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abstract21

Exciton diffusion length plays a vital role in the function of opto-electronic devices. Often-22

times, the domain occupied by an organic semiconductor is subject to surface measurement23

error. In many experiments, photoluminescence over the domain is measured and used as the24

observation data to estimate this length parameter in an inverse manner based on the least25

square method. However, the result is sometimes found to be sensitive to the surface geometry26

of the domain. In this paper, we employ a random function representation for the uncertain sur-27

face of the domain. After non-dimensionalization, the forward model becomes a diffusion-type28

equation over the domain whose geometric boundary is subject to small random perturbations.29

We propose an asymptotic-based method as an approximate forward solver whose accuracy is30

justified both theoretically and numerically. It only requires solving several deterministic prob-31

lems over a fixed domain. Therefore, for the same accuracy requirements we tested here, the32

running time of our approach is more than one order of magnitude smaller than that of directly33

solving the original stochastic boundary-value problem by the stochastic collocation method. In34

addition, from numerical results, we find that the correlation length of randomness is important35

to determine whether a 1D reduced model is a good surrogate for the 2D model.36
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1. Introduction40

From a practical perspective, measurement error or insufficient data in many problems inevitably41

introduces uncertainty, which however has been overlooked for a long time. In materials sci-42

ence, recent adventure in manufacturing has reduced the device dimension from macroscrop-43

ic/mesoscropic scales to nanoscale, in which the uncertainty becomes important [4]. In the field44

of organic opto-electronics, such as organic light-emitting diodes (LEDs) and organic photo-45

voltaics, a surge of interest has occurred over the past few decades, due to major advancements46

in material design, which led to a significant boost in the materials performance [28, 24, 31].47

These materials are carbon-based compounds with other elements like N, O, H, S, and P, and48

can be classified into small molecules, oligomers, and polymers with atomic mass units ranging49

from several hundreds to at least several thousands and conjugation length ranging from a few50

nanometers to hundreds of nanometers [13, 24].51

At the electronic level, exciton, a bound electron-hole pair, is the elementary energy carrier,52

which does not carry net electric charge. The characteristic distance that an exciton travels53

during its lifetime is defined as the exciton diffusion length, which plays a critical role in the54

function of opto-electronical devices. A small diffusion length in organic photovoltaics limits the55

dissociation of excitons into free charges [33, 22], while a large diffusion length in organic LEDs56

may limit luminous efficiency if excitons diffuse to non-radiative quenching sites [1]. Generally,57

there are two types of experimental methods to measure exciton diffusion length: photolumi-58

nescence quenching measurement, including steady-state and time-resolved photoluminescence59

surface quenching, time-resolved photoluminescence bulk quenching, and exciton-exciton an-60

nihilation [20], and photocurrent spectrum measurement [27]. Exciton generation, diffusion,61

dissociation, recombination, exciton-exciton annihilation, and exciton-environment interaction,62

are the typical underlying processes. Accordingly, two types of models are used to describe63

exciton diffusion, either differential equation based or stochastic process based. The connections64

between these models are systematically discussed in [9].65

We focus on the differential equation model in this paper. Accordingly, the device used in the66

experiment includes two layers of organic materials. One layer of material is called donor and the67

other is called acceptor or quencher due to the difference of their chemical properties. A typical68

bilayer structure is illustrated in Figure 1. These materials are thin films with thicknesses ranging69

from tens of nanometers to hundreds of nanometers along the x direction and in-plane dimensions70

up to the macroscopic scale. Under the illumination of solar lights, excitons are generated in71

the donor layer, and then diffuse. Due to the exciton-environment interaction, some excitons die72

out and emit photons which contribute to the photoluminescence. The donor-acceptor interface73

serves as the absorbing boundary while other boundaries serve as reflecting boundaries due to74

the tailored properties of the donor and the acceptor. As derived in [9], such a problem can75

be modeled by a diffusion-type equation with appropriate boundary conditions, which will be76

introduced in §2. Since the donor-acceptor interface is not exposed to the air/vacuum and the77

resolution of the surface morphology is limited by the resolution of atomic force microscopy,78

this interface is subject to an uncertainty with amplitude around 1 nm. At a first glance, this79

uncertainty does not seem to affect the observation very much since its amplitude is much smaller80

than the film thickness. However, in some scenarios [20], the fitted exciton diffusion lengths are81

sensitive to the uncertainty, which may affect a chemist to determine which material should be82

used for a specific device. Therefore, it is desirable to understand the quantitative effect of such83
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an uncertainty on the exciton diffusion length and provide a reliable estimation method to select84

appropriate models for organic materials with different crystalline orders.85

Uncertainty quantification is an emerging research field that addressing these issues [35, 19,86

