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1 Introduction

Graphs considered in this paper may have multiple edges and loops unless otherwise stated. Let
G = (V, E) be a graph and let k be a positive integer. An ordered pair (D, f) is called a k-flow
of G if D =(V,A) is an orientation of G and f: A+~ {0,+1,...,+(k— 1)} is an assignment of

flows, such that
Yo fle= > fle)

e€ET(v) ecE~(v)

for each v € V', where E(v) is the set of all arcs leaving vertex v in D and E~(v) is the set of all
arcs entering vertex v. We say that the k-flow (D, f) is nowhere-zero if f(e) # 0 for any e € A.
The concept of nowhere-zero integer flow was introduced by Tutte in 1954, and the theory of
integer flows provides an interesting way to extend theorems about region-coloring planar graphs
to general graphs [12, 13]. Tutte observed that every nowhere-zero k-flow on a plane graph gives
rise to a k-vertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph
coloring can be viewed as dual concepts, and the above Tutte’s observation is often referred to
as the duality theorem. One of the major open problems in this research area is Tutte’s 3-Flow
Conjecture, which is exactly the dual version of Grétzsch’s 3-color theorem on planar graphs
(3, 4].

Conjecture 1.1 (Tutte [12]). Every 4-edge-connected graph has a nowhere-zero 3-flow.

Thomassen [11] made a breakthrough in this conjecture by establishing the following weaker
version.

Theorem 1.1 (Thomassen [11]). Every 8-edge-connected graph has a nowhere-zero 3-flow.

This 3-flow theorem has recently been strengthened by Lovasz, Thomassen, Wu, and Zhang
[8] as follows.

Theorem 1.2 (Lovész et al. [8]). Every 6-edge-connected graph has a nowhere-zero 3-flow.

As proved by Kochol [7], a minimum counterexample to the 3-Flow Conjecture is 5-edge-
connected. Therefore the above theorem is actually just one step away from the resolution.

The aforementioned duality theorem cannot be extended directly to embedded graphs (see
DeVos et al. [2] for an asymptotic version). Nevertheless, Jaeger [5] showed that if a graph G has
a face-k-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero k-flow.
Interestingly, if the surface is non-orientable, then this coloring corresponds to a nowhere-zero
k-flow in a signed graph arising from G. It is due to their great theoretical interest that integer
flows in sign graphs have also been subjects of extensive research.

Let us define a few terms before proceeding. A signed graph is a pair (G, o), where G is a
graph and o : E(G) — {1,—1} is a signature of G. An edge e is called positive if o(e) = 1 and
negative otherwise. Each edge e = xy of a signed graph (G, o) is comprised of two half-edges
hs and h,, where h, is incident with = and h, is incident with y. An orientation D of (G, o)
assigns every half-edge a direction in the following way: if e = xy is positive, then h, and h,
are directed both from x to y, or both from y to x (see Figure 1); if e = zy is negative, then the



directions of h, and h,, are opposite (there are two possibilities: (1) h, is directed to « and h,,
is directed to y; and (2) h, is directed from z and h, is directed from y. See Figure 1).

A negative edge e = xy is called a source edge if e is directed towards both x and y and
called a sink edge otherwise. In the literature an oriented signed graph is also called a bidirected
graph. If all edges of (G, o) are positive, then a signed graph is equivalent to a graph. So we
can view signed graphs as generalizations of graphs.

o(e) =1 o(e) =1 o(e) =—1 o(e) =—1

positive edge positive edge source edge sink edge

5.

Figure 1: Orientations of positive and negative edges.

The concept of nowhere-zero integer flow in graphs carries over naturally to signed graphs,
and the following is a well-known conjecture on integer flows in signed graphs.

Conjecture 1.2 (Bouchet [1]). Every signed graph admitting a nowhere-zero integer flow has a
nowhere-zero 6-flow.

Despite tremendous research effort, this conjecture remains open; Xu and Zhang [14] con-
firmed it for 6-edge-connected signed graphs. In [10], Raspaud and Zhu established that every
4-edge-connected signed graph has a nowhere-zero 4-flow provided it admits a nowhere-zero
integer flow. Based on Theorem 1.2, Zhu [16] obtained the following result recently.

