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Abstract. We construct from a finitary exact category with duality A a
module over its Hall algebra, called the Hall module, encoding the first order

self-dual extension structure ofA. We study in detail Hall modules arising from

the representation theory of a quiver with involution. In this case we show that
the Hall module is naturally a module over the specialized reduced σ-analogue

of the quantum Kac-Moody algebra attached to the quiver. For finite type

quivers, we explicitly determine the decomposition of the Hall module into
irreducible highest weight modules.

Introduction

LetA be an abelian category with finite Hom and Ext1 sets, called finitary below.
In [20] Ringel constructed from A an associative algebra HA, the Hall algebra,
whose multiplication encodes the first order extension structure of A. There is also
a coalgebra structure on HA which, if A is hereditary, makes HA into a (twisted)
bialgebra [10]. The category RepFq (Q) of representations of a quiver over a finite
field is an example of a finitary hereditary category. The corresponding Hall algebra
HQ contains a subalgebra isomorphic to the positive part of the quantum Kac-
Moody algebra associated to Q, specialized at

√
q [21], [10]. A second example

of a finitary hereditary category is CohX , the category of coherent sheaves over a
smooth projective curve X defined over Fq. The simplest case is X = P1, where the
Hall algebra contains a subalgebra isomorphic to a positive part of the quantum
affine algebra U√q(ŝl2) [13]. Hall algebras can be defined more generally for exact
categories [12] and often give algebras behaving like quantum nilpotent groups [3].

The first goal of this paper is to introduce an analogue of the Hall algebra when
objects of A are allowed to carry non-degenerate forms. We work in the framework
of exact categories with duality, where a self-dual object is an object of A together
with a symmetric isomorphism with its dual. In Theorem 2.4, we associate to an
exact category with duality aHA-module, called the Hall module and denotedMA,
encoding the self-dual extension structure of A. Similarly, MA is a HA-comodule.
In Theorem 2.6, we modify this construction to obtain modules over the Ringel-Hall
algebra of A, whose (co)multiplication differs from that of the standard Hall algebra
by a twist by the Euler form. The module twist is defined using an integer valued
function E on the Grothendieck group of A that can be seen as a self-dual version
of the Euler form. In Theorem 2.9, we prove an identity relating E , the Euler form
and the stacky number of self-dual extensions in A. This identity is used in Section
3 but is also of independent interest. Its proof uses the combinatorics of self-dual
analogues of Grothendieck’s extensions panachées [11], [4].

In Section 3 we study Hall modules arising from the representation theory of a
quiver with involution (Q, σ). From the involution and a choice of signs we define
a duality structure on RepFq (Q), with q odd. For particular signs, self-dual objects
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coincide with the orthogonal and symplectic representations of [6]. The module and
comodule structures are incompatible in that MQ is not a Hopf module. In Theo-
rem 3.5, we instead show that the action and coaction of the simple representations
[Si] ∈ HQ make MQ, with its E-twisted module structure, a module over Bσ(gQ),
the reduced σ-analogue of U√q(gQ). The proof is combinatorial in nature and in-
volves counting configurations of pairs of self-dual exact sequences. Furthermore,
in Theorem 3.10 we describe the decomposition of MQ into irreducible highest
weight Bσ(gQ)-modules, with generators being elements ofMQ annihilated by the
coaction of each [Si]. The proof uses a canonically defined non-degenerate bilinear
form on MQ and a characterization of irreducible highest weight modules due to
Enomoto-Kashiwara [8].

In Section 4 we restrict attention to finite type quivers. Unlike ordinary quiver
representations, self-dual representations may have non-trivial Fq/Fq-forms. In
Proposition 4.2 we extend results of [6] to explicitly describe all such forms and
classify indecomposable self-dual Fq-representations. We use this result in Theo-
rems 4.4 and 4.6 to explicitly describe the decomposition of finite type Hall modules
into irreducible highest weight Bσ(gQ)-modules. The generators are written as al-

ternating sums of Fq/Fq-forms of self-dual indecomposables.
Enomoto [7] proved a result related to Theorems 3.5 and 3.10, showing that

induction and restriction along [Si] endow the Grothendieck group of a category of
perverse sheaves on the moduli stack of complex orthogonal representations with
the structure of a highest weight Bσ(gQ)-module. In the terminology of the present
paper, the weight module in [7] is generated by the trivial orthogonal representa-
tion, whereas Theorems 3.5 and 3.10 hold for arbitrary dualities and describe the
decomposition of the entire Hall module. The methods of [7] follow Lusztig’s geo-
metric framework [15] and are completely different from those used in this paper.
The existence of both approaches suggests a self-dual analogue of Lusztig’s purity
result [16] for multiplicity complexes of perverse sheaves. This would provide a
direct link between [7] and the present paper.

Notations and assumptions: In this paper, all fields are assumed to have
characteristic different from two. In particular, if Fq is a finite field with q elements,
then q is odd. All categories are assumed to be essentially small and we write Iso(A)
for the set of isomorphism classes of objects.

Acknowledgments. The author would like to thank Cheng Hao for helpful comments
during the preparation of this work and Michael Movshev for his insights and
encouragement. Portions of this work appeared in the author’s PhD dissertation
at Stony Brook University. The author was partially supported by an NSERC
Postgraduate Scholarship.

1. The Hall algebra of an exact category

Let A be an exact category in the sense of Quillen [18]. In particular, A is
additive and is equipped with a collection F of kernel-cokernel pairs (i, π) called
short exact sequences and denoted

(1) U
i
� X

π
� V,

satisfying a collection of axioms [18]. A morphism i is an admissible monic if it
occurs in a pair (i, π) ∈ F . Abelian categories are an important class of exact cate-
gories. More generally, an extension-closed full subcategory of an abelian category
inherits a canonical exact structure.

Denote by FXU,V the set of short exact sequences of the form (1). Assume that

A is finitary, that is, for all U, V ∈ A the set Hom(U, V ) is finite and FXU,V is
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non-empty for only finitely many X ∈ Iso(A). The Hall numbers are then the
cardinalities

FXU,V = |{Ũ ⊂ X | Ũ ' U, X/Ũ ' V }|,
where the subobjects Ũ are required to be admissible. Setting a(U) = |Aut(U)| we

have |FXU,V | = a(U)a(V )FXU,V .
Fix an integral domain R containing Q, a unit ν ∈ R and a bilinear form c :

K(A)×K(A)→ Z. The Hall algebra of A is the free R-module with basis Iso(A),

HA =
⊕

U∈Iso(A)

R[U ],

with associative multiplication given by [20], [12]

(2) [U ][V ] = νc(V,U)
∑

X∈Iso(A)

FXU,V [X].

Similarly, HA is a topological coassociative coalgebra with coproduct [10]

∆[X] =
∑

U,V ∈Iso(A)

νc(V,U) a(U)a(V )

a(X)
FXU,V [U ]⊗ [V ].

In general, ∆ takes values in the completion HA⊗̂RHA consisting of all formal
linear combinations

∑
U,V cU,V [U ]⊗ [V ]; see [22] for details. Both the product and

coproduct respect the natural (Grothendieck group) K(A)-grading of HA.
Suppose that A is Fq-linear and of finite homological dimension with finite Exti

sets, i ≥ 0. In this case, its Euler form is the bilinear form on K(A) defined by

〈U, V 〉 =
∑
i≥0

(−1)idimFq Exti(U, V ).

Its symmetrization is denoted (·, ·). With the choices R = Q[ν, ν−1], ν =
√
q−1 ∈ R

and c = −〈·, ·〉, HA is called the Ringel-Hall algebra of A.
The following fundamental result asserts the compatibility of the product and

coproduct when A is hereditary, i.e. of homological dimension at most one.

Theorem 1.1 ([10]). Let HA be the Ringel-Hall algebra of a hereditary abelian cat-
egory A. Equip HA⊗̂HA with the algebra structure given on homogeneous elements
x, y, z, w ∈ HA by

(x⊗ y)(z ⊗ w) = ν−(y,z)xz ⊗ yw.
Then ∆ : HA → HA⊗̂HA is an algebra homomorphism.

Finally, in [10] an R-valued non-degenerate symmetric bilinear form on HA is

defined by ([U ], [V ])H =
δU,V
a(U)

. This form satisfies

(x⊗ y,∆z)H⊗H = (xy, z)H, x, y, z ∈ HA
where (x⊗ y, x′ ⊗ y′)H⊗H = (x, x′)H(y, y′)H.

The category RepFq (Q) satisfies the assumptions of Theorem 1.1. Its Hall algebra
will be discussed in Section 3. We describe below a second example only briefly.
The reader is referred to [22] for detailed examples of Hall algebras.