30]. Due to the complex nature of the problems considered here, finding analytical solutions87

is almost impossible, so numerical methods are very important to study these solutions. Here88

we give a briefly introduction of existing numerical methods, which can be classified into non-89

intrusive sampling methods and intrusive methods.90

Monte Carlo (MC) method is the most popular non-intrusive method [16]. For the random-91

ness in the partial differential equations (PDEs), one first generates N random samples, and92

then solves the corresponding deterministic problem to obtain solution samples. Finally, one93

estimates the statistical information by ensemble averaging. The MC method is easy to im-94

plement, but the convergence rate is merely O( 1√
N

). Later on, quasi-Monte Carlo methods [7]95

and multilevel Monte Carlo methods [15] have been developed to speed up the MC method.96

Stochastic collocation (SC) methods explore the smoothness of PDE solutions with respect to97

random variables and use certain quadrature points and weights to compute solution realizations98

[36, 2, 25]. Exponential convergence can be achieved for smooth solutions, but the quadrature99

points increase exponentially fast as the number of random variables increases, known as the100

curse of dimensionality. Sparse grids were introduced to reduce the quadrature points to some101

extent [6]. For high-dimensional PDEs with randomness, however, the sparse grid method is102

still very expensive.103

In intrusive methods, solutions of the random PDEs are represented by certain basis functions,104

e.g., orthogonal polynomials. Typical examples are the Wiener chaos expansion (WCE) and105

polynomial chaos expansion (PCE) method. Then, Galerkin method is used to derive a coupled106

deterministic PDE system to compute the expansion coefficients. The WCE was introduced107

by Wiener in [34]. However, it did not receive much attention until Cameron provided the108

convergence analysis in [8]. In the past two decades, many efficient methods have been developed109

based on WCE or PCE; see [14, 37, 38, 3, 18] and references therein.110

When dealing with relatively small input variability and outputs that do not express high111

nonlinearity, perturbation type methods are most frequently used, where the random solutions112

are expanded via Taylor series around their mean and truncated at a certain order [21, 11].113

Typically, at most second-order expansion is used because the resulting system of equations114

are typically complicated beyond the second order. An intrinsic limitation of the perturbation115

methods is that the magnitude of the uncertainties should be small. Similarly, one also chooses116

the operator expansion method to solve random PDEs. In the Neumann expansion method, we117

expand inverse of the stochastic operator in a Neumann series and truncate it at a certain order.118

This type of method often strongly depends on the underlying operator and is typically limited119

to static problems [39, 35].120

In this paper, we employ a diffusion-type equation with appropriate boundary conditions as121

the forward model and the exciton diffusion length is extracted in an inverse manner. Surface122

roughness is treated as a random function. After nondimensionalization, the forward model123

becomes a diffusion-type equation on the domain whose geometric boundary is subject to small124

perturbations. Therefore, we propose an asymptotic-based method as the forward solver with its125

accuracy justified both analytically and numerically. It only requires solving several determin-126

istic problems over the regular domain without randomness. The efficiency of our approach is127
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demonstrated by comparing with the SC method as the forward solver. Of experimental interest,128

we find that the correlation length of randomness is the key parameter to determine whether a129

1D surrogate is sufficient for the forward modeling. Precisely, the larger the correlation length,130

the more accurate the 1D surrogate. This explains why the 1D surrogate works well for organic131

semiconductors with high crystalline order.132

The rest of the paper is organized as follows. In §2, a diffusion-type equation is introduced as133

the forward model and the exciton diffusion length is extracted by solving an inverse problem.134

Domain mapping method and the asymptotic-based method are introduced in §3 with simulation135

results presented in §4. Conclusion is drawn in §5.136

2. Model137

In this section, we introduce a diffusion-type equation over the random domain as the forward138

model and the extraction of exciton diffusion length is done by solving an inverse problem.139

