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Abstract. We show that all meromorphic solutions of the stationary
reduction of the real cubic Swift-Hohenberg equation are elliptic or de-
generate elliptic. We then obtain them all explicitly by the subequation
method, and one of them appears to be a new elliptic solution.

1 Introduction

The real cubic Swift-Hohenberg (RCSH) equation

∂u

∂t
= εu−

(
1 +

∂2

∂x2
+

∂2

∂y2

)2

u− u3, ε ∈ R (1)

originally proposed in [34], is a model for Rayleigh-Bénard convection in hydrody-
namics. Since then, the equation and its generalizations have also been used in
various areas, in particular those where the field u needs to be a complex amplitude,
such as laser [26] and nonlinear optics [27]. Much attention of the researches about
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RCSH has been put into its relation to the theory of pattern formation. The phe-
nomena of pattern formation occur in a large variety of physical systems. We refer
the readers to the extensive review [13] and the monographs [12] and [21].

The Swift-Hohenberg equation (1) admits a stationary reduction by taking u(x, y) =√
ε− 1U(Z), with the rescaling Z = (ε− 1)1/4(x+ y)/2:

U ′′′′ + aU ′′ + U3 − U = 0, ′ :=
d

dZ
. (2)

Here a = 2/
√
ε− 1. The ODE (2) is sometimes mentioned as “extended Fisher-

Kolmogorov equation” [1, 24] for a < 0.
The equation (2) has attracted intensive studies concerning, for example, the

existence of various types of solutions and qualitative properties of the solution
curves [2, 3, 21, 24, 31, 30, 32]. For instance, when U is a smooth function defined
on the real line such that U − 1 ∈ H2(R), Santra and Wei [32] proved the existence
of a homoclinic solution U for each a ∈ [0, a0], where a0 = 1.228 . . . .1

We shall see in section 4 that a meromorphic homoclinic solution can only exist
when a = 10/

√
11 = 3.015 . . . , which is outside the above specified range, and we

shall write down this exact meromorphic homoclinic solution in terms of the tanh
function (i.e. solution (30)). Indeed, in this paper we shall find all the meromorphic
solutions of (2) explicitly.

The method to derive all meromorphic solutions of (2) is twofold. We first use
an analysis based on Nevanlinna theory proposed by Eremenko [15] and slightly
modified in [10] to prove that any meromorphic solution is necessarily elliptic or de-
generate of elliptic. In a second step, we use the subequation method first proposed
in [29] to characterize each elliptic or degenerate elliptic solution by some first order
ODE, which are easily integrated by classical methods.

The overall advantage of the method is that, once the algorithm is completed,
all possible meromorphic solutions are exhausted. The detailed procedure of the
method can be found in [10].

In section 2, we show that all meromorphic solutions of (2) belong to classW (like
Weierstrass), which consists of elliptic functions and their successive degeneracies,
i.e.: elliptic functions, rational functions of one exponential exp(kz), k ∈ C and
rational functions of z. We then apply the subequation method to find explicitly
all these class W solutions in section 3. Finally, in section 4, we shall compare the
meromorphic solutions obtained in section 3 with some known results concerning
(2).

Let us finally mention a recent paper [6] which uses similar ideas. Given a specific
nonlinear second order ODE, these authors use Wiman-Valiron theory combined
with local series analysis to explicitly determine all entire solutions.

1The value a0 here is different from that in [32]. In [32, p. 2040], a0 = β2
0 where β0 =

√√
2/k0,

and 4k20 − 2k0 − 3 = 0. The value a0 stated in [32] is probably a typographical error.
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2 Class W solutions

Only five polynomial terms (UU ′′, U ′′′, U2, U ′, 1) can be added to (2) while retaining
the double pole behaviour displayed below, Eq. (13). For a reason to be explained
soon, we only retain two of them (U2, 1) and consider the more general form of
the equation (2) in which the three fixed points U = −1, 0, 1 are not necessarily
equispaced,

u′′′′ + 60bu′′ − 120

c2
(
u3 − 3s1u

2 + 3s2u− s3
)
= 0, ′ :=

d

dz
. (3)

The complex constant c, which could be scaled out, will be useful for parity consider-
ations, for example to determine the second Laurent series (13) by simply changing
c to −c in the first one.