Theorem 1.3 (Zhu [16]). Every 11-edge-connected signed graph admitting a nowhere-zero in-
teger flow has a nowhere-zero 3-flow.

What is the least edge-connectivity that can guarantee the existence of nowhere-zero 3-flows
in signed graphs? Zhu posed this as an open question in [16]. With the motivation to improve
the bound in Theorem 1.3 and extend the setting of Theorem 1.1, we establish the following
main result in this paper.

Theorem 1.4. Every 8-edge-connected signed graph admitting a nowhere-zero integer flow has
a nowhere-zero 3-flow.

It is worthwhile pointing out that the assertion no longer holds if 8 is replaced by 4: Let
(G,0) be the signed graph with three vertices in which each pair of vertices is connected by
precisely one positive edge and precisely one negative edge. Clearly, GG is 4-edge-connected and
has a nowhere-zero 4-flow. Nevertheless, it is routine to check that G admits no nowhere-zero
3-flow.

In response to Zhu'’s open question [16], we offer the following conjecture whose validity
would imply Tutte’s 3-flow Conjecture (see Kochol [7]).

Conjecture 1.3. FEvery 5-edge-connected signed graph admitting a nowhere-zero integer flow
has a nowhere-zero 3-flow.



2 Operations

In this section we introduce some operations on signed graphs which will be employed in subse-
quent proofs.

Flipping. Let (G, o) be a signed graph and let A be a subset of V(G). Define o’ : E(G) —
{1,—1} as
o/(e) = {—0'(6) if e € [A, A],

o(e) otherwise,

where A = V(G)\A and [A, 4] is the cut in G consisting of all edges between A and A. We say
that the signed graph (G, ¢’) is obtained from (G, o) by flipping all edges in [A, A].

Two signed graphs (G, o) and (G, 0’) are called equivalent if one can be obtained from the
other by flipping all edges in a cut. Let us show that this flipping operation does not affect the
existence of a nowhere-zero integer flow in a signed graph.

Lemma 2.1. Let (G, o) and (G,c") be two equivalent signed graph and let k be a positive integer.
Then (G, o) has a nowhere-zero k-flow if and only if so does (G, d").

Proof. Suppose (G,0’) is obtained from (G,o) by flipping all edges in a cut [A, A], and
suppose (D, f) is a nowhere-zero k-flow of (G, ). Let D’ be obtained from D by changing the
direction of each half-arc incident with a vertex in A. Then (D', f) is a nowhere-zero k-flow of
(G, 0"). The reverse direction can be established similarly. 1

Throughout we use n(G, o) to denote the minimum number of negative edges contained in
a signed graph equivalent to (G, o).

Lemma 2.2. If a signed graph (G, o) admits a nowhere-zero integer flow, then n(G,o) # 1.

Proof. Assume the contrary: n(G,o) = 1. Then some equivalent signed graph of (G, o),
denoted by (G, ¢’), has precisely one negative edge e. By Lemma 2.1 and the hypothesis, (G, c")
also admits a nowhere-zero integer flow (D, f). Let D’ be the digraph obtained from D by
inserting a dummy vertex v in the middle of e, and let e; and es denote the two arcs arising
from e. Set f(e;) = f(e) for i = 1,2. Then f is conserved at all vertices in D’ except v, which
is impossible. |

Contraction. Let (G,0) be a signed graph and let A be a subset of V(G). The signed graph
obtained from (G, o) by contracting A, denoted by (G/A, o), is the graph arising from (G, o)
by identifying all vertices in A to a single vertex, in which each edge of G with both ends in A
becomes a loop, and each edge has the same sign as in (G, 0).

Since the sign of a loop is not effected by a flipping operation, the following statement holds.

