finite. The model
of TDI systems plays a crucial role in combinatorial optimization, and serves as a general framework
for establishing many important min-max theorems because, as shown by Edmonds and Giles [3], total
dual integrality implies primal integrality: if Ax ≤ b is TDI and b is integral, then the polydedron
{x : Ax ≤ b} is integral. One objective of this note is to strengthen Theorem 1.1 as follows.

Theorem 1.2 Let G = (V, A) be the input digraph of the PCLP. Then the following statements are
equivalent:

(i) G is even;

(ii) P (G) is integral; and

(iii) π(G) is TDI.

Moreover, for any even digraph G = (V, A) and any weight w ∈ ZV ∪A, an integral optimal solution to
(PP) can be found in O(m2 log2 m) time, where m = |A| and Z is the set of all integers.
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To interpret statement (iii) of this theorem, we appeal to the dual of (PP):

(PD) Minimize
X
v∈V

αv

subject to αv + βuv ≥ wuv ∀ uv ∈ A, (1.2a)

αu −
X

uv∈A

βuv ≥ wu ∀ u ∈ V, (1.2b)

βuv ≥ 0 ∀ uv ∈ A, (1.2c)

αv ≥ 0 ∀ v ∈ V. (1.2d)

Suppose π(G) is a TDI system and w ∈ ZV ∪A. Then the aforementioned Edmonds-Giles theorem and
the definition guarantee the existence of an integral optimal solution (x∗, y∗) to (PP) and an integral
optimal solution (α∗, β∗) to (PD). Note that both x∗ and y∗ are 0− 1 vectors. As stated before, y∗u = 1
if and only if a facility is opened at location u, and x∗uv = 1 if and only if the customer at location v is
served by the facility at u. Set φ(v) = u if x∗uv = 1.

Suppose α∗v > 0. By the complementary slackness condition, we have
• Puv∈A x∗uv + y∗v = 1,

which implies that either a facility is opened at location v or the customer at v is served by a facility at
some other location u.

Suppose a facility is opened at location u. Then α∗u −
P

uv∈A β∗uv = wu. If uv ∈ A but the customer
at v is not served by the facility at u, then x∗uv − y∗u = −1. Thus β∗uv = 0. It follows that

• α∗u −
P

v: φ(v)=u β∗uv = wu.
On the other hand, if the customer at v is served by the facility at u, then x∗uv = 1 and hence

• α∗v + β∗uv = wuv.
In view of the above three observations, we can think of α∗z as the cost paid by location z for opening

a facility or for the service accepted by the customer at z. If a facility is opened at a location u, then β∗uv

in the amount α∗u is contributed to the profit of using u to serve v for all v ∈ V with φ(v) = u, and the
remainder α∗u −

P
v: φ(v)=u β∗uv goes to the profit earned by opening a facility at u. In addition to β∗uv,

the remaining profit of using u to serve v for all v ∈ V with φ(v) = u comes from α∗v.
Since potentially the facility at any vertex u could be opened and the customer at any vertex outside

F with uv ∈ A could be served by this facility, where F is the set of all vertices at each of which a facility
is opened, it is natural to require that (1.2b) be satisfied by every vertex and (1.2a) be satisfied by every
arc. These constraints reflect the fact that sufficient cost must be paid for the guaranteed opening and
service profit.

We point out that this interpretation closely resembles the one for the UFLP (see, for instance, [4, 9]),
which will be given later. The equivalence of (i) and (iii) yields a characterization of the following min-max
relation.

Corollary 1.3 Let G = (V,A) be the input digraph of the PCLP. Then the minimum cost (integral) paid
by the locations is equal to the maximum total profit made in facility location, for all w ∈ ZV ∪A, if and
only if G is even.
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In this note we also study the classical uncapacitated facility location problem (UFLP) (see, for
instance, [4, 9]) as stated at the beginning of this section. The input of this problem consists of a
bipartite digraph G = (F ∪ C,A) and an integral cost function c defined on F ∪ A, where (F,C) is the
bipartition of G and all arcs of G are directed from F to C. The problem is to open some facilities in F

to serve all customers in C at minimum total cost, where opening a facility at u ∈ F incurs a cost cu, and
using u ∈ F to serve its neighbor v ∈ C incurs a service cost cuv. Relaxing the integrality requirement in
the integer programming model of the UFLP, we get the following linear program

(UP) Minimize
X

uv∈A

cuvxuv +
X
u∈F

cuyu

subject to
X

uv∈A

xuv = 1 ∀ v ∈ C, (1.3a)

yu − xuv ≥ 0 ∀ uv ∈ A, (1.3b)

xuv ≥ 0 ∀ uv ∈ A, (1.3c)

yu ≥ 0 ∀ u ∈ F. (1.3d)

Let σ(G) denote the linear system (1.3a-d) and let Q(G) denote the polyhedron defined by σ(G). Let
C∗ be the set of all vertices in C that have degree one in G, let F ∗ be the set of all vertices in F that
are adjacent to some vertices in C∗, and let G∗ be the graph obtained from G by deleting F ∗. Bäıou and
Barahona established the following necessary and sufficient condition for Q(G) being integral.