Example. Let X be a smooth projective curve defined over Fq. Theorem 1.1 ap-
plies to the category of coherent sheaves over X. The full subcategory of vector
bundles defines a subalgebra HV ectX ⊂ HCohX . The adèlic description of the stack
of vector bundles over X shows that HV ectX consists of the unramified automor-
phic forms for GL defined over Fq(X), with multiplication given by the parabolic
Eisenstein series map. Incorporating torsion sheaves gives a Hall algebraic real-
ization of Hecke operators. The quadratic identities satisfied by cusp eigenforms
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become quadratic relations in HCohX [13]. These relations imply that HCohP1
is

isomorphic to the semidirect product of the Hall algebra of torsion sheaves (a tensor
product of classical Hall algebras) with a negative part of the quantum affine al-

gebra U√q−1(ŝl2) [13]. In higher genus the quadratic relations no longer determine

HCohX . See [23], [14] for higher genus results. /

2. The Hall module of an exact category with duality

2.1. Exact categories with duality. A basic reference for exact categories with
duality is [2].

Definition. (1) An exact category with duality is a triple (A, S,Θ) consisting of an
exact category A, an exact contravariant functor S : A → A and an isomorphism
Θ : 1A

∼−→ S2 satisfying S(ΘU )ΘS(U) = 1S(U) for all U ∈ A.
(2) A self-dual object of (A, S,Θ) is an object N ∈ A together with an isomorphism

ψN : N
∼−→ S(N) satisfying S(ψN )ΘN = ψN .

The notation (N,ψN ) ∈ AS , or sometimes just N ∈ AS if ψN is understood,
indicates that (N,ψN ) is a self-dual object. We also sometimes refer to A, instead
of (A, S,Θ), as an exact category with duality. We say that N,N ′ ∈ AS are

isometric, notation N 'S N ′, if there exists an isomorphism φ : N
∼−→ N ′ satisfying

S(φ)ψN ′φ = ψN . The set of isometry classes of self-dual objects Iso(AS) is an
abelian monoid under orthogonal direct sum.

Example. Let X be a smooth variety defined over a field k and write V ectX
for the exact category of vector bundles over X. Given s ∈ {±1} and a line
bundle L → X, define a duality functor on V ectX by S(V) = V∨ ⊗OX L, where

V∨ = HomOX (V,OX). Let ΘV : V ∼−→ V∨∨ be the signed evaluation map, given at
the level of sections by Θ(f)(x) = s · f(x), x ∈ X. Then (V ectX , S,Θ) is an exact
category with duality, the self-dual objects being L-valued orthogonal or symplectic
vector bundles over X. /

Definition. An isotropic subobject of N ∈ AS is an admissible monic U
i
� N such

that S(i)ψN i = 0 and the induced monic U ↪→ U⊥ := kerS(i)ψN is admissible.

The notation U
⊥
⊂ N indicates that U is isotropic in N . We will use the following

categorical version of orthogonal and symplectic reduction by isotropic subobjects.

Proposition 2.1 ([17, Proposition 5.2]). If i : U � N is isotropic, then there

exists a self-dual structure ψ̃ on N//U := U⊥/U , unique up to isometry, making
the following exact diagram commute:

(3)

U E N//U

U N S(E)

S(U) S(U)

j π

i S(k)ψN

k S(π)ψ̃

S(i)ψN S(j)

Here E
k
� N is a kernel of S(i)ψN and π is a cokernel for the induced monic

U
j
� E.



THE HALL MODULE OF AN EXACT CATEGORY WITH DUALITY 5

Motivated by Proposition 2.1, we make the following definition.

Definition. Given U ∈ A, M,N ∈ AS, let GNU,M be the set of equivalence classes

of exact commutative diagrams (E; i, j, k, π) of the form (3), with (N//U, ψ̃) re-
placed with (M,ψM ). Two such diagrams E,E′, are equivalent if there exists an

isomorphism E
∼−→ E′ making all appropriate diagrams commute.

Elements of GNU,M are called self-dual exact sequences and written U
i
� N

π
M .

2.2. Hall modules. Let A be a finitary exact category with duality. For U ∈ A
and M,N ∈ AS define the self-dual Hall number by

(4) GNU,M = |{Ũ
⊥
⊂ N | Ũ ' U, N//Ũ 'S M}|.

Let GNU,M = |GNU,M | and aS(M) = |AutS(M)|, the number of isometries of M .

Lemma 2.2. The equality GNU,M =
GNU,M

a(U)aS(M)
holds.

Proof. The group Aut(U)×AutS(M) acts freely on GNU,M by

(g, h) · (E; i, j, k, π) = (E; ig−1, jg−1, k, hπ), (g, h) ∈ Aut(U)×AutS(M).

The map (E; i, j, k, π) 7→ im(i) induces a bijection from GNU,M/Aut(U)× AutS(M)

to the right-hand side of equation (4). �

Lemma 2.3. For fixed U ∈ A and M ∈ AS, the set GNU,M is non-empty for at

most finitely many N ∈ Iso(AS).

Proof. As A is finitary, only finitely many isomorphism types of E, and hence N ,
can appear in the diagram (3). By Hom-finiteness, any such N admits at most
finitely many self-dual structures and the statement follows. �

Let MA be the free R-module with basis Iso(AS),

MA =
⊕

M∈Iso(AS)

R[M ].

The next result defines the Hall module of A. For now, take c = 0 in equation (2).

Theorem 2.4. The formulae

[U ] ? [M ] =
∑

N∈Iso(AS)

GNU,M [N ]

and

ρ[N ] =
∑

U∈Iso(A)

∑
M∈Iso(AS)

a(U)aS(M)

aS(N)
GNU,M [U ]⊗ [M ]

make MA a left HA-module and topological left HA-comodule, respectively.

Proof. Lemmas 2.2 and 2.3 imply that the above formulae are well-defined. A direct
calculation shows that the HA-action is associative if and only if

(5)
∑

W∈Iso(A)

FWU,VG
N
W,M =

∑
P∈Iso(AS)

GNU,PG
P
V,M , U, V ∈ A, M,N ∈ AS .

Interpreting this equation in terms of isotropic filtrations shows that it is equivalent
to a self-dual version of the Second Isomorphism theorem. Precisely, this says that

for fixed U
⊥
⊂ N , the map V 7→ V/U gives a bijection

{V
⊥
⊂ N | U ⊂ V } ←→ {Ṽ

⊥
⊂ N//U}
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satisfying (N//U)//(V/U) 'S N//V . When A is abelian, this is proved in [17,
Proposition 6.5]. The same argument applies to exact categories once admissibility
of all subobjects involved is verified, which is straightforward.

Turning to coassociativity, we first show that the composition

(1⊗ ρ) ◦ ρ :MA → HA⊗̂HA⊗̂MA
is well-defined, the completion consisting of all formal linear combinations; the map
(∆⊗ 1) ◦ ρ is dealt with similarly. For any ξ ∈MA, the terms of ρ(ξ) contributing
to the coefficient of [U1]⊗ [U2]⊗ [M ] in (1⊗ ρ) ◦ ρ(ξ) are proportional to [U1]⊗ [N ]
where N//U2 'S M . The number of such terms is finite by Lemma 2.3. A direct
calculation now shows that coassociativity is equivalent to equation (5). �

We now introduce a generalized grading on the Hall module. Recall that an
object N ∈ AS is called metabolic if it contains a Lagrangian, an isotropic subobject
U with U⊥ = U . For example, the hyperbolic object H(U) on any U ∈ A,

H(U) =
(
U ⊕ S(U),

(
0 1S(U)

ΘU 0

))
∈ AS ,

is metabolic.

Definition (See [2]). (1) The Grothendieck-Witt group GW (A) is the Grothendieck
group of Iso(AS) modulo the relation |N | = |H(U)| whenever U is a Lagrangian in
N .
(2) The Witt group W (A) is the abelian monoid Iso(AS) modulo the submonoid of
metabolic objects.

The map U 7→ H(U) extends to a group homomorphism H : K(A)→ GW (A).
The groups GW (A) and W (A) give two R-module decompositions of MA,

MA =
⊕

γ∈GW (A)

MA(γ), MA =
⊕

w∈W (A)

MA(w),

where MA(γ) is spanned by self-dual objects of class γ ∈ GW (A), and similarly
for MA(w).

Proposition 2.5. The homomorphism H intertwines the K(A) and GW (A)-gradings
of HA and MA: for all α ∈ K(A) and γ ∈ GW (A)

HA(α) ?MA(γ) ⊂MA(H(α) + γ).

Moreover, for each w ∈ W (A), MA(w) ⊂ MA is an HA-submodule. Analogous
statements hold for the comodule structure.

Proof. The first statement follows from that fact that if U
⊥
⊂ N , then in GW (A)

the identity

|N | = |N//U |+ |H(U)|
holds [17]. The second part now follows from the exact sequence of abelian groups

(6) K(A)
H−→ GW (A)→W (A)→ 0.

�

To extend Theorem 2.4 to c-twisted Hall algebras, suppose we are given a func-
tion c̃ : GW (A)×K(A)→ Z satisfying, for all α, β ∈ K(A) and γ ∈ GW (A),

(7) c(α, β) + c̃(γ, α+ β) = c̃(γ, α) + c̃(γ +H(α), β).

This guarantees that the twisted action

[U ] ? [M ] = ν c̃(M,U)
∑

N∈Iso(AS)

GNU,M [N ]
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makes MA a module over the c-twisted Hall algebra. The comodule structure is
similarly modified.