Its three fixed points aj are defined by

u3 − 3s1u
2 + 3s2u− s3 = (u− a1)(u− a2)(u− a3) (4)

When the three fixed points aj of (3) are equispaced,

3s1s2 − 2s31 − s3 = 0, (2a1 − a2 − a3)(2a2 − a3 − a1)(2a3 − a1 − a2) = 0, (5)

equation (3) is indeed equivalent to (2) under the rescaling,

U = λ(u− s1), z = µZ,

λ2 = − 1

3(s2 − s21)
=

6

(a2 − a3)2 + (a3 − a1)2 + (a1 − a2)2
, µ2 =

a

60b
. (6)

Equation (3) admits the integrating factor u′, thus yielding the first integral

K = u′u′′′ − 1

2
u′′2 + 30bu′2 − 30

c2
(
u4 − 4s1u

3 + 6s2u
2 − 4s3u+ 3s41 − 6s21s2 + 4s1s3

)
,

(7)
where K is the integration constant, and the added constant terms will make later
expressions simpler.

Remark 1. The reason for excluding terms (uu′′, u′′′, u′) in (3) is to allow the first
integral (7) to exist.

Let u be a meromorphic solution (defined on C) of (7). To find all such u, we
shall first prove the following result.

Theorem 1. If the ODE (7) has a particular meromorphic solution u, then u belongs
to the class W .

The proof requires the use of the Nevanlinna theory, whose main features required
here are introduced below. Some good references of Nevanlinna theory are [18] and
[25].

The method for proving 1 comes from a paper of Eremenko [14] which shows that
all meromorphic solutions of odd order Briot-Bouquet differential equations with at
least one pole must belong to class W . The even order case was recently proven to
be also true [16]. Eremenko’s method applied to (7) or other autonomous nonlinear
algebraic ODEs consists of two main steps:
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1. Show that there are finitely many Laurent series with a pole at any point z0
which satisfy (7).

2. Show that any transcendental meromorphic solution u of (7) must have in-
finitely many poles.

Step 1 usually involves computing the Fuchs indices of (7) and Step 2 requires
applying Nevanlinna theory or Wiman-Valiron theory. Once we have established the
two steps, we can then show easily that the solution u must be periodic and hence
belong to class W .

For the convenience of readers, we shall include a proof of 1 which is very similar
to the one given in [15] or [10].

We first introduce some notations commonly used in Nevanlinna theory (see [18],
also see [25] for a quick introduction). Assume f to be a non-constant meromorphic
function on the open disc D(r) where r can be ∞.

Denote the number of poles of f on the closed disc D(r) by n(r, f), counting
multiplicity. The function n(r, f) is usually called the unintegrated counting
function. Note that n(r, 1

f
) would be the number of zeros of f onD(r) and n(r, 1

f−a
)

would be the number of times f takes a.
Define the integrated counting function N(r, f) as

N(r, f) = n(0, f) log r +

∫ r

0

[n(t, f)− n(0, f)]
dt

t
, (8)

and the proximity function m(r, f) as

m(r, f) =

∫ 2π

0

log+ f(reiθ)
dθ

2π
, (9)

where log+ x = max {0, log x}.
Finally, we define the Nevanlinna’s characteristic function T (r, f) as

T (r, f) = m(r, f) +N(r, f). (10)

A basic fact concerning the functions T,N,m is the following:

Theorem 2 (Nevanlinna’s first fundamental theorem). Let f be a meromorphic
function and a ∈ C. Then

T (r,
1

f − a
) = m(r, f) +N(r, f) +O(1)

as r → ∞.