Lemma 2.3. Let (G, 0) be a signed graph with precisely n(G, o) negative edges. Thenn(G/A, o) =
n(G, o) for any proper subset A of V(G). |

Lifting. Let (G, o) be a signed graph, let zy, zz be two edges of G, and let G’ be obtained from
G by deleting zy, zz and adding a new edge ey between y and z. Define ¢’ : E(G') — {1,—1}



as
o) = o(zy)o(xz) ife= 6.07
o(e) otherwise.

We say that the signed graph (G’,¢’) is obtained from (G, o) by lifting xy and xz; see Figure 2
for an illustration. Note that x,y, z are not necessary distinct in this definition.

An orientation of (G’,0’) can be extended naturally to an orientation of (G, o) by orienting
the two half-edges incident with x as follows: one enters z and the other leaves z; see Figure 2
for the case when o(zy) = o(zz) = —1.

Yy Yy y
-1

x = xe 1 and 1
—1

z z z

Figure 2: A lifting of xy and xz and an orientation extension.

Lemma 2.4. Let (G,0) be a signed graph and let xy, xz be two edges of G. If (G',d') is the
signed graph obtained from (G, o) by lifting vy and xz, then

n(G' o) > n(G, o) — 2.

Proof. For each U C V(G), let [U,U]g (resp. [U,Ulg) denote the cut consisting of all
edges between U and U in G’ (resp. in (). Suppose the signed graph (G’,¢") obtained from
(G, 0") by flipping all edges in a cut [A, A]g has precisely n(G’, 0’) negative edges. Consider
the signed graph (G,&) obtained from (G, o) by flipping all edges in [A4, A]g. It is easy to see
that the number of negative edges in (G, ) is at most two plus the number of negative edges in
(G',0"). Hence n(G, o) < n(G',0’) + 2, as desired. ]

Let G be a graph and let x,y be two distinct vertices of G. The local edge-connectivity of G
between x and y, denoted by Ag(z,y), is the maximum number of edge-disjoint paths connecting
xz and y in G. The following Mader’s theorem [9] asserts that the local edge-connectivity is
preserved under some lifting operation.

Theorem 2.5 (Mader [9]). Let G be a connected loopless graph and let vy be a vertex of degree
at least 4 such that no edge incident with vy is a cut-edge of G. Then G contains two edges vovy
and vovy such that A\g(x,y) = Ag(z,y) for any two vertices z,y different from vy, where H 1is
the graph obtained from G by lifting vov1 and vovs.

3 Orientations: Modulo and Beyond

Let (G,0) be a signed graph. For each A C V(G), the degree of A, denoted by d(A), is the
number of edges between A and A; we write d(A) = d(a) if A = {a} (notice that the contribution



to d(a) made by any loop incident with a, if any, is zero). For each orientation D of (G, o),
let d},(v) (resp. dp(v)) denote the number of half-arcs leaving (resp. entering) a vertex v; we
may drop the subscript D if there is no danger of confusion. Note that, by definition, each loop
incident with v (if any) contributes two to df,(v) + dp(v), so d(v) < df(v) + dp(v) if such a
loop exists.

An orientation D of (G, o) is called a modulo 3-orientation if df(v) = dp,(v) (mod 3) for all
v € V(G). As shown by Tutte [12], a graph G admits a modulo 3-orientation if and only if it
has a nowhere-zero 3-flow; this equivalence relation can be further extended to signed graphs.

Lemma 3.1 (Xu and Zhang [14]). Let (G,0) be a singed graph. Then (G, o) admits a modulo
3-orientation if and only if it has a nowhere-zero 3-flow.

To prove Theorem 1.4, we shall actually establish the following assertion.

Theorem 3.2. Let (G,0) be a signed graph with n(G,0) > 2, and let Vo = 0 or Vo = {vo},
where vy is a vertex of G such that no loop is incident with vy and that d(vg) < 6 and is even.
If [V(G)\Vo| > 2 and A\g(z,y) > 8 for any distinct vertices z,y in V(G)\Vy, then (G, o) admits
a modulo 3-orientation.