Theorem 1.4 [1] Let G be the input digraph of the UFLP. Then Q(G) is integral if and only if G∗ is
even.

Observe that the bipartite graph G∗ is even if and only if the length of each cycle in G∗ is a multiple
of 4. Once again, Theorem 1.4 leads to a strongly polynomial-time algorithm for the UFLP, yet Bäıou
and Barahona’s method [1] does not seem to yield a combinatorial polynomial-time algorithm for solving
this problem.

We shall also give the following strengthening of the preceding theorem.

Theorem 1.5 Let G = (F ∪C,A) be the input digraph of the UFLP. Then the following statements are
equivalent:

(i) G∗ is even;

(ii) Q(G) is integral; and

(iii) σ(G) is TDI.

Moreover, for any digraph G = (F ∪C, A) with even G∗ and any weight c ∈ ZF∪A for which the optimum
of (UP) is finite, an integral optimal solution to (UP) can be found in O(m2 log2 m) time, where m = |A|.
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To interpret statement (iii) of this theorem, let us write out the dual of (UP):

(UD) Maximize
X
v∈C

αv

subject to αv − βuv ≤ cuv ∀ uv ∈ A, (1.4a)X
uv∈A

βuv ≤ cu ∀ u ∈ F, (1.4b)

βuv ≥ 0 ∀ uv ∈ A. (1.4c)

Suppose σ(G) is a TDI system and c ∈ ZF∪A for which the optimum of (UP) is finite. Then (UP) has an
integral optimal solution (x∗, y∗) and (UD) has an integral optimal solution (α∗, β∗). Clearly, we may
assume that y∗ is a 0 − 1 vector. As stated before, y∗u = 1 if and only if a facility is opened at location
u, and x∗uv = 1 if and only if the customer at v is served by the facility at u. Let us define a mapping
φ : C → F such that φ(v) = u if and only if x∗uv = 1.

Suppose a facility is opened at location u. By the complementary slackness condition, we haveP
uv∈A β∗uv = cu. If uv ∈ A but the customer at a vertex v ∈ C is not served by the facility at u, then

y∗u − x∗uv = 1. Thus β∗uv = 0. It follows that
• Pv: φ(v)=u β∗uv = cu.

On the other hand, if the customer at v is served by the facility at u, then x∗uv = 1 and hence
• α∗v − β∗uv = cuv.
In view of the above two observations, we can think of α∗v as the price paid by the customer at v,

in which β∗uv is the amount contributed to the cost of opening the facility at u (our first observation
amounts to saying that each open facility must be fully paid for), and cuv goes to the cost incurred for
serving the customer at v by the facility at u.

Since potentially the facility at any vertex u ∈ F could be opened and the customer at any vertex
v ∈ C with uv ∈ A could be served by this facility, it is natural to require that (1.4b) be satisfied by every
vertex in F and (1.4a) be satisfied by every arc. These constraints reflect that no customer is willing to
overpay in practice.

It is worthwhile pointing out that this interpretation is used widely in the literature; see, for instance,
[4, 9]. As (i) is equivalent to (iii), we get a characterization of the following min-max relation concerning
the UFLP.

Corollary 1.6 Let G = (F ∪ C, A) be the input digraph of the UFLP. Then the minimum total opening
and service cost is equal to the maximum total price (integral) the customers are willing to pay, for all
c ∈ ZF∪A for which the optimum of (UP) is finite, if and only if G∗ is even.