Since we are primarily interested in the Ringel-Hall algebra, we seek a c̃ compat-
ible with c = −〈·, ·〉. For each U ∈ A, the pair (S,Θ) generates a linear Z2-action
on Exti(S(U), U) and we denote by Exti(S(U), U)pS the subspace of symmetric
(p = 1) or skew-symmetric (p = −1) extensions with respect to this action.

Theorem 2.6. Let A be a Fq-linear abelian category of finite homological dimension

with finite Exti-sets. Then the function E : Iso(A)→ Z given by

E(U) =
∑
i≥0

(−1)i dimk Exti(S(U), U)(−1)i+1S

descends to K(A). Moreover, the function

c̃(M,U) = −〈M,U〉 − E(U)

satisfies equation (7) with c = −〈·, ·〉.

Proof. Applying the bifunctor Hom(−,−) to the short exact sequence

0→ U →W → V → 0

and its dual gives six long exact sequences fitting into the following diagram:

0 0 0

0 Hom(S(U), U) Hom(S(U),W ) Hom(S(U), V )

0 Hom(S(W ), U) Hom(S(W ),W ) Hom(S(W ), V )

0 Hom(S(V ), U) Hom(S(V ),W ) Hom(S(V ), V )

Ext1(S(U), U) Ext1(S(U),W ) Ext1(S(U), V )

Ext1(S(W ), U) Ext1(S(W ),W ) Ext1(S(W ), V )

...
...

...

−

−

−

−

−

−

The minus signs, indicating that negatives of the canonical maps are taken, en-
sure that each square of the diagram anti-commutes. Consider the total complex,
obtained by summing over the diagonal. Its first few terms are

0→ Hom(S(U), U)→
Hom(S(U),W )

⊕
Hom(S(W ), U)

→

Hom(S(U), V )
⊕

Hom(S(W ),W )
⊕

Hom(S(V ), U)

→ · · ·

There is a Z2-action on the total complex, commuting with all differentials, defined
by letting the generator act by (−1)iS on Exti(S(W ),W ) and by (−1)i+1S on
the remaining ith extension groups. Viewed as a virtual Z2-representation, the
character of the total complex is zero, implying the following relation between
virtual dimensions of Z2-invariants:

0 = E(U)− 〈S(U),W 〉+ 〈S(U), V 〉+ (〈S(W ),W 〉 − E(W ))− 〈S(W ), V 〉+ E(V ).

This can be rewritten as

(8) E(W ) = E(U) + E(V ) + 〈S(U), V 〉.
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The right-hand side of this equation is equal to E(U ⊕ V ), proving that E descends
to K(A). Finally, equation (7) is verified using equation (8). �

Definition. With c̃ as in Theorem 2.6, MA is called the Ringel-Hall module.

The following analogue of Green’s bilinear form will be used in Section 3.

Lemma 2.7. The R-valued symmetric bilinear form onMA defined by ([M ], [N ])M =
δM,N
aS(M) is non-degenerate and satisfies

(x⊗ ξ, ρ(ζ))H⊗M = (x ? ξ, ζ)M, x ∈ HA, ξ, ζ ∈MA.

We now give two examples.
Given an exact category A, the triple (HA, SH , 1HA), with HA = A×Aop and

SH(A,B) = (B,A), is called the hyperbolic exact category with duality; all its

self-dual objects are hyperbolic. Let Hop−copA be the (co)algebra obtained from HA
by taking the opposite (co)multiplication. Then HHA ' HA ⊗R Hop−copA .

Proposition 2.8. The map [X] 7→ [H(X)] extends to an isomorphism HA
∼−→

MHA of left HA ⊗R Hop−copA -(co)modules preserving Grothendieck-Witt gradings
and Green forms.

Proof. For simplicity set c = c̃ = 0. The above map clearly defines an R-module
isomorphism. A subobject of H(X), X ∈ A, is necessarily of the form U1⊕SH(U2)
for some U1, U2 ∈ A, and is isotropic if and only if SH(U2) ⊂ SH(X/U1). Summing
over isomorphism types of X/U1 shows

G
H(X)
U1⊕SH(U2),H(Y ) =

∑
W∈Iso(A)

FXU1,WF
W
Y,U2

,

where we have used F
SH(W )
SH(U2),SH(Y ) = FWY,U2

. This implies that G
H(X)
U1⊕SH(U2),H(Y )

is the coefficient of [X] in [U1][Y ][U2], all multiplication in HA, and gives the
HA ⊗R HopA -module isomorphism HA 'MHA. Using

Aut(U1 ⊕ SH(U2)) ' Aut(U1)×Aut(U2), AutS(H(X)) ' Aut(X),

a similar argument gives the comodule isomorphism and shows that Green forms
are preserved. That the gradings are respected follows from the fact that the
restriction of the hyperbolic functor to A ⊂ HA induces an isomorphism K(A)

∼−→
GW (HA). �

Example. Let HV ectX and MV ectX be the Hall algebra and module associated
to a smooth projective curve X over Fq, with duality determined by a line bundle
L. Following the automorphic interpretation of HV ectX , MV ectX is identified with
the space of L-twisted unramified automorphic forms for symplectic or orthogonal
groups over Fq(X). The Witt group of (V ectX ,L,Θ) is finite [1] and therefore
provides a finite HV ectX -module decomposition ofMV ectX . As the duality does not
extend to CohX there is no obvious Hall module interpretation of Hecke operators
on MV ectX . /

2.3. An identity for self-dual Hall numbers. In this section we prove the
following theorem.

Theorem 2.9. Let A be a Fq-linear hereditary finitary abelian category. For all
U ∈ A and M ∈ AS, the following identity holds:∑

N∈Iso(AS)

GNU,M
aS(N)

= q−〈M,U〉−E(U).
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We proceed in steps. Fix s = (E; i, j, k, π) ∈ GNU,M . Applying Hom(S(U),−) to

the exact sequence s− = (j, π) gives the long exact sequence

· · · → Hom(S(U),M)
δ−−−→ Ext1(S(U), U)

j∗−→ Ext1(S(U), E)→ · · ·

Similarly, applying Hom(−, U) to s| = (S(π)ψM , S(j)) gives

· · · → Hom(M,U)
δ|−→ Ext1(S(U), U)

S(j)∗−−−→ Ext1(S(E), U)→ · · ·

Define δSs : Hom(M,U)→ Ext1(S(U), U)S by

β 7→ δ|β + δ−(ψ−1
M S(β)).

Since δSs depends only on the class [s−] = ξ ∈ Ext1(M,U), we denote it by δSξ .
The set of self-dual extensions of M by U is defined to be

SExt1(M,U) =
⊔

N∈Iso(AS)

GNU,M/AutS(N),

where φ ∈ AutS(N) acts by φ · (E; i, j, k, π) = (E;φi, j, φk, π). The assignment s 7→
[s−] defines maps T : GNU,M → Ext1(M,U) and T̃ : SExt1(M,U)→ Ext1(M,U).

Lemma 2.10. If s ∈ GNU,M satisfies T (s) = ξ, then

|StabAutS(N)(s)| = | ker δSξ ||Hom(S(U), U)−S |.

Proof. An element φ ∈ AutS(N) fixes s if and only if there exists r ∈ Aut(E) with

j = rj, π = πr−1, φk = kr−1.

The first two equations imply r = rβ = 1E − jβπ for a unique β ∈ Hom(M,U),
and the last equation implies

φ = φτ = 1N + kτS(k)ψN

for a unique τ ∈ Hom(S(E), E). The map φτ is an isometry if and only if

(9) Θ−1
E S(τ) + τ + Θ−1

E S(πτ)ψMπτ = 0.

Restricting φτ to E shows jβ = τS(π)ψM . Hence τ fits into the commutative
diagram

(10)

M S(E) S(U)

U E M

0

0

0

0

S(π)ψM S(j)

j π

β −ψ−1
M S(β)τ

where we have used equation (9) to determine the map S(U)→M .
Conversely, for fixed β, the existence of a lift τ is equivalent to the condition

β ∈ ker δSξ , in which case the set of lifts of β forms a Hom(S(U), U)-torsor. For such

a lift τ0, we can write Θ−1
E S(τ0) + τ0 = jµS(j) for a unique µ ∈ Hom(S(U), U)S .

Putting

τ1 = τ0 −
1

2
j
(
µ+ βψ−1

M S(β)
)
S(j)

gives φτ1 ∈ StabAutS(N)(s) lifting β. Finally, the action

µ̃ · φ = φ+ jµ̃S(j), µ̃ ∈ Hom(S(U), U)−S .

makes the set of lifts of β ∈ ker δSξ to StabAutS(N)(s) a Hom(S(U), U)−S-torsor. �



10 M.B. YOUNG

Remark. The ordinary version of Theorem 2.9 is a corollary of the formula [19]

FXU,V
a(X)

=
|Ext1(V,U)X |
|Hom(V,U)|

,

where Ext1(V,U)X ⊂ Ext1(V,U) are the extensions with middle term isomorphic
to X. This formula follows from the fact that all elements of FXU,V have Aut(X)-

stabilizer isomorphic to Hom(V,U). That StabAutS(N)(s) depends on more data
than just U and M complicates the proof of Theorem 2.9.