To see the implication, let (G, o) be an 8-edge-connected singed graph with a nowhere-zero
integer flow. By Lemma 2.2, we have n(G,0) # 1. From Theorem 1.1 and Lemma 2.1 (if
n(G,o) = 0) and from Theorem 3.2 with V5 = () and Lemma 3.1 (if n(G,0) > 2), we can thus
deduce that (G, o) admits a nowhere-zero 3-flow.

The remainder of this paper is devoted to a proof of Theorem 3.2. The proof proceeds
by induction on |V(G)| + |E(G)|; to make the induction work, we need a generalized concept
of graph orientation and a set function from [8], which is a variant of the one introduced by
Thomassen in [11].

Let G be a loopless graph. A mapping 5 : V(G) — Zs = {0,1,2} is called a Zs-boundary of
G if Y vev(e) B(v) =0 (mod 3). Given a Zz-boundary 3 of G, an orientation D of G is called a
B-orientation if df,(v) — dp(v) = B(v) (mod 3) for all v € V(G). The set function is a mapping
7:V(G) — {0,£1,£2, £3} such that

B(v) (mod 3)
T(v) = { d(v) (mod 2)

for all v € V(G). This mapping 7 can be further extended to any nonempty A C V(G) as

follows:
_ | B(A) (mod 3)
(4) = { d(A) (mod 2),

where B(A) = Y ,ea f(v) (mod 3). Since d(A) and 7(A) have the same parity, the following
inequality holds.

Lemma 3.3 (Lovész et al. [8]). If d(A) > 6, then d(A) > 4+ |1(A)]. ]

Theorem 1.2 is an immediate corollary of the following result, which was derived by refining
Thomassen’s technique [11] and will be used in our proof.



Theorem 3.4 (Lovéasz et al. [8]). Let G be a loopless graph, let B be a Zs-boundary of G, let
20 € V(G), and let D(z9) be a pre-orientation of the set E(zy) of all edges incident with z.
Assume that

(1) [V(G)| = 3;

(i) d(z0) <4+ |7(20)| and d*(20) — d~(20) = B(20) (mod 3);

(i1i) d(A) >4+ |1(A)| for each nonempty A C V(G)\{zo} with |[V(G)\A| > 2.
Then D(zy) can be extended to a (B-orientation D of the entire graph G.

When restricted to the disjoint union of an isolated vertex zg and a 6-edge-connected loopless
graph, the preceding theorem yields the following statement.

Theorem 3.5 (Lovész et al. [8]). Let G be a loopless graph and let 5 be a Zs-boundary of G.
If G is 6-edge-connected, then G has a B-orientation.

We now proceed to prove two technical lemmas, which will play important roles in our proof
of Theorem 3.2.

Lemma 3.6. Let (G,0) be a 6-edge-connected signed graph with only 2 or 3 negative edges.
Then (G, o) admits a modulo 3-orientation.

Proof. Let m be the number of negative edges of (G,0). Set r = 1if m = 2 and r = 0
if m = 3. Let H be the graph obtained from G by first orienting r negative edges as sink
edges and the remaining m — r negative edges as source edges, then inserting a new vertex to
each negative edge, and finally identifying all these newly inserted vertices to a single vertex
20. Let G’ = H if m = 2 and let G’ be obtained from H by replacing one arc leaving zy with
two parallel arcs entering zg if m = 3. For each A C V(G’), we use d'(A) and 7/(A) to denote
the degree of A in G’ and the value of the set function at A, respectively. If m = 2, then
d'(z0) =4 < 4+ |7'(20)]. If m = 3, then d'(20) = 7. So |7/(20)] = 3 by definition and thus
d'(z9) = 4+ |7'(20)|- Hence the inequality d'(zg) < 4 + |7/(z0)| holds in either case. By Lemma
3.3, we have d'(A) > 6 > 4 + |7/(A4)] for each nonempty A C V(G")\{zo} with |[V(G")\A| > 2.
Therefore, by Theorem 3.4, the pre-orientation of the arcs incident with zg can be extended to
a modulo 3-orientation of the entire graph G’, which clearly yields a modulo 3-orientation of
(G, o). 1