2.1. Forward model: A diffusion-type equation over the random domain. Consider a140

thin layer of donor located over the two dimensional domain {(x, z) : x ∈ (h(z, ω), d), z ∈ (0, L)},141

where L� d. Refer to Figure 1. The donnor-acceptor interface, Γ, is described by x = h(z, ω),142

a random field with period L:143

h(z, ω) = h̄

K∑
k=1

λkθk(ω)φk(z), (1)

where {θk} are i.i.d. random variables, φk(z) = sin(2kπ zL), and λk > 0 are eigenvalues that

control the decay speed of physical mode φk(z). In principle, one could also add the cosine

modes in the basis functions {φk}. We here only use the sine modes for simplicity. In the

experiment, h̄ ∼ 1 nm due to the surface roughness limited by the resolution of atomic force

microscopy. The thickness d varys between 10 ∼ 100 nm in a series of devices. Therefore, the

dimensionless parameter characterizing the ratio between measurement uncertainty and film

thickness

ε = h̄/d,

ranges around [0.01, 0.1]. So, it is assume that the amplitude h̄� d in our models. The in-plane144

dimensions of the donor layer are of centimeters in the experiment, but we choose L ∼ 100 nm145

and set up the periodic boundary condition along the z direction based on the following two146

reasons. First, the current work treats exciton diffusion length as a homogeneous macroscopic147

quantity, which is a good approximation for ordered structures. For example, small molecules148

are the simplest and can form crystal structures under careful fabrication conditions [12, 29].149

Second, the light intensity and hence the exciton generation density is a single variable function150

depending on x only.151

Define the domain Dε := {(x, z) : x ∈ (h(z, ω), d), z ∈ (0, L)}. The diffusion-type equation

reads as 
σ2 (uxx(x, z) + uzz(x, z))− u(x, z) +G(d− x) = 0, (x, z) ∈ Dε (2a)

ux(d, z) = 0, u(h(z, ω), z) = 0, 0 < z < L (2b)

u(x, z) = u(x, z + L), h(z, ω) < x < d. (2c)

Here σ is the exciton diffusion length which is an unknown parameter, and the σ2 term in152

(2a) describes the exciton diffusion. Exciton-environment interaction makes some excitons emit153
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donor

x

z

d

L

x=h(z)

G(x-d)

solar lights

Figure 1. The donor-acceptor bilayer device with film thickness d along the x

direction and in-plane dimension L along the z direction under the illumination

of sun lights. One realization of the donor-acceptor interface with uncertainty is

described by x = h(z). G(x) is the normalized exciton generation density which

depends on x only and is a decreasing function due to the phonon absorption in

the donor layer.

phonons and die out, which is described by the term −u in (2a). The normalized exciton154

generation function G is R+-valued, and is smooth on R+∪{0}. By solving the Maxwell equation155

over the layered device, one can find that G(x) is a combination of exponential functions which156

decay away from 0 [5]. x = d is served as the reflexive boundary and homogeneous Neumann157

boundary condition is thus used there, while x = h(z, ω) is served as the absorbing boundary158

and homogeneous Dirichlet boundary condition is used in (2b). Periodic boundary condition159

is imposed along the z direction in (2c). It is not difficult to see that the solution u to (2) is160

strictly positive in Dε by the maximum principle.161

The (normalized) photoluminescence is computed by the formula162

I[σ, d] =
1

L

∫ L

0

∫ d

h(z,ω)
u(x, z)dzdx. (3)

If the interface Γ is random but entirely flat, i.e., h(x, ω) = ξ(ω) for some random variable ξ,

then the domain is a rectangle (ξ(ω), d) × (0, L). Notice that in (2), G is a function of x only.

Then, (2) actually reduces to the following 1D problem{
σ2uxx(x)− u(x) +G(d− x) = 0, x ∈ (ξ, d) (4a)

ux(d) = 0, u(ξ) = 0. (4b)
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For the 1D model (4), when L→ 0, the photoluminescence defined by (3) reduces to163

I(σ, d) =

∫ d

ξ
u(x) dx. (5)

This is why the normalized factor 1/L is used in (3). Due to the simple analytical formula, the 1D164

model given by (4) and (5) has been widely used to fit experimental data for photoluminescence165

measurement [20] and photocurrent measurement [17].166

Since the roughness of the interface is taken into account, problem (2) with the random167

interface Γ is viewed as a generalized and more realistic model. The 1D model (4) still has168

the uncertainty of the boundary but fails to include the spatial variety of the donor-interface169

interfacial layer. We are interested in identifying under which condition the 1D model can be170

viewed as a good surrogate for the 2D model and how this condition can be related to the171

property of organic semiconductors.172

2.2. Inverse problem: Extraction of exciton diffusion length. In the experiment, photo-173

luminescence data {̃Ii}Ni=1 are measured for a series of bilayer devices with different thicknesses174