Turning to the problem of describing the fibres of T̃ , suppose that

t− : U
j
� E

π
�M

represents a class ξ ∈ Ext1(M,U). Since A is hereditary, there exists an exact
commutative diagram t extending t−:

t :

U E M

U N S(E)

S(U) S(U)

j π

i ρ

k S(π)ψM

τ S(j)

In [11] such a diagram is called an extension panachée of S(E) by E. The dual
diagram S(t) (after using Θ) is another such extension panachée. By [11, §9.3.8.b]
there exists a unique γt ∈ Ext1(S(U), U) such that S(t) and t rγt are isomorphic
extensions panachées. Here r is the simply transitive action of Ext1(S(U), U) on
isomorphism classes of extensions panachées of S(E) by E. Precisely, t rγt is the
canonical lift of the Baer sum N + j∗γt ∈ Ext1(S(U), E) to an extension panachée
of S(E) by E.

Lemma 2.11. There exists a self-dual structure ψN on N satisfying ρ = S(k)ψN
(i.e. t ∈ GNU,M ) if and only if γt = 0. Moreover, such a self-dual structure is unique
up to isometry.

Proof. The implication is clear. Conversely, if γt = 0 then t ' S(t), i.e. there exists
an isomorphism ψ : N → S(N) satisfying ψk = S(ρ)ΘE and S(k)ψ = ρ. These
equations imply there exists a unique µ ∈ Hom(S(U), U)−S such that

S(ψ)ΘN − ψ = S(τ)ΘUµτ.

Then ψ(1N + 1
2 iµτ) is the desired self-dual structure. �

Lemma 2.12 (See also [4, Lemme 3]). The class γt satisfies γt + Θ−1
U∗S(γt) = 0.

Proof. We show that S(t) rΘ−1
U∗S(γt) = t. The definition of γt and the freeness

of the Ext1(S(U), U)-action then imply the lemma. According to [4, Lemme
A.1], S(t) rΘ−1

U∗S(γt) can also be described as the lift of S(N) + S(j)∗Θ−1
U∗S(γt) ∈

Ext1(S(E), U) to an extension panachée. Since S(N) + S(j)∗Θ−1
U∗S(γt) is also the

middle horizontal exact sequence of S(t rγt) the claim follows. �

The proof of [4, Théorème 1] shows that for each λ ∈ Ext1(S(U), U) we have

γt rλ = γt + λ−Θ−1
U∗S(λ).
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Together with Lemma 2.12, this implies γt r(− 1
2γt) = 0, and so by Lemma 2.11

the diagram t r(− 1
2γt) extends to an element of GNU,M . In particular, T̃−1(ξ) is

non-empty.

Lemma 2.13. The action of Ext1(S(U), U)S on T̃−1(ξ) is transitive with stabilizer
im δSξ . In particular,

|T̃−1(ξ)| = |Ext1(S(U), U)S |
| im δSξ |

.

Proof. Transitivity can be verified as in [4, Théorèm 1]. Consider the diagrams t
and t rδSξ β = (t rδ−β) rδ|ψ−1

M S(β). By [4, Lemme A.2], t rδ−β is obtained from t

by replacing k with kr−1
β . Similarly, t rδSξ β is obtained from t rδ−β by replacing

S(ρ) with S(r−1
β )S(ρ). In all, t and t rδSξ β differ by an automorphism of t− and

its induced action on S(t−). Therefore, t and t rδSξ β are equal as self-dual exact

sequences and im δSξ acts trivially.

On the other hand, suppose that t, t′ ∈ GNU,M are equal in SExt1(M,U). Without

loss of generality, we can assume t− = t′−. Then there exists φ ∈ AutS(N) satisfying

φk = k′r−1
β for some β ∈ Hom(M,U). Replacing k′ with k′r−1

β gives the same self-

dual exact sequence but a different extension panachée, namely t′ rδSξ β. The map φ

is now an isomorphism of extensions panachées t ' t′ rδSξ β. In particular, if t = t rγ
in SExt1(M,U), then γ ∈ im δSξ . �

Proof of Theorem 2.9. We compute using Burnside’s lemma∑
N∈Iso(AS)

GNU,M
aS(N)

=
∑

[s]∈SExt1(M,U)

1

|StabAutS(N)(s)|

=
∑

ξ∈Ext1(M,U)

|T̃−1(ξ)|
| ker δSξ ||Hom(S(U), U)−S |

(Lemma 2.10)

=
∑

ξ∈Ext1(M,U)

|Ext1(S(U), U)S |
| im δSξ || ker δSξ ||Hom(S(U), U)−S |

(Lemma 2.13)

=
∑

ξ∈Ext1(M,U)

|Ext1(S(U), U)S |
|Hom(M,U)||Hom(S(U), U)−S |

= q−〈M,U〉−E(U).

�

3. Hall modules from quivers with involution

For the remainder of the paper we assume that Hall algebras and modules are
given the Ringel twist.

3.1. Quantum groups and the Hall algebra of a quiver. Let A = (aij)
n
i,j=1 be

a symmetric generalized Cartan matrix with associated derived Kac-Moody algebra
g. The root lattice Φ =

⊕n
i=1 Zεi is generated by the simple roots ε1, . . . , εn. The

Cartan form (−,−) : Φ× Φ→ Z satisfies (εi, εj) = aij .
Let Q(v) be the field of rational functions in an indeterminate v. Define

[n]v =
vn − v−n

v − v−1
, [n]v! =

n∏
i=1

[i]v,

[
n
k

]
v

=
[n]v!

[k]v![n− k]v!
, n, k ∈ Z≥0.
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Definition. The quantum Kac-Moody algebra Uv(g) is the Q(v)-algebra generated
by symbols Ei, Fi, Ti, T

−1
i , for i = 1, . . . , n, subject to the relations

(1) [Ti, Tj ] = 0 and TiT
−1
i = 1 for i = 1, . . . , n.

(2) TiEjT
−1
i = v(εi,εj)Ej and TiFjT

−1
i = v−(εi,εj)Fj for i, j = 1, . . . , n.

(3) [Ei, Fj ] = δij
Ti−T−1

i

v−v−1 for i, j = 1, . . . , n.

(4) (quantum Serre relations) For any i, j = 1, . . . , n, with i 6= j,

a∑
p=0

(−1)p
[
a
p

]
v

F pi FjF
a−p
i = 0,

a∑
p=0

(−1)p
[
a
p

]
v

Epi EjE
a−p
i = 0

where a = 1− (εi, εj).

Let U−v (g) be the subalgebra of Uv(g) generated by Fi, i = 1, . . . , n. For ν ∈ C×
not a root of unity, the specialized quantum groups Uν(g), U−ν (g) are the Q[ν, ν−1]-
algebras with generators and relations as above but with v replaced with ν.

We now recall the connection between quantum groups and Hall algebras of
quivers. Consider a quiver Q with finite sets of nodes Q0 and arrows Q1 together
with head and tail maps h, t : Q1 → Q0. A k-representation of Q is a pair (V, v =
{vα}α∈Q1) where V =

⊕
i∈Q0

Vi is a finite dimensional Q0-graded k-vector space

and Vt(α)
vα−→ Vh(α) is a linear map. The category Repk(Q) of k-representations is

abelian and hereditary. The abelian group ZQ0 of virtual dimension vectors has a
natural basis {εi}i∈Q0 consisting of unit vectors supported at i ∈ Q0. The simple
representation with dimension vector εi and all structure maps zero is denoted by
Si.

If Q has no loops, then its symmetrized Euler form in the basis {εi}i∈Q0
is a

generalized Cartan matrix. Denote by gQ the corresponding derived Kac-Moody
algebra and let HQ be the Hall algebra of RepFq (Q).

Theorem 3.1 ([21], [10]). If Q has no loops, then the subalgebra of HQ generated
by [Si], for all i ∈ Q0, is isomorphic to U−ν (gQ).

3.2. Representations of a quiver with involution.

Definition. An involution of Q is a pair of involutions Qi
σ−→ Qi, i = 0, 1, such

that for all α ∈ Q1, h(σ(α)) = σ(t(α)) and if σ(t(α)) = h(α) then σ(α) = α.

Not every quiver admits an involution. For example, the only simply laced
Dynkin quivers that admit involutions are of type A. On the other hand, the
double of a quiver always admits an involution.

Let (Q, σ) be a quiver with involution. To construct a duality on Repk(Q), let ι
be an involutive field automorphism of k with fixed subfield k0. Fix also functions
s : Q0 → {±1} and τ : Q1 → {±1} satisfying si = sσ(i) and τατσ(α) = sisj for all

i
α−→ j. The functor S : Repk(Q)→ Repk(Q) is defined by setting S(U, u) to be

S(U)i = Uσ(i), S(u)α = ταu
∨
σ(α),

where

Uσ(i) = {f ∈ Homk0(Uσ(i), k) | f(cv) = ι(c)f(v), v ∈ Uσ(i), c ∈ k}.

Given a morphism U
φ−→ U ′, the components of S(U ′)

S(φ)−−−→ S(U) are S(φ)i = φ∨σ(i).

Put Θ =
⊕

i∈Q0
si · evi, where ev is the composition of the evaluation map with ι.