We also need the following well known results (detailed discussions can be found
in [25]):

Lemma 1. A meromorphic function f is rational if and only if T (r, f) = O(log r).
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Lemma 2 (Clunie’s lemma). Let f be a transcendental meromorphic solution of

fnP (z, f, f ′, ...) = Q(z, f, f ′, ...), (11)

where n is a nonzero positive integer, P and Q are polynomials in f and its deriva-
tives with meromorphic coefficients {aλ|λ ∈ I}, such that for all λ ∈ I, m(r, aλ) =
S(r, f), where I is some known index set. If the total degree2 of Q as a polynomial
in f and its derivatives is less than or equal to n, then

m(r, P (z, f, f ′, ...)) = S(r, f). (12)

Here S(r, f) is called the “small” function and m(r, P (z, f, f ′, ...)) = S(r, f)
means that the function on left hand side has growth o(T (r, f)) as r → ∞ outside
a possible exceptional set of finite linear measure.

Proof of Theorem 1. Let’s begin with Step 1. Suppose u is a meromorphic
solution of (7). If u has a movable pole at z = z0, then it must be a double pole.
Let

u(z) = α0(z − z0)
−2 + α1(z − z0)

−1 + α2 + . . . (13)

be the Laurent series of u in a neighborhood of z0. Inserting (13) into (7) and
balancing the leading terms, we get α0 = ±c. Using for example the procedure
given in [7], the Fuchs indices of the ODE (7) are found to be independent of the
sign of α0 and equal to −1, (7±

√
−71)/2. This implies that all other Laurent series

coefficients in (13) are uniquely determined by the leading coefficients α0 and are
independent of z0 [7], thus we only have two distinct Laurent series. This shows
that there exist at most two meromorphic functions with a pole at z = z0 satisfying
(7).

If u is rational, then u belongs to W and we are done. Now assume u to be
transcendental. By putting (7) into the form:

30

c2
u4 = u′u′′′ − 1

2
u′′2 + 30bu′2 − 30

c2
(
−4s1u

3 + 6s2u
2 − 4s3u

)
+ constant, (14)

we conclude from Clunie’s lemma (f = u, n = 3, P = u) that m(r, u) = S(r, u)
and hence (1 − o(1))T (r, u) = N(r, u). If u has only finitely many poles, then
N(r, u) = O(log r) and hence T (r, u) = O(log r). By Lemma 1, u must be rational,
which is a contradiction. Therefore u must have infinitely many poles and this
completes Step 2.

We are now ready to prove that u belongs to class W . We first claim that, if
u is transcendental, it must be periodic. Suppose u has a pole at z = z0. By the
previous analysis, there exist at most two meromorphic solutions of (7) with poles
at z = z0. Let zj, j = 1, 2, ..., be the infinitely many poles of u(z); then for all
j = 1, 2, . . . , wj(z) ≡ u(z + zj − z0) are also solutions of (7) with a pole at z0.

Since there exist at most two Laurent series around the pole z0, some of the
wj’s must be the same, otherwise we get a contradiction to the maximum number

2Defined as the global degree in all derivatives f (j), j ≥ 0.

5



of possible Laurent series. But this implies that for some j ̸= i, u(z − z0 + zj) ≡
u(z − z0 + zi) and hence u(z) ≡ u(z + zi − zj) in a neighborhood of z0. Since u is
meromorphic, we can conclude that u is periodic in C with period zi − zj.

By a suitable rescaling, we may assume that 2πi is a primitive period of u. Let
D = {z : 0 ≤ ℑz < 2π}. If u has more than two poles in D, we can also consider the
solutions defined by wj(z) = u(z+zj −z0) similar to the last paragraph. Then since
the number Laurent series is at most two, for some j ̸= i, u(z−z0+zj) ≡ u(z−z0+zi)
and u must be periodic in D with period zi − zj. Note that zi − zj ̸= 2kπi for any
k ∈ Z because zi, zj ∈ D. Thus u is doubly periodic and therefore elliptic.

If u has one or two poles in D, then since u is a periodic function with period
2πi, we have N(r, u) = O(r) as r → ∞. Since (1 − o(1))T (r, u) = N(r, u), we
have T (r, u) = O(r). By the Nevanlinna’s first fundamental theorem, for any ζ ∈
C, N(r, 1/(u − ζ)) = O(r) as r → ∞. Since u is periodic with period 2πi and
N(r, 1/(u − ζ)) = O(r), it must take each ζ only finitely many times in D. This
implies that the function R(z) = u(ln z) is a single-valued analytic function defined
in the punctured complex plane C − {0} which takes each ζ only finitely many
times. So 0 is a removable singularity of R. This implies that R is rational. Since
u(z) = R(ez), we conclude that u must belong to the class W and 1 is proven.