Lemma 3.7. Let G be a loopless graph, let B be a Zs-boundary of G, let zg € V(G), let
D(zp) be a pre-orientation of the set E(zp) of all edges incident with zp, and let S = {v €
V(G)\ {z0}|d(v) =5 and f(v) = 0}. Assume that

(1) V(G)] = 3;
(11) d(z9) <5 and d*(29) —d ™ (z0) = B(z0) (mod 3);
(111) d(v) >4+ |7(v)| for each v € V(G)\ (SU{z}); and
(i) d(A) > 6 for each A C V(G)\{z0} with min{|A|, |V (G)\ A|} > 2.
If |S| < 2, then D(zp) can be extended to a [-orientation D of the entire graph G.



Proof. By definition, d(zp) and 7(z¢) have the same parity, so |7(z0)| > 1 if d(z9) = 5.
Hence d(z20) < 4+ |7(20)]. If S = (), then the statement follows instantly from Theorem 3.4.
Thus we may assume S # (0.

Let p be the integer in Zs with 5(z9) — d(z9) + 1 = 2p (mod 3) and let ¢ = 7 — d(z9) — p.
Then ¢ > 0 and p+ ¢ > 2 as d(z9) < 5. Let G’ be obtained from G by adding a set P of p
arcs from S to zp and adding a set @ of ¢ arcs from zy to S such that each vertex in S has
degree at least six in G’ (this G’ is available because |S| < 2). Let 3'(zp) be the integer in
Zs with f'(z0) = B(20) + ¢ — p (mod 3). By the definitions of p and ¢, we obtain f'(zp) =
(d(z0) — 1+ 2p) + (7T —d(z0) — p) —p = 0 (mod 3). So B'(z0) = 0. For each vertex v # 2,
let P(v) (resp. Q(v)) be the set of all arcs in P (resp. @) incident with v, and let §'(v)
be the integer in Zs with §'(v) = B(v) + |P(v)| — |Q(v)| (mod 3). Then > vev(aY) B'(v) =
Svev(@) B) + (g = p) + Yuzz ([P(0)] = |Q(W)]) = Yvev(a) Bv) =0 (mod 3). Hence f' is a
Zs-boundary of G'.

Let d'(A) and 7/(A) denote the degree of A in G’ and the value of the set function at A,
respectively. Since d'(z9) = 7 and ’'(29) = 0, we have |7/(z)| = 3. So d'(z0) = 4 + |7/(20)].
Since d'(v) > 6 for each v € S, from Lemma 3.3 it follows that d'(v) > 4+ |7/(v)|. Therefore, by
Theorem 3.4, the pre-orientation of the arcs incident with zg can be extended to a /3’-orientation
of the entire graph G’, which clearly yields a S-orientation of (G, o). |

4 Proof of Theorem 3.2

The proof proceeds by induction on |V (G)| + |E(G)|. Assume on the contrary that (G, o) is a
smallest counterexample and, subject to this, the number of negative edges in (G, ¢) is minimum.

For each nonempty proper A C V(G), we use g(A, o) (resp. h(A, o)) to denote the number of
positive (resp. negative) edges of (G, o) contained in the cut [A, A] of G, and set g(4,0) = g(a, o)
(resp. h(A,0) = h(a,0)) if A= {a}.

Claim 1. For each nonempty proper A C G, we have g(A, o) > h(A, o). Hence (G, o) contains
exactly n(G, o) negative edges.

Otherwise, g(A,0) < h(A,o0). Let (G,c’) be the signed graph obtained from (G, o) by
flipping all edges in the cut [A, A]. Then the number of negative edges in (G,0’) is less than
that in (G,0). By Lemma 2.1 and Lemma 3.1, (G, ¢’) admits no modulo 3-orientation. Thus
the existence of (G, o’) contradicts the minimality assumption on (G, o).

From the definition, it follows instantly that (G, o) contains exactly n(G, o) negative edges.

Thus Claim 1 is justified.

Claim 2. n(G,0) > 4.