Then (Repk(Q), S,Θ) is a k0-linear abelian category with duality.
Geometrically, a self-dual structure ψM defines a non-degenerate form on M by

〈v, w〉 = ψM (v)(w) that is linear in the first variable and ι-linear in the second
variable. Moreover, Mi and Mj are orthogonal unless i = σ(j)., in which case the
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restriction of the form to Mi + Mσ(i) is si-symmetric (resp. si-hermitian) if ι is
trivial (resp. non-trivial). Finally, the structure maps satisfy

〈mαv, w〉 − τα〈v,mσ(α)w〉 = 0, v ∈Mt(α), w ∈Mσ(h(α)).

When ι is the identity, τ = −1 and s is constant, self-dual objects are called
orthogonal and symplectic representations (referred to as the s = 1 and −1 cases,
respectively) and were originally introduced by Derksen-Weyman [6]. When ι is
non-trivial and (s, τ) = (1,−1) self-dual objects are called unitary representations
(referred to as the s = 0 case). In particular, if k = Fq then q must be a perfect

square. We then regard RepFq (Q) as a F√q-linear category, so that R = Q[ν0, ν
−1
0 ]

with ν0 = 4
√
q−1 in the definition of HQ. We also rescale E by a factor of 1

2 . While

E is then only half-integral, the quantity ν−E(U) =
√
qE(U) is integral.

Example. The quiver has a unique involution, swapping nodes and fixing the
arrow. An orthogonal representation is a skew-symmetric map V → V ∨. Isometry
classes of orthogonal representations are parameterized by Λ2kn/GLn. /

Example. Consider the Jordan quiver with the trivial involution. A symplectic
representation consists of a symplectic vector space M and m ∈ sp(M). Isometry
classes of symplectic representations are parametrized by sp2n/Sp2n. /

Example. For any quiver Q let Qop be the quiver obtained by reversing the orien-
tations of all arrows of Q. Then Qt = QtQop has an involution that sends a node
(arrow) of Q to the corresponding node (arrow) of Qop. For any duality (S,Θ) on

RepFq (Q
t), there are HQ ⊗R Hop−copQ -(co)module isomorphisms

MQt 'MHRep(Q) ' HQ.

Indeed, the functor F : HRepk(Q) → (Repk(Qt), S,Θ) given by F (A,B) = A ⊕
S(B) and isomorphism ( 0 1

Θ 0 ) : F ◦ SH → S ◦ F define an equivalence of categories
with duality. This gives the first isomorphism. The second follows from Proposition
2.8. /

For any quiver, K(Repk(Q)) is the free abelian group with basis the set of
isomorphism classes S of simple representations. Write S = S+ tSS tS− where
SS consists of simples fixed by S and S(S+) = S−.

Proposition 3.2. There are canonical group isomorphisms

GW (Repk(Q)) ' ZS+ ⊕
⊕
U∈SS

GW (AU ), W (Repk(Q)) '
⊕
U∈SS

W (AU )

where AU is the semisimple abelian category with duality generated by U .

Proof. Let U
i
� N be a simple subrepresentation. By Schur’s lemma, S(i)ψN i is

zero or an isomorphism. In the former case U is isotropic and |N | = |H(U)|+|N//U |
in GW (Repk(Q)), while in the latter case S(i)ψN i is a self-dual structure on U ,

so that N 'S U ⊕ Ñ , implying |N | = |U | + |Ñ |. As every representation has a
finite composition series we can repeatedly apply the above procedure, giving the
description of GW (Repk(Q)). The description of W (Repk(Q)) now follows from
the exact sequence (6). �

If Q is acyclic then S = {Si}i∈Q0
and AU ' V ectk with duality determined by

s. When k = Fq, GW (V ectFq ) is isomorphic to Z (resp. Z2) if s = −1, 0 (resp.
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s = 1) and

W (V ectFq ) '


{1}, if s = −1
Z2, if s = 0
Z4, if s = 1 and char(Fq) ≡ 3 (mod 4)
Z2 × Z2, if s = 1 and char(Fq) ≡ 1 (mod 4)

In particular, for s = 1, this is the classical Witt group W (Fq) of orthogonal
forms. Note that the Grothendieck-Witt class of a representation is essentially its
dimension vector, with additional decorations at σ-fixed vertices with si = 1.

We now determine explicitly the function E . Given representations V,W , define

A0(V,W ) =
⊕
i∈Q0

Homk(Vi,Wi), A1(V,W ) =
⊕

i
α−→j∈Q1

Homk(Vi,Wj).

There is a differential A0(V,W )
δ−→ A1(V,W ) given by δ{fi}i = {wαfi − fjvα}α.

The resulting complex A
r
(V,W ) fits into the exact sequence

(11) 0→ Hom(V,W )→ A0(V,W )
δ−→ A1(V,W )→ Ext1(V,W )→ 0.

It follows that the Euler form depends only on the dimension vectors of its argu-
ments:

〈d, d′〉 =
∑
i∈Q0

did
′
i −

∑
i
α−→j

did
′
j , d, d′ ∈ ZQ0 .

Proposition 3.3. When A = Repk(Q), E(U) depends only on u = dimU and is
given by

E(U) =
∑
i∈Qσ0

ui(ui − si)
2

+
∑
i∈Q+

0

uσ(i)ui−
∑

(σ(i)
α−→i)∈Qσ1

ui(ui + ταsi)

2
−

∑
(i
α−→j)∈Q+

1

uσ(i)uj .

Here Q0 = Q+
0 tQσ0tQ

+
0 , where Qσ0 consists of the σ-fixed vertices and σ(Q+

0 ) = Q−0
and Q1 is decomposed analogously.

Proof. Define an involution of A
r
(S(U), U) by the composition

Ai(S(U), U)
S−→ Ai(S(U), S2(U))

Θ−1
U∗−−−→ Ai(S(U), U).

This involution anticommutes with δ so that the subcomplex B•(U) of (anti-)fixed

points A0(S(U), U)−S
δ−→ A1(S(U), U)S fits into the exact sequence

0→ Hom(S(U), U)−S → B0(U)
δ−→ B1(U)→ Ext1(S(U), U)S → 0.

Taking the Euler characteristic gives the claimed formula for E . �

3.3. Bσ(gQ)-module structure of MQ. In this section we assume that Q has
no loops. Theorems 2.4 and 3.1 imply that MQ is a representation of U−ν (gQ).
Since HQ itself is a quantum Borcherds algebra [24, Theorem 1.1], MQ is also
a representation of a much larger quantum group. However, without a better
understanding of the full structure of HQ it is difficult to use this to say much
about MQ. Instead, we focus on incorporating the comodule structure. The näıve
guess thatMQ is a Hopf module, possibly after a twist as in Theorem 1.1, is already
false for the quiver consisting of a single node and no arrows. In this section we
seek a replacement of the Hopf module condition.

To begin, we recall a modification of Kashiwara’s q-boson algebra. Keeping the
notation of Section 3.1, suppose that σ is an involution of the set of simple roots of
g that preserves the Cartan form.



THE HALL MODULE OF AN EXACT CATEGORY WITH DUALITY 15

Definition ([8]). The reduced σ-analogue Bσ(g) is the Q(v)-algebra generated by
symbols Ei, Fi, Ti, T

−1
i , for i = 1, . . . , n, subject to the relations

(1) [Ti, Tj ] = 0, TiT
−1
i = 1 and Ti = Tσ(i) for i = 1, . . . , n.

(2) TiEj = v(εj+εσ(j),εi)EjTi and TiFj = v−(εj+εσ(j),εi)FjTi for i, j = 1, . . . , n.

(3) EiFj = v−(εi,εj)FjEi + δi,j + δi,σ(j)Ti for i, j = 1, . . . , n.
(4) quantum Serre relations for the Ei and Fi.

Later we will use the following characterization of highest-weight Bσ(g)-modules.

Proposition 3.4 ([8, Proposition 2.11]). Let λ ∈ Hom(Φ,Z) be a σ-invariant
integral weight of g. Then there exists a Bσ(g)-module Vσ(λ) generated by a non-
zero vector φλ such that Tiφλ = vλ(εi)φλ for all i = 1, . . . , n and

{x ∈ Vσ(λ) | Eix = 0, i = 1, . . . , n} = Q(v)φλ.

Moreover, Vσ(λ) is irreducible and is unique up to isomorphism.

We require two straightforward variations of Proposition 3.4. The first is the
extension to σ-invariant half-integral weights λ ∈ Hom(Φ, 1

2Z), in which case Vσ(λ)

is a Bσ(g) ⊗Q(v) Q(v
1
2 )-module. The second is an extension to representations of

generic specializations Bσ(g)ν , the resulting modules written Vσ(λ)ν . The proof in
[8] carries over directly in both cases.

Returning to Hall modules, define operators Ei, Fi, Ti ∈ EndR(MQ) as follows.
See also [7]. Put

Fi[M ] = [Si] ? [M ] = ν−〈M,Si〉−E(Si)
∑
N

GNSi,M [N ].

and let Ei be the projection of ρ onto [Si]⊗MQ ⊂ HQ ⊗MQ:

Ei[N ] =
∑
M

ν−〈M,Si〉−E(Si)
a(Si)aS(M)

aS(N)
GNSi,M [M ].