Remark 2. From the proof, we conclude that, if the solution u is elliptic, the
number of poles of u in the fundamental parallelogram must be at most two.

Remark 3. The ODE (3) admits infinitely many Laurent series parametrized by
the arbitrary constant K, therefore 1 cannot apply to it.

3 Explicit meromorphic solutions

On the one hand, Theorem 1 shows that any meromorphic solution of (7) must be
in the class W . On the other hand, there exists a method (the subequation method
proposed in [29]) which can be applied to find all those solutions of an algebraic
ODE which belong to class W . Now, combining these two features allows one to
find in closed form all the particular solutions of (7) which are meromorphic.

Let us first recall the classical definition of the elliptic order of an elliptic func-
tion: this is the common number of poles or zeros, counting multiplicity, inside
a fundamental parallelogram. The method is based on the following well known
theorem of Briot and Bouquet on first order Briot-Bouquet differential equations
[4, 19]:

Theorem 3. Any elliptic function obeys a first order algebraic differential equation
of the form

F (u, u′) ≡
m∑
k=0

2m−2k∑
j=0

aj,ku
ju′k = 0, a0,m ̸= 0, (15)

where m is the elliptic order of u.
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In the case of (7), if the solution u is elliptic, it has either one double pole (then
m = 2, and only one Laurent series contributes to this solution) or two double
poles (then m = 4, and the two Laurent series contribute to this solution) in a
fundamental parallelogram. Therefore the subequation method must be applied
with, successively, m = 2 and m = 4.

If u is a degenerate elliptic function, the above theorem does not apply, but any
Laurent series expansion around a pole still has the polar order two and there exist at
most two such expansions, therefore u must still obey an ODE of the form (15), with
m = 2 or 4. Now let u be a meromorphic solution of (7). From section 2, we know
that we can determine uniquely and recursively the coefficients of the two possible
Laurent series of u in a neighborhood of a movable pole z = z0. After putting
these Laurent series into (15), the equation (15) should vanish identically. This
generates a countably infinite (hence overdetermined and easy to solve) system of
linear equations in the finitely many unknowns aj,k’s. By solving it for the aj,k’s, the
first order ODEs F (u, u′) = 0 are known explicitly and all admit (7) as a differential
consequence. This is why we call the obtained first order ODEs F (u, u′) = 0 a
subequation of (7). For details of the implementation of the algorithm, see [29].

3.1 Subequations obeyed by one Laurent series

These subequations have degree m = 2. For a given Laurent series (13), the method
yields one subequation, at the price of one constraint among the fixed coefficients
K, b, c, s1, s2, s3 of (7),F2 ≡ cu′2 − 4(u− s1 − bc)3 + 20(s21 − s2 − b2c2)(u− s1 − bc)

+ 10(s3 − 3s1s2 + s31 + 2bcs2 − 2bcs21 + 4b3c3) = 0,
c2K = 10(−128b4c4 − 88b2c2(s2 − s21) + 18bc(−2s31 + 3s2s1 − s3)).

(16)

The solution for the other Laurent series is obtained by changing c to −c. This first
order ODE (16) is nothing else than the canonical equation of Weierstrass, up to
some translation and rescaling.

This defines the codimension-one3 solution of (7)
u = s1 + bc+ c℘(z − z0, g2, g3),

g2 = 20(s21 − s2 − b2c2)/c2,

g3 = 10(s3 − 3s1s2 + s31 + 2bcs2 − 2bcs21 + 4b3c3)/c3.

(17)

This solution is not new, and has already been obtained [28] by assuming u (which
has movable double poles) to be a polynomial in (℘, ℘′) having double poles, i.e. re-
ducing to an affine function of ℘.