2 Proofs

Recall that a matrix is called totally unimodular if each of its square submatrices has determinant 0 or
±1. Our proofs rely heavily on a special type of total unimodularity enjoyed by the constraint matrices
of (PP) and (UP).
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Given a (0,±1) matrix A of dimension p × q, let us construct a bipartite digraph D with vertex set
{r1, r2, . . . , rp} ∪ {c1, c2, . . . , cq}, such that

• cjri is an arc in D if aij = 1; and
• ricj is an arc in D if aij = −1,

where aij is the (i, j)th entry of A. We call D the matrix digraph associated with A and call A an
adjacency matrix of D. As defined before, by a cycle in D we mean in this note a cycle in the underlying
undirected graph of D. For each cycle C of D, define ρ(C) = (−1)nΠ{aij | ricj ∈ C}, where |C| = 2n

and ricj is considered in the directed sense. We call A restricted totally unimodular (RTUM) if ρ(C) = 1
for each cycle C of D (see page 282 of [10]). For convenience, let us view aij as the weight on the arc
between ri and cj , and denote by w(C) the total sum of all weights associated with arcs on C. Then

ρ(C) = 1 if and only if w(C) ≡ 0 (mod 4). (2.1)

To justify this, let k be the total number of arcs on C of the form ricj . Then 2n− k is the number of all
arcs on C of the form cjri, where |C| = 2n. By definition, ρ(C) = (−1)n+k. So ρ(C) = 1 if and only if
n + k is even if and only if so is n− k if and only if w(C) = 2n− 2k ≡ 0 (mod 4).

From (2.1), we conclude that

A (0,±1) matrix A is RTUM if and only if w(C) ≡ 0 (mod 4) for each cycle C
in the matrix digraph associated with A. (2.2)

We shall repeatedly use this equivalent definition in our proofs. RTUM matrices are so named because
all of them are totally unimodular, as shown by Commoner [2]. While it is still unknown if there
is a combinatorial polynomial-time algorithm for solving linear integer programming involving totally
unimodular constraint matrices, Yannakakis [10] affirmatively solved a large case of this problem.

Theorem 2.1 [10] Suppose that the b-matching problem and the maximum-weight independent set prob-
lem can be solved in f(n,m) and g(n,m) time respectively on a bipartite digraph with n vertices and m

arcs. Let A =

24 A1

A2

A3

35 be an n×m RTUM matrix. Then the following integer program

Minimize wT x

subject to A1x ≤ b1

A2x = b2

A3x ≥ b3

xi = 0 or 1 for i = 1, 2, . . . , m

can be solved in O(f(n,m) + g(n,m)) = O(n(m + n log n) log n) time.

We remark that O(f(n, m) + g(n,m)) was originally estimated to be O(m2 log m + mn log m) in [10]
rather than the present one, and our bound is derived from the time complexity of more advanced algo-
rithms. As stated by Yannakakis (see page 301 in [10]), the maximum-weighted independent set problem
on a bipartite digraph can be reduced to the maximum flow problem, so O(g(n,m)) = O(nm log n)
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(see page 161 in [7]). Besides, O(f(n,m)) = O(n(m + n log n) log n) (see page 356 in [7]). Therefore,
O(f(n,m) + g(n,m)) = O(n(m + n log n) log n).

Now we are ready to establish the main results of this note.

Proof of Theorem 1.2. By the aforementioned Edmonds-Giles theorem and Theorem 1.1, we have
(iii)⇒(ii)⇒(i). So it remains to prove that (i)⇒(iii).

Let G = (V, A) be an even digraph. We construct a digraph H from G as follows:

• Subdivide each uv ∈ A into a directed path uauvbuvv of length 3, where auv and buv are newly
added vertices, then

• replace each v ∈ V by two vertices av and bv such that all incoming arcs at v enter av and all
outgoing arcs at v leave bv, and finally add an arc bvav. Notice that av (resp. bv) has degree one if
v is in Ġ (resp. Ĝ).

Set Va = {av : v ∈ V } ∪ {auv : uv ∈ A} and Vb = {buv : uv ∈ A} ∪ {bv : v ∈ V }. Clearly, all arcs of H

are between Va and Vb. So H is a bipartite digraph with bipartition (Va, Vb). Let M be the adjacency
matrix of H whose rows are indexed by vertices in Va and columns are indexed by vertices in Vb. We
propose to show that

(1) M is an RTUM matrix,
which, by (2.2), amounts to saying that

(2) w(C) ≡ 0 (mod 4) for each cycle C in H (the matrix digraph associated with M).
To justify this, let C be a cycle in H, and let Q be obtained from C by contracting each arc bvav on

C into a single vertex v and replacing each segment buauvbuvav of C with an arc uv. Then Q is a cycle
in G. From the construction of H, it can be seen that

(3) C̃ = {auv, buv : uv ∈ A(Q)} and Ċ = {bv : v ∈ Q̇ ∪ Q̃}.
Since G is an even digraph, by definition |Q̇|+ |Q̃| is even. Using (3), we obtain

(4) |Ċ| is even.
Observe that V (C) ∩ Vb = Ċ ∪ (C̃ ∩ Vb), and that

• each vertex bv in Ċ is incident with two outgoing arcs on C, so the weights on these two arcs are
both 1;

• each vertex buv in C̃ ∩ Vb is incident with one incoming arc and one outgoing arc on C, so the
weights on these two arcs are −1 and 1, respectively.