Assume the contrary: n(G,o) = 2 or 3. By Lemma 3.6, we have Vp = {vo} and d(vp) < 4.
In view of Claim 1, g(vg,0) > h(vg,0). Thus we can partition all the edges incident with vy
into pairs so that each pair contains at most one negative edge. Let (G', ¢’) be the signed graph
obtained from (G, o) by lifting each of these edge pairs and deleting the resulting isolated vertex
vg. Then (G’,0’) has the same number of negative edges as (G, o). For each nonempty proper
A C V(G"), let d'(A) be the degree of A in G’ and let A = V(G')\A. Then d'(A) + d'(A) >

d(A) 4+ d(A) — d(vg) > 8+ 8 — 4 = 12. Since d'(A) = d'(A), we have d'(A) > 6. Thus G’ is



6-edge-connected. By Lemma 3.6, (G’,0’) admits a modulo 3-orientation, which clearly yields
a modulo 3-orientation of (G, o); this contradiction proves Claim 2.

Claim 3. (G, o) contains no loops.

Suppose on the contrary that e; is a loop incident with a vertex z. Let es be an edge
connecting = and one of its neighbors y, and let (G’, ¢’) be the signed graph obtained from (G, o)
by lifting e; and e3. By Claim 2 and Lemma 2.4, we have n(G’,0’) > n(G,0) —=2>4—2 = 2.
Hence, by induction hypothesis, (G’,¢’) admits a modulo 3-orientation, which clearly yields a
modulo 3-orientation of (G, o); this contradiction establishes Claim 3.

Claim 4. |V(G)| # 2.

Otherwise, |V (G)| = 2; let V(G) = {x,y}. By hypothesis, we have Vj = (). By Claim 3, the
edges of (G, o) are all between x and y. Recall Claim 1, the number of negative edges between
x and y is n(G,0), so the number of positive edges between z and y is |E(G)| — n(G,0) >
n(G, o) > 4 by Claim 2.

Let p be the integer in Zs such that p = n(G,0) — p (mod 3). Orient p negative edges as
source edges and the remaining n(G, o) — p negative edges as sink edges.

Let ¢ be the integer in Zs3 such that ¢ = (F(G) — n(G,0)) — ¢ (mod 3). Orient ¢ positive
edges from x to y and the remaining (F(G) — n(G, o)) — q positive edges from y to x.

Clearly, the resulting orientation is a modulo 3-orientation of (G, o); this contradiction im-
plies Claim 4.

Claim 5. d(v) is odd for each v € V(G). So Vp = 0 and hence |V(G)| > 4 by Claim 4.

Suppose on the contrary that some vertex of G has even degree; let u be such vertex with the
smallest d(u). By Theorem 2.5, G contains two edges uv; and uvs such that Aqr(x,y) = Ag(z,y)
for any two distinct vertices x and y different from u, where (G’, ¢”) is the signed graph obtained
from (G, o) by lifting uv; and uve. Let d'(v) stand for the degree of a vertex v in G’. Then
d'(u) = d(u) — 2. Depending on the value of d(u), we define Vj as follows.

Cask 1. d(u) <6.

In this case Vp = {u} because, by hypothesis and Menger’s theorem, all vertices except vy
in V) have degree at least eight. If d’(u) = 0, with a slight abuse of notation, we still use G’ to
denote the graph obtained from G’ by deleting u, and set Vj = (0. If d'(u) > 0, set Vj = {u}.
Since V(G")\Vy = V(G)\ Vo, by hypothesis |V (G")\V;| > 2.

CASE 2. d(u) > 8.

In this case Vj = () by the choice of u. If d(u) > 10, then d'(u) > 8; set Vi = 0. If d(u) = 8,
then d’(u) = 6; set Vj = {u}. By Claim 4, |[V(G")\Vy| > |[V(G)\{u}] > 2.

In either case, by Claim 2 and Lemma 2.4, we obtain n(G’,0’) > n(G,0) =2 >4 -2 =2.
Thus, by induction hypothesis, (G’,¢’) admits a modulo 3-orientation, which clearly yields a
modulo 3-orientation of (G, o), a contradiction. So Claim 5 is established.