When the genus of the curve F2(u, u
′) = 0 is zero, i.e. when g32 − 27g23 = 0, this

solution becomes a rational function of one exponential, obtained by the degeneracy
formula

∀x, d : ℘(x, 3d2,−d3) = −d+
3d

2
coth2

√
3d

2
x. (18)

3Following a frequent terminology, we define the codimension of a solution of a differential
equation as the number of constraints required among the parameters of the equation.
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This codimension-two genus-zero solution is

u = s1 + bc+ c

(
k2 tanh2 kz − 2

3
k2

)
,

k4 = 15(s21 − s2 − (bc)2)/c2,

s3 =
1

135
(3s1 + 3bc+ ck2)(45s21 − 15s1c(3b+ k2)− 4c2k4 + 30bc2k2 − 90b2c2),

K = −2

9
c2(3b+ k2)2(45b2 − 30bk2 + k4),

(19)

in which the arbitrary origin of z has been omitted.

3.2 Subequations obeyed by two Laurent series

The subequation then has degree m = 4. One thus finds two subequations and only
two. One of them, as expected, is factorizable into the product of the two second
degree subequations (16) (one for c, the other for −c) with the additional condition
that the K in (16) be invariant under parity on c, i.e. 2s31 − 3s2s1 + s3 = 0.

The other subequation is irreducible and has genus one,
F4 ≡ c2

(
u′2 + 12b((u− s1)

2 + 2σ2)
)2

− 16
(
(u− s1)

2 + 2σ2)
)3

= 0,

σ2 :=
1

3
(5(s2 − s21) + 8b2c2), 2s31 − 3s2s1 + s3 = 0,

c2K = −16

3

(
8b2c2 + 5(s2 − s21)

)2 (
11b2c2 − 10(s2 − s21)

)
.

(20)

The condition on (s1, s2, s3) expresses that the three fixed points of (3) are equis-
paced, like −1, 0, 1 in (2).

In order to integrate this genus one equation F4(u, u
′) = 0, one must first estab-

lish a birational transformation (u, u′) ↔ (℘, ℘′) between F4 = 0 and the canonical
equation of Weierstrass ℘′2 = 4℘2−g2℘−g3, i.e. two pairs of rational transformations

u = R1(℘, ℘
′), u′ = R2(℘, ℘

′), ℘ = R3(u, u
′), ℘′ = R4(u, u

′), (21)

where Ri, i = 1, 2, 3, 4 are rational in their arguments. The algorithm consists
of mapping (via a birational transformation) the given algebraic curve in (u, u′)
to an algebraic curve in (v, v′) in which v has a lower elliptic order than u, until
elliptic order 2 (that of ℘) has been reached. Outlined by Briot and Bouquet [4,
§250–251 p. 395] for the so-called “binomial” and “trinomial” equations, it has been
implemented in the Maple package algcurves [20] for any genus one first order
equation. Then a final scaling yields the desired solution.

This codimension-two elliptic solution of (7) can be written in terms of either an
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even or an odd elliptic function (just like sin(z−z0) = − cos(z−z1), z1−z0 = π/2),

u = s1 − c(e2 − e3)
(℘0 + b)2 + g2/4− 3b2

℘2
0 − b℘0 − g2/4 + b2

= s1 −
d

dz

(
c1c

℘1 − e0

)
,

s3 and K as in (20),
g2 = 2(e21 + e22 + e23) = 10(s21 − s2 + 2b2c2)/(3c2),
g3 = 4e1e2e3 = 2(5(s21 − s2) + 4b2c2)b/(3c2),
(e2 − e3)

2 =
(
11b2c2 + 10(s21 − s2)

)
,

c21 = 4(e0 + b)2(2e0 − b), σ2 = 2c2(e0 + b)2,

∆ = g32 − 27g23 =
4

27c6
(
11b2c2 + 10(s21 − s2)

) (
8b2c2 − 5(s21 − s2)

)2
,

(22)

in which ℘j is short for ℘(z − zj, g2, g3), j = 0, 1, and z0, z1 are constants of integra-
tion. The equivalence between the conditions K = 0 and ∆ = 0 is a consequence of
the suitable definition of K in (7).