{di}Ni=1. Here i denotes the i-th observation in the experiment with di the thickness of the donor175

layer. σ is the unknown parameter, and the optimal σ is expected to reproduce the experimental176

data {di, Ĩi}Ni=1 in a proper sense.177

To achieve this, we propose the following minimization problem in the sense of mean square178

error179

min
σ

J(σ) =
1

N

N∑
i=1

(
Eω[I(σ, di)]− Ĩi

)2
. (6)

We use the Newton’s method to solve (6) for σ. Given σ(0), for n = 1, 2, . . . , until convergence,180

we have181

σ(n) = σ(n−1) − αn
∂
∂σJ(σ(n−1))
∂2

∂σ2J(σ(n−1))
. (7)

Here αn ∈ (0, 1] is given by a line search [26]. Details are given in Appendix A.182

3. Methods for solving the forward model183

In the photoluminescence experiment, the surface roughness is very small compared to the film184

thickness, i.e., h̄ ∼ 1 nm and 10 ≤ d ≤ 100 nm. Based on this observation, we propose an185

asymptotic-based method for solving the diffusion-type equation over the random domain. For186

comparison, we first describe the domain mapping approach [38].187

3.1. Domain mapping method. To handle the random domain Dε, we introduce the following188

transformation189

ỹ =
x− h(z, ω)

d− h(z, ω)
, z̃ = z/L,

so that Dε becomes the unit square Ds = (0, 1) × (0, 1). Under this change of variables, Eq.190

(2) becomes the following PDE with random coefficients (still use y and z to represent ỹ and z̃,191

respectively)192

σ2Lu− u+ g(y, z, ω) = 0, (y, z) ∈ Ds, (8)
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where the spatial differentiation operator is defined for a random element ω in the probability193

space194

L :=
(1− y)2(h′)2 + 1

(d− h)2
∂yy +

1

L2
∂zz −

2

L

(1− y)h′

(d− h)
∂yz

− 2
(1− y)(h′)2

(d− h)2
∂y −

(1− y)h′′

(d− h)
∂y.

(9)

and195

g(y, z, ω) := G((1− y)(d− h(z, ω))). (10)

The boundary condition is196

∂yu(1, z) = 0, u(0, z) = 0, z ∈ (0, 1),

u(y, z) = u(y, z + 1), y ∈ (0, 1).
(11)

The photoluminescence defined in (3) is then transformed into197

I(σ, d) =

∫ 1

0

∫ 1

0
u(y, z)(d− h(z, ω))dydz. (12)

Remark 3.1. In 1D, changing of variable y = x−ξ
d−ξ also transforms (4) to a differential equation198

with random coefficients over the unit interval.199

σ2L1u(y)− u(y) +G((1− y)(d− ξ)) = 0, y ∈ (0, 1) (13)

with200

L1 :=
1

(d− ξ)2
dyy (14)

and the boundary condition201

uy(1) = 0, u(0) = 0. (15)

Accordingly, the photoluminescence can be written as202

I(σ, d) = (d− ξ)
∫ 1

0
u(y)dy. (16)

Remark 3.2. The generation term in (10) depends on both y and z after changing of variables.203

We expect some dimensional effect on the estimation of σ, which will be carefully examined in204

§4.205

3.2. Finite difference method for the model problem. We use finite difference method to206

discretize the forward model (8) developed in §3.1. We partition the domain Ds = [0, 1]× [0, 1]207

into (Ny + 1)× (Nz + 1) grids with meshes hy = 1
Ny

and hz = 1
Nz

. Denote by ui,j the numerical208

approximation of u(yi, zj), where yi = (i − 1)hy, zj = (j − 1)hz with i = 1, ..., Ny + 1 and209

j = 1, ..., Nz + 1, respectively. For the discretization in space, we use a second-order, centered-210

difference scheme [23]. We introduce the difference operators211

Dy
0ui,j =

ui+1,j − ui−1,j

2hy
, Dy

−ui,j =
ui,j − ui−1,j

hy
, Dy

+ui,j =
ui+1,j − ui,j

hy
.