Finally,

Ti[M ] = ν−(dimM,εi)−E(εi)−E(εσ(i))[M ].

Abusing notation slightly, let

Bσ(gQ)ν0 = Bσ(gQ)ν ⊗Q[ν,ν−1] Q[ν0, ν
−1
0 ].

If ν0 = ν there is no conflict of notation, but if ν0 =
√
ν, Bσ(gQ)ν0 is not the

specialization of Bσ(gQ) to ν0. We now state the first main result of this section.

Theorem 3.5. The operators Ei, Fi, Ti, for i ∈ Q0, give MQ the structure of a
Bσ(gQ)ν0-module.

Beginning of proof. The first two parts of the first relation satisfied by Bσ(gQ) are
clear while Ti = Tσ(i) because (d, εi) = (d, εσ(i)) for all σ-symmetric d ∈ ZQ0 . The
second relation follows from the fact that Fi (resp. Ei) increases (resp. decreases)
the dimension vector by εi + εσ(i). The quantum Serre relations for Fi follow from
Theorems 2.4 and 3.1. Lemma 2.7 gives

(Fiξ, ζ)M =
1

ν−2 − 1
(ξ, Eiζ)M, ξ, ζ ∈MQ.

The quantum Serre relations for Ei now follow from those of Fi and the non-
degeneracy of (·, ·)M. To complete the proof it remains to verify the third relation,
whose proof we break into a number of parts. �
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πV
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ZYU

ĩV

π̃V

π̃UĩU

Figure 1. (Left) a cross diagram; (right) a corner diagram.

Using Lemma 2.2, the third relation is seen to be equivalent to the following
identity, for all i, j ∈ Q0 and self-dual representations N,Y :∑

X

GXSi,NG
X
Sj ,Y

aS(X)
=
|Ext1(Sσ(j), Si)|
|Hom(Sσ(j), Si)|

∑
Z

GYSi,ZG
N
Sj ,Z

aS(Z)
+ δi,σ(j)δN,Y a(Si)aS(N)

+ δi,jδN,Y a(Si)aS(N)
|Ext1(N,Si)||Ext1(Sσ(i), Si)

S |
|Hom(N,Si)||Hom(Sσ(i), Si)−S |

.(12)

We will complete the proof of Theorem 3.5 by proving this identity.
Given representations U, V and self-dual representationsX,Y,N , let CX(U, V ;N,Y )

be the set of crosses of self-dual exact sequences, as in Figure 1. The group AutS(X)

acts on CX(U, V ;N,Y ) with orbit space C̃X(U, V ;N,Y ). Then∑
X

GXSi,NG
X
Sj ,Y

aS(X)
=
∑
X

|CX(i, j;N,Y )|
aS(X)

where CX(i, j;N,Y ) = CX(Si, Sj ;N,Y ). Similarly, for a self-dual representation
Z let DZ(U, V ;N,Y ) be the set of all corners of self-dual exact sequences, as
in Figure 1. The group AutS(Z) acts freely on DZ(U, V ;N,Y ) with orbit space

D̃Z(U, V ;N,Y ) and the sum on the right-hand side of (12) becomes∑
Z

GYSi,ZG
N
Sj ,Z

aS(Z)
=
∑
Z

|DZ(i, j;N,Y )|
aS(Z)

=
∑
Z

|D̃Z(i, j;N,Y )|.

In the notation of Figure 1, if iU and iV present U ⊕ V as an isotropic subrep-
resentation of X, by reducing X in stages along U and V we obtain a corner on
Z = X//U ⊕ V . In this case, we say that the cross descends to this corner.

Lemma 3.6. If C ∈ CX(i, j;N,Y ) does not descend to a corner, then N 'S Y .

Proof. The cross fails to descend if and only im iSi +im iSj is not a two dimensional
isotropic subrepresentation. This occurs if im iSi = im iSj , in which case clearly
N 'S Y , or if im iSi + im iSj is non-degenerate, in which case it is isometric to
H(Si). In the latter case X 'S H(Si)⊕N 'S H(Si)⊕ Y and again N 'S Y . �

To prove equation (12) we will show that the sum on the right-hand side counts
(with weights) crosses that descend to corners while the other two terms count
crosses that fail to descend for the two reasons indicated in the proof of Lemma
3.6. Since the left-hand side of (12) counts all crosses, the equation will follow.

Lemma 3.7. There are exactly a(U)aS(N) crosses in C̃X(U, V ;N,Y ) such that
im iU and im iV intersect trivially and im iU ⊕ im iV is non-degenerate.

Proof. The assumptions imply im iU⊕im iV 'S H(U) and X 'S H(U)⊕N . Acting
by AutS(H(U)) and AutS(N) (both are subgroups of AutS(X)) we may take iU to
be the standard inclusion U � H(U), iV to factor through the standard inclusion
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S(U) � H(U) and πU to be the projection N ⊕ im iV � N . The set of pairs
(iV , πV ) completing the cross is a Aut(U) × AutS(N)-torsor, with different pairs

giving different classes in C̃X(U, V ;N,Y ). �

Lemma 3.8. Let C ∈ CX(U, V ;N,Y ).

(1) If C descends to a corner, then StabAutS(X)(C) ' Hom(S(U), V ).
(2) If U = Si, V = Sj and im iU + im iV is non-degenerate, then StabAutS(X)(C) =
{1}.

Proof. Suppose that C descends to a corner and let φ ∈ StabAutS(X)(C). From the
proof of Lemma 2.10, the restrictions φ|EU and φ|EV factor through maps N → U
and Y → V , respectively. As φ also stabilizes the induced self-dual exact sequence

0→ U ⊕ V iU⊕iV−−−−→ X 99K Z → 0,

the restriction of φ to EU⊕V = EU ∩ EV factors through a map Z → U ⊕ V .
Compatibility with φ|EU and φ|EV requires that this map vanish. Then φ is uniquely

determined by an element of Hom(S(U ⊕V ), U ⊕V )−S . Again, compatibility with
φ|EU and φ|EV imply that only the summand

(Hom(S(U), V )⊕Hom(S(U), V ))−S ' Hom(S(U), V )

contributes to φ. Reversing this argument shows that each element of Hom(S(U), V )
gives rise to an element of StabAutS(X)(C). The proof of the second statement is
similar. �

Proposition 3.9. Exactly |Ext1(S(U), V )| elements of
⊔
X C̃X(U, V ;N,Y ) de-

scend to each element of
⊔
Z D̃Z(U, V ;N,Y ).

Proof. Fix a corner as in Figure 1 and consider the pullback of π̃U along π̃V :

V V

E ẼV

ẼU Z

U

U

j′V j̃V

π̃Vπ′V

π̃U

π′Uj′U

j̃U

From Lemma 2.13, Ext1(S(U ⊕ V ), U ⊕ V )S acts transitively on the set of lifts of
the exact sequence U ⊕ V � E� Z to self-dual extensions U ⊕ V � X Z. Fix
such a lift. After acting by Ext1(S(U), U)S and Ext1(S(V ), V )S , we can assume
that X//V 'S Y and X//U 'S N . The definition of E ensures that X, viewed as a
cross, descends to the original corner. Consider the induced commutative diagrams

U E ẼV

U EU N

S(V ) S(V )

j′U π′U

πU

lU

V E ẼU

V EV Y

S(U) S(U)

j′V π′V

πV

lV

First, note that the only data in the left (say) diagram not determined by the
corner is (EU ; lU , πU ) and that this data is determined only up to automorphisms
of EU . Second, since the pushout of lU along lV gives E � X � S(U ⊕ V ), the
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diagrams recover X up to isomorphism. Therefore, to count crosses that lift the
corner it suffices to count the pairs (EU ; lU , πU ) and (EV ; lV , πV ) that make the
above diagrams commute and that are compatible in the sense that the correspond-
ing central term of the cross admits a self-dual structure. From [11, §9.3.8.b] (see
also [10]) the set of (EU ; lU , πU ) making the left diagram commute, up to automor-
phisms of EU , is an Ext1(S(V ), U)-torsor. Similarly, the data for the diagram on
the right is an Ext1(S(U), V )-torsor. Compatibility requires these group actions be
dependent. Namely, only the subgroup

Ext1(S(U), V ) ' (Ext1(S(V ), U)⊕ Ext1(S(U), V )S ⊂ Ext1(S(U ⊕ V ), U ⊕ V )S

preserves the condition that the central term of the cross be self-dual. This com-
pletes the proof. �

Completion of the proof of Theorem 3.5. Write

CX(i, j;N,Y ) = C
(1)
X (i, j;N,Y )

⊔
C

(2)
X (i, j;N,Y )

with C
(1)
X (i, j;N,Y ) the set of crosses that descend to corners. Burnside’s lemma

and the first part of Lemma 3.8 give∑
X

|CX(i, j;N,Y )|
aS(X)

=
∑
X

|C̃(1)
X (i, j;N,Y )|
|Hom(Sσ(i), Sj)|

+
∑
X

|C(2)
X (i, j;N,Y )|
aS(X)

.