The degeneracy ∆ = 0 splits into two cases. For s2 = s21 − (8/5)(bc)2, the
curve F4 = 0 is reducible, this is a particular case of subequation F2 = 0. For
s2 = s21 + (11/10)(bc)2, the curve F4 = 0 has genus zero, therefore its solution is a
rational function of one exponential, readily obtained from the odd expression of u
in (22) by the degeneracy formula (18), the final result is a solution of (7) rational
in hyperbolic tangent,

u = s1 −
2cc1
3b

d

dz
(1 + tanh2 kz)−1 = s1 −

4cc1k

3b

(1− tanh2 kz) tanh kz

(1 + tanh2 kz)2
,

k2 =
3b

2
, c21 = −54b3,

K = 0, s2 = s21 +
11

10
(bc)2, s3 = s1

(
s21 +

33

10
(bc)2

)
,

(23)

in which the arbitrary origin of z has been omitted.
The solutions (17), (19), (22) and (23) are thus all the meromorphic solutions of

(7), and the last two ones, to the best of our knowledge, seem to be new4. These
exact solutions, in particular the new ones, can be of an important practical use to
check the validity of numerical simulations.

4 Comparison with known results

Let us now examine how the complex solutions of (3) found in section 3 compare
with some existing results on the real-valued smooth solutions of (2). First we
summarize the results obtained so far on (2) for real Z,U, a.

When a > 0,

• [33] for almost all a ∈ [0, 2
√
2], Eq. (2) admits a homoclinic solution in H2(R);

4After submission, we were informed of similar results on (3) by Kudryashov and Sinelshchikov
[23] in which these authors apply another method.
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• [32] for all a ∈ [0, a0], where a0 = 1.228 . . . (see footnote on page 2).

Eq. (2) admits a homoclinic solution U such that U − 1 ∈ H2(R).

When a ≤ 0, any bounded smooth solution of (2) has the following properties
[1]:

• a ≤ 0 ⇒ |U | ≤
√
2;

• a ≤ −2
√
2 ⇒ |U | ≤ 1.

Let us reduce (3) to (2) by assuming both independent variables Z and z to be
equal and real (µ = 1 in (6)). Let us restrict the domain of the four solutions of (2)
associated to (17), (19), (22) and (23) to the real line and examine whether those
resulting solutions possess one or more of the following properties: real-valuedness,
boundedness, homoclinic topology.

Let us first examine the two genus-one solutions of (2). Easily deduced from (17)
and (22), they are respectively

U = ±
√
−120

(
℘(Z, g2, g3) +

a

60

)
, g2 = −a2 + 10

180
, g3 =

a(a2 + 5)

5400
, (24)

and 

U = ±
√

100− 11a2

90

(a2 + 25− 360a℘(Z, g2, g3)− 10800℘(Z, g2, g3)
2)

2a2 − 25 + 180a℘(Z, g2, g3)− 10800℘(Z, g2, g3)2
,

g2 =
a2 − 5

540
, g3 =

2a3 − 25a

162000
,

e1 = − a

60
, e2 =

3a+
√
3(11a2 − 100)

360
, e3 =

3a−
√

3(11a2 − 100)

360
,

(25)

where the arbitrary origins of Z have been omitted. For the above two solutions, if
a is real, then g2 and g3 are also real. By Theorem 3.16.2 in [22], ℘ (and therefore
℘′) is then real-valued for all Z ∈ R and ℘ has a real period. This implies that the
elliptic solution (24) is not real-valued and that the solution (25) is real-valued if
and only if a2 < 100/11.

Let us now prove that, when it is real, the solution (25) is bounded on R. The
necessary conditions for U to be extremal are either ℘(Z) = ∞ or ℘′(Z) = 0 (which
implies ℘(Z) = −a/60 since e2, e3 are not real and ℘′2 = 4(℘− e1)(℘− e2)(℘− e3))
or

270a℘2(Z) + (a2 − 50)℘(Z) +
a(a2 − 5)

24
= 0. (26)

The last event (26) can only occur for 0 < a <
√

100/11. It is because from

℘′2 = 4(℘− e1)(℘− e2)(℘− e3) and ℘− e2 = (℘− e3), we know that ℘− e1 ≥ 0 as
℘′ is real on R. Therefore ℘ attains the global minimun value e1 = −a/60 when it is
restricted on the real line. Now if −

√
100/11 < a ≤ 0, then it can be checked easily
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that the two zeros of the equation 270ap2+(a2−50)p+ a(a2−5)
24

= 0 are both less than

e1 and this implies that ℘ cannot satisfy (26) on the real line if −
√

100/11 < a ≤ 0.