Claim 6. For each v € V(G), either g(v,0) > 6 or g(v,0) =5 and h(v,0) = 4.
By Claim 1, g(v,0) > h(v,0). By Claim 5, g(v, o) + h(v,0) is odd. By hypothesis, g(v,0) +
h(v,0) > 8 and hence is at least 9. So the statement follows.

Claim 7. For some nonempty proper A C V(G), we have g(A,0) < 5.



Suppose on the contrary that g(A4,o) > 6 for each nonempty proper A C V(G). Let G’ be
the graph obtained from G by deleting all negative edges. Then G’ is 6-edge-connected. By
Claim 3, G’ is also loopless.

Let p be the integer in Zgz such that p = n(G,0) — p (mod 3). We partition the set of all
negative edges into two subsets P and @ with |P| = p. Then |Q| = n(G, o) —p by Claim 1. Let
us orient all negative edges in P (resp. in @) as source (resp. sink) edges. For each v € V(G’),
let P(v) (resp. Q(v)) be the set of all arcs in P (resp. Q) incident with v, and let 5’(v) be the
integer in Zg with §'(v) = |P(v)| — |Q(v)| (mod 3). Clearly, 3,cv ey ' (v) =0 (mod 3). So §’
is a Zz-boundary of G’.

By Theorem 3.5, (G’, 0’) admits a S-orientation, which clearly yields a modulo 3-orientation
of (G, 0); this contradiction justifies Claim 7.

In the remainder of our proof, we reserve the symbol A for a nonempty proper subset of
V(G) such that

(1) g(A,0) < 5
(2) 4] > 2 and

(3) g(B,0) > 6 for any B C A with 2 < |B| < |A].
Such A is available because |A| + |A| > 4 by Claim 5; we may interchange A and A if |A| = 1.
By hypothesis, d(A) > 8. So h(A,0) =d(A) — g(A,0) > 8 — g(A, o). By (1), we thus have

(4) h(A, o) > 3.
Let k(A, o) be the number of negative edges with both ends in A. By Lemma 2.3 and Lemma
2.4, we obtain n(G/A,0) =n(G,0) > k(A,0) + h(A,0). It follows from (4) that

(5) n(G/A,0) — k(A,o) > 3.
Let v4 be the vertex of (G/A, o) resulting from contracting A. By Claim 3, all loops of (G/A, o)
are incident with v4, and precisely k(A, o) of them are negative. By (1) and Claim 1, we have
d(A) < 10. By Claim 5, Vj = ), so the minimum degree of G is at least eight by Menger’s
theorem, and hence some edge of G has two ends in A (see (2)). Let (G’,¢”) be the signed graph
obtained from (G/A, o) by replacing all loops incident with v4 by a new loop e, such that

(6) o’(e) =1 if k(A,0) =0 (mod 3) and o'(e) = —1 otherwise.
Notice that e does not necessarily correspond to an edge of G. Let d'(U) stand for the degree
of U in G’ for each U C V(G’). Since d(A) > 8, we have d'(v4) > 8. Set Vj = (. It is clear that

o IVIEN\V] = IV(GNA| 1> 2

e n(G',0') >n(G/A,0) — k(A,0) > 3 by (5); and

e \¢/(x,y) > 8 for any two vertices z and y of G’ by Menger’s theorem.
Thus, by (2) and induction hypothesis, (G’, ') has a modulo 3-orientation D', which yields a
partial orientation of (G, o). Reversing the directions of all half-arcs in D’ if necessary, we may
assume that

(7) e is a source edge in D’ when o’(e) = —1.

Let G” be the loopless graph (with no signature) obtained from the signed graph (G/A, o)
by first deleting all negative edges and then deleting all loops incident with zg, the vertex arising
from contracting A. We orient all edges between A and zy in G as follows: Suppose edge zzy in
G", with & € A, corresponds to edge v4y in G’, with y € A. Then the direction of xzy in G” is
exactly the same as the direction of v4y in D’. For convenience, we denote this pre-orientation
of edges incident with zg by D(zp). Let p(z0) (resp. ¢q(z0)) be the number of all resulting arcs
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entering (resp. leaving) zg, we define 3”(zp) to be the integer in Zs with 5”(z0) = q(20) — p(20)
(mod 3).