By Proposition 3.9 the first sum is∑
X

|C̃(1)
X (i, j;N,Y )|
|Hom(Sσ(i), Sj)|

=
|Ext1(Sσ(j), Si)|
|Hom(Sσ(j), Si)|

∑
Z

|D̃Z(i, j;N,Y )|

while Lemma 3.7 and the second part of Lemma 3.8 give for the second sum∑
X

|C(2)
X (i, j;N,Y )|
aS(X)

= δN,Y δi,ja(Si)aS(N)
∑
X

GXSi,N
aS(X)

+ δN,Y δi,σ(j)a(Si)aS(N).

Here the crosses counted by the first (resp. second) term on the right-hand side
fail to descend because im iSi = im iSj (resp. im iSi + im iSj is non-degenerate).

Finally, using Theorem 2.9 to evaluate
∑
X

GXSi,N
aS(X) establishes equation (12). �

We now discuss the decomposition of MQ into irreducible Bσ(gQ)ν0-modules.

Definition. A non-zero element ξ ∈ MQ is called cuspidal if Eiξ = 0 for all
i ∈ Q0.

Fix a homogeneous orthogonal basis CQ for the R-module of cuspidals. Given
ξ ∈ CQ, define a σ-invariant weight λξ by

λξ(εi) = −(dim ξ, εi)− E(εi)− E(εσ(i)).

Theorem 3.10. The Hall module MQ admits an orthogonal direct sum decom-
position into irreducible highest weight Bσ(gQ)ν0-modules generated by elements of
CQ:

MQ =
⊕
ξ∈CQ

Vσ(λξ)ν0 .

Proof. We first show that the submodule 〈ξ〉 ⊂ MQ generated by ξ ∈ CQ is iso-
morphic to Vσ(λξ)ν0 . Indeed, suppose that x ∈ 〈ξ〉 is non-zero with Eix = 0 for all
i ∈ Q0. If x =

∑
i∈Q0

Fiyi for some yi ∈ 〈ξ〉, then

(x, x)M =
∑
i∈Q0

(x, Fiyi)M =
1

ν−2 − 1

∑
i∈Q0

(Eix, yi)M = 0.
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However, writing x in the natural basis of MQ as x =
∑
M cM [M ] shows

(x, x)M =
∑
M

c2M
aS(M)

> 0,

a contradiction. So, x is a scalar multiple of ξ and Proposition 3.4 implies 〈ξ〉 '
Vσ(λξ)ν0 .

Suppose now that ξ1, ξ2 ∈ CQ are distinct, and hence orthogonal. It follows that
〈ξ1〉 and 〈ξ2〉 are also orthogonal, giving an inclusion⊕

ξ∈CQ

Vσ(λξ)ν0 ↪→MQ.

To prove that this is an isomorphism, note that the restriction of (·, ·)M to 〈ξ〉, and
hence to

⊕
ξ∈CQ Vσ(λξ)ν0 , is non-degenerate. Let 0 6= x ∈ MQ be orthogonal to⊕

ξ∈CQ Vσ(λξ)ν0 and of minimal dimension with this property. As x is not cuspidal,

Eix 6= 0 for some i ∈ Q0. By the minimality assumption, Eix ∈
⊕

ξ∈CQ Vσ(λξ)ν0 .

Since FiEix ∈
⊕

ξ∈CQ Vσ(λξ)ν ,

(Eix,Eix)M = (ν−2 − 1)(x, FiEix)M = 0,

contradicting Eix 6= 0, completing the proof. �

As a special case of Theorem 3.10, note that for any quiver with duality we
have 〈[0]〉 ' Vσ(λ[0])ν0 . A geometric version of this isomorphism was obtained by
Enomoto [7, Theorem 5.12] by studying perverse sheaves on the moduli stack of
orthogonal representations. Moreover, a lower global basis of Vσ(0) was obtained,
giving an orthogonal analogue of Lusztig’s construction of the lower global basis of
U−v (gQ) [15]. In [27] Enomoto’s approach was generalized to construct lower global
bases of Vσ(λ) for general λ.

A result stronger than Theorem 3.5, but valid only for the Jordan quiver,
was obtained in [26]. Following Zelevinsky [28] and interpreting MQ in terms
of unipotent characters of classical groups, van Leeuwen constructed a ring ho-
momorphism Φ : HQ → HQ ⊗R HQ, third order in the Hall numbers, satisfying
ρ([U ] ? [M ]) = Φ([U ]) ? ρ([M ]). See also [25] for a p-adic analogue. Theorem 3.5
recovers a particular component of this Φ-twisted Hopf module structure.1 It would
be very interesting to extend this result to arbitrary (Q, σ).

4. Finite type Hall modules

4.1. Classification of self-dual representations over finite fields. A quiver
Q is called finite type if it has only finitely many isomorphism classes of indecom-
posable representations over any field. By [9], a connected finite type quiver is an
orientation of an ADE Dynkin diagram and its indecomposables are in bijection
with the positive roots of gQ.

Example. Let Q be an orientation of A2n or A2n+1. Label the nodes −n, . . . , n
(omitting 0 forA2n) with i and i+1 adjacent. The indecomposables are {Ii,j}−n≤i≤j≤n,
where Ii,j has dimension vector εi + · · · + εj and all intermediate structure maps
the identity. /

Similarly, (Q, σ) is called finite type if it has only finitely many isometry classes
of indecomposable self-dual representations over any field whose characteristic is
not two. By [6, Theorem 3.1], (Q, σ) is finite type if and only if Q is finite type.
In loc. cit. the authors work with orthogonal and symplectic representations but

1While Theorem 3.5 is stated for loopless quivers, the verification of (12) above holds without
this assumption.
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their proof applies to the more general dualities considered here. It follows that if
(Q, σ) is finite type and not a disjoint union of quivers with involution, then Q is
of Dynkin type A or Q = Q′t with Q′ of Dynkin type ADE.

Lemma 4.1. (1) The representation underlying a self-dual indecomposable is ei-
ther indecomposable or of the form I ⊕ S(I) for some indecomposable I.
(2) Let Q be finite type. If an indecomposable I does not admit a self-dual structure,
then, up to isometry, H(I) is the unique self-dual structure on I ⊕ S(I).

Proof. The first statement is given in [6, Proposition 2.7] for algebraically closed
fields but the proof works without this assumption.

If Q is finite type, then there is a total order � on the set of indecomposables
such that Hom(I, J) = Ext1(J, I) = 0 if J ≺ I; see [5]. Writing a self-dual structure
ψ on I ⊕ S(I) as

I ⊕ S(I)

(
a b
c d

)
−−−−→ S(I)⊕ S2(I)

we see that S(a)ΘI = a. If I ' S(I), then Hom(I, S(I)) ' k and a = 0; otherwise
a is a self-dual structure on I. Similarly d = 0. It is then straightforward to verify
that ψ is isometric to H(I). If instead I 6' S(I), we may assume S(I) ≺ I. Again

a = 0 and acting by Aut(I) we may take b = 1S(I) and c = ΘI . Then
(

1 − 1
2d

0 1

)
is

an isometry from ψ to H(I). �

For the purpose of studying Hall modules of finite type quivers it suffices to
restrict attention to orthogonal, symplectic and unitary representations. Indeed,
any other choice of duality is seen to be equivalent to one of these choices.

We can use Lemma 4.1 to describe the self-dual indecomposables of finite type
quivers over finite fields. For Qt the self-dual indecomposables are in bijection with
the indecomposables of Q. Indecomposable representations in type type A2n+1

(resp. A2n) do not admit symplectic (resp. orthogonal) structures. Therefore,
in these cases the self-dual indecomposables are exactly the hyperbolics {H(Ii,j)}.
For orthogonal (resp. symplectic) representations in type A2n+1 (resp. A2n) the
indecomposables I−i,i admit two self-dual structures, denoted by Rci according to
the following rule. Composing the structure maps of Rci gives an isomorphism from
the vector space attached to the −ith node to that of the ith node. Together with
the self-dual structure of Rci , this gives a one dimensional orthogonal form over Fq
whose Witt class is c ∈W (Fq). We must replace H(I−i,i) in the above set with the
two Rci . Finally, I−i,i admits a unique unitary structure Ri and replaces H(I−i,i)
in the above set.

Example. There are six indecomposable orthogonal representations of :

H(S1) : k → 0→ k, H(I0,1) : k
( 1

0 )
−−→ k2 ( 0 −1 )−−−−−→ k,

Rc0 : 0→ k → 0, Rc1 : k
1−→ k

−c−−→ k.

The orthogonal forms on the middle nodes are hyperbolic for H(I0,1) and have Witt
index c for Rci . /

Over algebraically closed fields self-dual indecomposables of finite type quivers
admit a partial interpretation in terms of root systems [6]. The next result extends
this to finite fields. Denote by IgQ the set of dimension vectors (with multiplicity)
of self-dual Fq-indecomposables of Q.