U1,− = ∓
√

10

9
− 11a2

90
when ℘(Z) = − a

60
,

U1,+ = ±
√

10

9
− 11a2

90
when ℘(Z) = ∞,

U2,± = ±
√

10

9
+

8a2

45
when ℘(Z) =

50− a2 ±
√
(100− 11a2)(4a2 + 25)

540a
.

(27)

Therefore, whenever it is real-valued, the solution (25) is bounded on R, with the
following bounds for U2 (because of parity, it is sufficient to consider U2),

−10/
√
11 < a ≤ 0 : 0 ≤ U2 ≤ 10

9
− 11a2

90
,

0 ≤ a < +10/
√
11 : 0 ≤ U2 ≤ 10

9
+

8a2

45
.

(28)

Within one real period, the graph of U(Z) (see Figure 2) displays either two opposite
extrema (case −10/

√
11 < a ≤ 0) or six extrema (case 0 ≤ a < 10/

√
11) made of

two extrema U1,± and four extrema U2,±.
All these results agree with those in [1] mentioned at the beginning of this section.
Let us now examine whether the solutions (19) and (23) of (2) are real and can

represent a bounded or homoclinic solution. The first genus zero solution (19) when
converted to a solution U(Z) of (2) implies a constraint on a, namely,

(4a2 + 25)(8a4 + 55a2 + 200) = 0, (29)

which admits no real solution for a, so this solution must be discarded.
The meromorphic solution U(Z) of (2) defined by the second genus zero solution

(23) is,

U = ±4
√
30√
11

(1− tanh2 kZ) tanh kZ

(1 + tanh2 kZ)2
, k4 =

1

176
, a = 40k2, (30)

where the arbitrary origin has been omitted. When restricted to the real Z line,
this solution is real-valued if and only if k2 = 1/(4

√
11) and a = 10/

√
11. It is

then bounded on R and homoclinic, and displays one minimum and one maximum,
Uextrema = ±

√
30/11 ≈ 1.65, reached for tanh kZ = ε(

√
2 − 1), where ε2 = 1, in

agreement with the limit a → 10/
√
11 in (27).

To summarize, the exact solution (30) with k2 = 1/(4
√
11) and a = 10/

√
11 is the

unique meromorphic homoclinic solution (up to a translation of origin) mentioned
in the introduction. See Figure 1.

The bound of the solution (25) is an increasing function of a. It would be
interesting to know whether the same trend will be observed for the class of all
bounded smooth solutions of (2), and whether the bound

√
30/11 is sharp for any

bounded smooth solution whenever 0 < a < 10/
√
11.
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Figure 1:
Trigonometric solution U(Z) of (2) defined by (30) when a = 10/

√
11, k = 1/(2× 111/4).

Figure 2:
Elliptic solution U(Z) of (2) defined by (25), from left to right:
(i) a = −1.5, b = a/60, g2 ≈ 0.0134, g3 ≈ 2.731× 10−4,∆ ≈ 3.6499× 10−7;
(ii) a = 1.5, b = a/60, g2 ≈ 0.0134, g3 ≈ 2.731× 10−4,∆ ≈ 3.6499× 10−7.

Remark 4. We could not obtain a codimension zero singlevalued solution of (7),
If it exists, this solution, which is not meromorphic and therefore not elliptic, is
locally represented by the two Laurent series (13), which excludes by construction
the contribution of the irrational Fuchs indices (7±

√
−71)/2. Such series have been

shown to be convergent by Chazy [5]. Although there is no analytic evidence of the
existence of this nonmeromorphic solution, a numerical study by Padé approximants
in the similar situation of the traveling wave reduction of the Kuramoto-Sivashinsky
equation [35, 9] does not yield any evidence of its nonexistence either. It could be
possible that this singlevalued, nonmeromorphic solution displays a movable natural
boundary.
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