Let F; be the set of all negative edges of G with both ends in A. Recall that

(8) IFi| = (4, 0).

We orient all edges in F} as sink edges if k(A,0) = 2 (mod 3), and orient all edges in F} as
source edges otherwise. Let F, be the set of all negative edges between A and A in G; for each
edge f € Fy, we orient it as in D’. Set F' = Fy U F,. For each v € A, let p(v) (resp. ¢q(v)) be the
number of all half-arcs entering (resp. leaving) v in F, we define 8”(v) to be the integer in Zs
with 8”(v) = p(v) — ¢(v) (mod 3). We propose to show that

(9) 8" is a Zs-boundary of G”.

To justify this, let p1 (resp. q1) be the number of positive edges directed from A to A (resp.
from A to A) in D', and let ps (resp. g2) be the number of source (resp. sink) edges between A
and A in D'. Note that

(10) p1 = p(20) and g1 = q(20).

Since d}, (va) = dp,(va) (mod 3), the following equality holds.

(11) p1+ g =q +p2 (mod 3) if o’(e) =1 and p1 + g2 = ¢1 + p2 + 2 (mod 3) if o’(e) = —1.
Observe that in F' there are precisely po half-arcs entering A and precisely ¢o half-arcs leaving
A. By direct computation, we obtain

(12) Suea () = p2 — g2 — 2|Fi | if k(A,0) = 2 (mod 3) and Yyes 8(v) = pa — 2 + 2/
otherwise.

If k(A,0) = 0 (mod 3) then, by (6) and (8), we have o’(e) = 1 and |Fi| = 0 (mod 3). It
follows from (12), (10), and (11) that > ,c4 8" (v) + 8" (20) = p2 — @2 + ¢1 — p1 =0 (mod 3).

If k(A,0) =1 (mod 3) then, by (6) and (8), we have o’(e) = —1 and |Fi| =1 (mod 3). It
follows from (12), (10), and (11) that > ,ea 8" () +8"(20) =p2— @ +2+ ¢ —p1 =0 (mod 3).

If k(A,0) =2 (mod 3) then, by (6) and (8), we have o'(e) = —1 and |Fi| = 2 (mod 3). It
follows from (12), (10), and (11) that > ,ca 8" (v) + 8" (20) =p2—q2 —4+ ¢ —p1 =0 (mod 3).

Combining the above three cases, we arrive at (9).

Let us now verify that G” satisfies all the hypotheses of Lemma 3.7. By (2), we have
[V(G")| > |A|+1 > 3. From (1) and the construction of G”, we see that dgr(20) = g(A4,0) < 5;
with respect to D(zp), the equality d*(z9) — d ™ (20) = S(20) (mod 3) clearly holds. For each
v € V(G"\(S U{z0}), we have d”(v) > 5 by Claim 6. If d’(v) > 6, then d”(v) > 4 + |7"(v)|
by Lemma 3.3. If d”(v) = 5, then |7”(v)| = 1 by definition as 8”(v) # 0. Hence the inequality
d"(v) > 4 + |7"(v)| also holds. Each B C V(G")\{20} with min{|B|,|V(G")\ B|} > 2 is a
proper subset of A, so d’(B) > 6 by (3). Moreover, for each v € S, Claim 6 implies g(v,0) =5
and h(v,0) = 4. Since ”(v) = 0 and since negative edges with both ends in A are either all
source edges or all sink edges, there are at least two negative edges between v and zj. Since
h(v,0) <5 by (1) and Claim 1, we obtain |S| < 2. Thus, by Lemma 3.7, D(zg) can be extended
to a §”-orientation D” of the entire graph G. Combining D” with D"\{e}, we obtain a modulo
3-orientation of (G, o); this contradiction completes the proof of our theorem. |
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