Since each arc on C is incident with a vertex in Ċ or in C̃ ∩ Vb, the above observations yield w(C) =
(1 + 1) · |Ċ|+ (1− 1) · |C̃ ∩ Vb| = 2|Ċ| ≡ 0 (mod 4) by (4). Hence (2) and therefore (1) is established.

Let (PP′) be the linear program obtained from (PP) by replacing (1.1b) with −xuv + yu ≥ 0 for all
uv ∈ A. It is a routine matter to check that M is precisely the constraint matrix of (PP′). Thus, from
(1) and Hoffman and Kruskal’s theorem (see Corollary 19.2b in [6]), we deduce that (PP′) has an integral
optimal solution, which is clearly a 0 − 1 vector (see the constraints of (PP′)). Since M has |V | + |A|
rows and |V |+ |A| columns, by (1) and Theorem 2.1, an integral optimal solution to (PP′) and hence to
(PP) can be found in O(m2 log2 m) time.

Let N be the constraint matrix of (PP). Then N is the coefficient matrix of π(G), and can be
obtained from M by multiplying some rows with −1. Since M is totally unimodular, so is N . By the
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above-mentioned Hoffman and Kruskal’s theorem, (PD) also has an integral optimal solution. It follows
that π(G) is a TDI system.

We can finally characterize all input digraphs G of the UFLP for which σ(G) is TDI.

Proof of Theorem 1.5. By the Edmonds-Giles theorem and Theorem 1.4, we have (iii)⇒(ii)⇒(i).
So it remains to prove that (i)⇒(iii).

Let G = (F ∪C, A) be the input graph of the UFLP with even G∗. Recall that (F,C) is the bipartition
of G and all arcs of G are directed from F to C. Let c be an arbitrary weight in ZF∪A for which the
optimum of (UP) is finite. Our objective is to show that (UD) has an integral optimal solution, and that
an integral optimal solution to (UP) can be found in O(m2 log2 m) time, where m = |A|. Observe that
the assumption on c implies

(1) cu ≥ 0 for all u ∈ F .
Let us now proceed by considering two cases.

Case 1. G∗ = G.
Let H be the digraph obtained from G by replacing each uv ∈ A with a directed path uauvbuvv of

length 3, where auv and buv are newly added vertices. Set Va = C ∪ {auv : uv ∈ A} and Vb = F ∪ {buv :
uv ∈ A}. Clearly, all arcs of H are between Va and Vb. So H is a bipartite digraph with bipartition
(Va, Vb). Let M be the adjacency matrix of H whose rows are indexed by vertices in Va and columns are
indexed by vertices in Vb. We propose to show that

(2) M is an RTUM matrix.
To this end, by (2.2), we may turn to proving that

(3) w(O) ≡ 0 (mod 4) for each cycle O in H (the matrix digraph associated with M).
To justify this, let O be a cycle in H, and let Q be the cycle in G corresponding to O; that is, uauvbuvv

is a segment of O if and only if uv is an arc of Q. From the construction of H, it can be seen that
(4) Õ = {auv, buv : uv ∈ A(Q)} and Ȯ = {u : u ∈ Q̇}.

Since G = G∗ is an even digraph, by definition |Q̇|+ |Q̃| = |Q̇| is even. Using (4), we obtain
(5) |Ȯ| is even.

Observe that V (O) ∩ Vb = Ȯ ∪ (Õ ∩ Vb), and that
• each vertex u in Ȯ is incident with two outgoing arcs on O, so the weights on these two arcs are

both 1;
• each vertex buv in Õ ∩ Vb is incident with one incoming arc and one outgoing arc on O, so the

weights on these two arcs are −1 and 1, respectively.
Since each arc on O is incident with a vertex in Ȯ or in Õ∩Vb, from the above observations we deduce

that w(O) = (1 + 1) · |Ȯ| + (1 − 1) · |Õ ∩ Vb| = 2|Ȯ| ≡ 0 (mod 4) by (5). Hence (3) and therefore (2) is
established.