Theorem 4.2. Let (Q, σ) be finite type. Then IgQ is independent of the orientation
of Q and the finite field Fq. Precisely,
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(1) if Q is of type A2n, then IoQ is in bijection with BC+
n while IspQ (resp. IuQ)

surjects onto B+
n , the short roots having fibre of cardinality three (resp. two);

(2) if Q is of type A2n+1, then IspQ (resp. IuQ) is in bijection with C+
n+1 (resp.

B+
n+1), while IoQ surjects onto B+

n+1, the short roots having fibre of cardinality two;

(3) IgQt is in bijection with ∆+
gQ .

Proof. Suppose Q is of type A2n. Recall that B+
n = {εi± εj , εi | 0 ≤ i ≤ j ≤ n−1}

and BC+
n = B+

n

⊔
{2εi}n−1

i=0 . For orthogonal representations, the bijection is given
by

H(Ii,j) 7→
{
εn−j − εn−i+1, for 1 ≤ i ≤ j ≤ n
εn−i + εn−j , for 1 ≤ i < n and 1 ≤ j ≤ n.

For symplectic (resp. unitary) representations the bijection is as above, but now
Rci (resp. Ri) also maps to 2εn−i.

The case of type A2n+1 is similar. The last part follows from Gabriel’s theorem
[9] and the bijection between self-dual indecomposables of Qt and indecomposables
of Q. �

4.2. Application to Hall modules. A weak version of the Krull-Schmidt theo-
rem holds for self-dual representations: a self-dual representation decomposes into
an orthogonal direct sum of self-dual indecomposables. However, while the type
c of a summand R⊕ri,ci is well-defined, the type of its indecomposable summands
may not be.

Proposition 4.3. Let (Q, σ) and (Q′, σ) be finite type quivers with involution with
the same underlying graph and duality. Then the decompositions of MQ and MQ′

into irreducible Bσ(gQ)ν0-modules coincide.

Proof. Let ch(MQ) be the generating function of the ranks of the Ti-weight spaces
of MQ. Observe that the Ti-weight of a self-dual representation depends only on
its dimension vector and not on the orientation of Q. Theorem 4.2 and the weak
Krull-Schmidt theorem therefore imply ch(MQ) = ch(MQ′). Since Q is finite type,
the symmetrized Euler form (Cartan form) is non-degenerate. It follows that the
weight λ subspace of Vσ(λ) is rank one. From this we conclude that the characters
{ch(Vσ(λ))}λ∈Hom(Φ, 12Z) are linearly independent. The proposition now follows. �

We first deal with those (Q, σ) admitting only hyperbolics.

Theorem 4.4. If a duality structure on (Q, σ) admits only hyperbolic representa-
tions, then MQ = 〈[0]〉 ' Vσ(λ[0])ν0 .

Proof. By assumption, an arbitrary self-dual representation is of the form

H(U) 'S
l⊕
i=1

H(Ii)
⊕mi , mi ≥ 0

for indecomposables Ii satisfying Ii 6' Ij and Ii 6' S(Ij) for i 6= j. Without loss
of generality we may assume S(Ii) � Ii ≺ Ii+1 ≺ · · · ≺ Il for i = 1, . . . , l. This
implies Ext1(S(Ii), Ij) = 0 for all i ≤ j, and by duality, also for i ≥ j. Hence

Ext1(S(U), U) = 0 and we have

[U ] ? [0] = ν−E(U)G
H(U)
U,0 [H(U)].

The equalityMQ = 〈[0]〉 now follows from the fact that the Hall algebra of a finite
type quiver is generated by simple representations. �

Hall modules of unitary, symplectic and orthogonal representations of An, A2n

and A2n+1, respectively, are not covered by Theorem 4.4. To deal with these cases
we will use the following simple fact.
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Lemma 4.5. An element ξ ∈MQ is cuspidal if and only if ρ(ξ) = [0]⊗ ξ.

Proof. Since Q is finite type, any [0] 6= [U ] ∈ HQ is a non-trivial sum of products
of simple representations. If ξ is cuspidal, Lemma 2.7 implies (ξ, [U ] ? [M ])M = 0
for any [M ] ∈ MQ. As the coefficient of [U ] ⊗ [M ] in ρ(ξ) is proportional to
(ξ, [U ] ? [M ])M, it follows that ρ(ξ) = [0]⊗ ξ. The converse is trivial. �

The classical Witt group W (Fq) has a ring structure given by tensor product.
The subset W(1) ⊂W (Fq) spanned by one dimensional orthogonal spaces is stable
under this product and is isomorphic to Z2, which we identify with {1,−1}. Given
c = (ci)j∈J ∈W J

(1) we write Rc = ⊕j∈JR
cj
j .

Denote by ~A2n and ~A2n+1 the Dynkin diagrams with orientation −n→ · · · → n.
Together with Theorem 3.10 and Proposition 4.3, the following result completes
the decomposition of finite type Hall modules into irreducible representations.

Theorem 4.6. Homogeneous bases for the submodules of cuspidals are given as
follows:

(1) Cu~A2n
= {[0]} and Cu~A2n+1

= {[0], [R0]},
(2) Csp~A2n

= {[0], ξ1, . . . , ξn}, where ξj =
∑
c∈W [1,j]

(1)

ac[R
c] and ac =

∏
i odd ci,

(3) Co~A2n+1
= {[0], ξb0, . . . , ξ

b
n}, where ξbj =

∑
c ac[R

c], ac is as above and the

sum is over all c ∈W [0,j]
(1) satisfying

∑j
i=0 ci = b ∈W (Fq).

Proof. Fix the following explicit choice of total order ≺:

Ii,j ≺ Ik,l if and only if i > k or i = k and j ≥ l.
Then S(Ii,j) � Ii,j if and only if i+ j ≤ 0.

Suppose that N = H(U) ⊕ R where R has no hyperbolic summands and the
indecomposable summands of U are ordered as in the proof of Theorem 4.4. When
i + j ≤ 0, we can verify directly that Ext1(I−k,k, Ii,j) = 0 for all k. Since the
representation underlying R is a direct sum of indecomposables of the form I−k,k,

Ext1(R,U) = 0 and dually Ext1(S(U), R) = 0. It follows that N is the only self-
dual extension of R by U . Therefore, if [N ] appears with non-zero coefficient in a
cuspidal, by Lemma 4.5 we must have U = 0.

In the unitary case homogeneous cuspidals then of the form ξ = [⊕j∈JRj ]. Note

that Ejξ 6= 0 whenever 0 6= j ∈ J . Hence, either J = ∅ or Q = ~A2n+1 and J = {0},
giving the claimed cuspidals.

Consider now a homogeneous cuspidal ξ ∈ Msp
~A2n

. Then ξ does not contain the

term [R⊕R⊕2,c
i ], with c 6= 0 (so that R⊕2,c

i is not hyperbolic) and R containing no

Ri summand; otherwise [S⊕2
i ]⊗ [R⊕R⊕2,c

i−1 ] would appear with non-zero coefficient
in ρ(ξ), contradicting Lemma 4.5. Therefore,

ξ =
∑

c∈WJ
(1)

ac[R
c]

for some J ⊂ [1, n] and ac ∈ Q. Denoting by η : F×q → {1,−1} the quadratic
character, for each i > 0 we have

Rci//Si 'S R
η(−1)c
i−1 .

This implies that if 2 ≤ i ∈ J , then i−1 ∈ J , as otherwise Eiξ 6= 0. Hence J = [1, j]
for some 1 ≤ j ≤ n. The condition E1ξ = 0 is equivalent to ac = −ac′ whenever
c and c′ agree except in their first slot. For 2 ≤ i ≤ j, the condition Eiξ = 0 is
equivalent to ac = −ac′ if c and c′ agree except in their (i− 1)th and ith slots and
satisfy

ci−1 + η(−1)ci = c̃i−1 + η(−1)c̃i ∈W (Fq).
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It is straightforward to verify that, up to a non-zero scalar multiple, ac must be as
claimed.

The argument for the final case is similar. The index b ∈W (Fq) labels the Witt
summand of Mo

~A2n+1
in which 〈ξbj 〉 lies; see Proposition 2.5. �
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[25] M. Tadić. Structure arising from induction and Jacquet modules of representations of classical

p-adic groups. J. Algebra, 177(1):1–33, 1995.

[26] M. van Leeuwen. An application of Hopf-algebra techniques to representations of finite clas-
sical groups. J. Algebra, 140(1):210–246, 1991.

[27] M. Varagnolo and E. Vasserot. Canonical bases and affine Hecke algebras of type B. Invent.

Math., 185(3):593–693, 2011.



24 M.B. YOUNG

[28] A. Zelevinsky. Representations of finite classical groups: A Hopf algebra approach, volume

869 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong
E-mail address: myoung@maths.hku.hk


	Introduction
	1. The Hall algebra of an exact category
	2. The Hall module of an exact category with duality
	2.1. Exact categories with duality
	2.2. Hall modules
	2.3. An identity for self-dual Hall numbers

	3. Hall modules from quivers with involution
	3.1. Quantum groups and the Hall algebra of a quiver
	3.2. Representations of a quiver with involution
	3.3. B(gQ)-module structure of MQ

	4. Finite type Hall modules
	4.1. Classification of self-dual representations over finite fields
	4.2. Application to Hall modules

	References