It is easy to see that M is precisely the constraint matrix of (UP). As is well known, if we duplicate
some rows of a totally unimodular matrix and multiply some rows by −1, the resulting matrix remains to
be totally unimodular. Thus, from (2) and Hoffman and Kruskal’s theorem (see Corollary 19.2b in [6]),
we deduce that (UP) has an integral optimal solution, which can be further assumed to be a 0− 1 vector
(see the constraints of (UP) and (1)). Since M has precisely |C| + |A| rows and |F | + |A| columns, by
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(2) and Theorem 2.1, an integral optimal solution to (UP) can be found in O(m2 log2 m) time. Actually,
Hoffman and Kruskal’s theorem also guarantees the existence of an integral optimal to (UD). Hence,
σ(G) is a TDI system.

Case 2. G∗ 6= G.
Let C∗ be the set of all vertices in C that have degree one in G, and let F ∗ be the set of all vertices

in F that are adjacent to some vertices in C∗. By definition, G∗ is obtained from G by deleting F ∗. Let
D denote the digraph obtained from G by deleting C∗. For all vertices s in F ∗, we preform the following
operation on D: let ND(s) = {t1, t2, . . . , tk} be the neighborhood of s in D, replace s with a vertex set
Fs = {s1, s2, . . . , sk} and then add an arc from si to ti for i = 1, 2, . . . , k. Let H denote the resulting
digraph (from D). Then F ∗ in D has become the set K = ∪s∈F∗ Fs in H. For i = 1, 2, . . . , k, define
csi

= 0 and csiti
= csti

. Set F ′ = (F − F ∗) ∪K and C ′ = C − C∗. Clearly, (F ′, C ′) is the bipartition
of H. From the definitions of C∗ and D, we see that each vertex in C ′ has degree at least two in D and
hence in H. So H∗ = H. Let (UP′) and (UD′) denote the counterparts of (UP) and (UD) corresponding
to H, respectively. As G∗ is even, so is H. By (1) and the assertion for Case 1, an integral optimal
solution (x′,y′) to (UP′) exists and can be found in O(m2 log2 m) time. Also, σ(H) is a TDI system,
which implies the existence of an integral optimal solution (α′,β′) to (UD′). Note that for all i, we have
β′siti

= 0 because csi = 0. By the LP-duality theorem,
(6)

P
uv∈A(H) cuvx′uv +

P
u∈F−F∗ cuy′u =

P
v∈C−C∗ α′v.

Let us now define x∗ ∈ ZA and y∗ ∈ ZF as follows:
• x∗uv = x′uv if u /∈ F ∗, x∗uv = 1 if v ∈ C∗, and x∗sti

= x′siti
if s ∈ F ∗ and ti ∈ ND(s);

• y∗u = y′u if u /∈ F ∗ and y∗u = 1 if u ∈ F ∗.
It is clear that (x∗,y∗) is an integral feasible solution to (UP). Next, let J be a matching of size |F ∗| in
the subgraph of G induced by F ∗ ∪C∗; such a matching exists since each vertex in C∗ has degree one in
G. Let CJ be the set of all vertices in C∗ matched by J . Define α∗ ∈ ZC and β∗ ∈ ZA as

• α∗v = α′v if v /∈ C∗, α∗v = cuv + cu if uv ∈ J , and α∗v = cuv if uv ∈ A and v ∈ C∗ − CJ ;
• β∗uv = β′uv if u /∈ F ∗, β∗uv = cu if uv ∈ J , and β∗uv = 0 if u ∈ F ∗ and v ∈ C − CJ .

It is a routine matter to check that (α∗, β∗) is an integral feasible solution to (UD). In view of (6), we haveP
uv∈A cuvx∗uv +

P
u∈F cuy∗u = (

P
uv∈A(H) cuvx′uv +

P
u∈F−F∗ cuy′u) + (

P
uv∈A & v∈C∗ cuv +

P
u∈F∗ cu) =P

v∈C−C∗ α′v +
P

v∈C∗ α∗v =
P

v∈C α∗v. From the LP-duality theorem, we can thus conclude that (x∗, y∗)
and (α∗, β∗) are integral optimal solutions to (UP) and (UD), respectively. Hence σ(G) is a TDI system.
Since (x∗, y∗) can be obtained from (x′,y′) in linear time, it can be found in O(m2 log2 m) time.

Combining the above two cases, we establish the desired assertion.
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[8] É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper. Res. 34
(1986), 250-256.

[9] V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2003.

[10] M. Yannakakis, On a class of totally unimodular matrices, Math. Oper. Res. 10 (1985), 280-304.

11