8

The operators Dz
0, Dz

−, and Dz
+ are defined similarly. For each ω ∈ Ω and each interior mesh

point (i, j) with 2 6 i 6 Ny, 2 6 j 6 Nz, we discretize the forward model (8) as

σ2 (1− yi)2(h′)2 + 1

(d− h)2
Dy

+D
y
−ui,j +

σ2

L2
Dz

+D
z
−ui,j −

2σ2

L

(1− yi)h′

(d− h)
Dy

0D
z
0ui,j

−
(

2σ2 (1− yi)(h′)2

(d− h)2
+ σ2 (1− yi)h′′

(d− h)

)
Dy

0ui,j − ui,j = −g(yi, zj , ω), (17)

where h, h′, and h′′ are evaluated at (yi, zj).212

We then discretize the boundary conditions (11) on ∂Ds. The Dirichlet boundary condition213

on y = 0 gives u1,j = 0, 1 6 j 6 Nz + 1. For the Neumann boundary condition on y =214

1, we introduce ghost nodes at (y−1, zj) and obtain a second order accurate finite difference215

approximation
u1,j−u−1,j

2hy
= 0. Then, the values of the u−1,j at the ghosts nodes are eliminated216

by combining with Eq. (17). Finally, the periodic boundary condition along the z direction gives217

ui,Nz+1 = ui,1. We solve a system of Ny(Nz + 1) linear equations for {ui,j} with 2 6 i 6 Ny + 1218

and 1 6 j 6 Nz + 1.219

The equations have a regular structure, each equation involving at most nine unknowns. Thus220

the corresponding matrix of the system is sparse and can be solved efficiently using existing221

numerical solvers. After obtaining {ui,j}, we use the 2D trapezoidal quadrature rule to compute222

the photoluminescence I(σ, d) defined in (12).223

In this paper, we choose the sparse-grid based SC method [6, 25] to discretize the stochastic224

dimension in Eq. (8). As such the expectation of u(y, z, ω) is computed by225

E[u(y, z, ω)] =

Q∑
q=1

u(y, z, sq)wq,

where sq are sparse-grid quadrature points, wq are the corresponding weights, and Q is the226

number of sparse-grid points. Other functionals of u(y, z, ω) can be computed in the same way.227

When the solution u(y, z, ω) is smooth in the stochastic dimension, the SC method provides228

very accurate results.229

3.3. An asymptotic-based method. If we rewrite Eq. (2) in the nondimensionalized form230

with the change of variables x̃ = x/d and z̃ = z/L, the domain Dε becomes231

Ds,ε :=
{

(x, z) ∈ (εh̃(z, w), 1)× (0, 1)
}
,

where ε = h̄/d. When ε = 0, Ds,ε becomes Ds,0 = Ds = (0, 1)× (0, 1). Here232

h̃(z, w) =
K∑
k=1

λkθk(ω)φk(z), (18)

where K is the mode number in the interface modeling. As discussed in §2, ε ∼ 0.01 − 0.1.233

Therefore, it is meaningful to derive the asymptotic equations when ε→ 0. For ease of descrip-234

tion, we list the main results below. The main idea is: (1) we rewrite Eq. (2) over Ds,ε; (2) with235

appropriate extension/restriction of solutions on the fixed domain Ds, we obtain a Taylor series236

with each term satisfying a PDE of the same type with the boundary condition involving lower237

order terms; (3) we apply the inverse transform for each term and change the domain Ds back238

to D0 = (0, d) × (0, L). Detailed derivation can be found in Appendix B for self-consistency.239
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The interested readers can find the systematic study on asymptotic expansions for more general240

problems in [10].241

The asymptotic expansion over the fixed domain D0 is of the form242

wε(x, z) =
∞∑
n=0

εnwn(x, z) for (x, z) ∈ D0. (19)

The equation for each wn can be derived in a sequential manner. Only the first three terms are243

listed here. More details are included in Appendix B.244

The leading term w0(x, z) is the solution to the boundary value problem245 
σ2∂xxw0 + σ2∂zzw0 − w0 +G(d− x) = 0 in D0,

∂xw0(d, z) = 0,

w0(0, z) = 0, for 0 6 z 6 L,

w0(x, z + L) = w0(x, z), for 0 6 x 6 d,

(20)

and w1(x, z, ω) solves246 
σ2∂xxw1 + σ2∂zzw1 − w1 = 0 in D0,

∂xw1(d, z, ω) = 0,

w1(0, z, ω) = −dh̃(z, ω)∂xw0(0, z), for 0 6 z 6 L,

w1(x, z + L, ω) = w1(x, z, ω), for 0 6 x 6 d.

(21)

w2(x, z, ω) is the solution to the following boundary value problem247 
σ2∂xxw2 + σ2∂zzw2 − w2 = 0 in D0,

∂xw2(d, z, ω) = 0, for 0 6 z 6 L,

w2(0, z, ω) = −dh̃(z, ω)∂xw1(0, z, ω) + (dh̃(z,ω))2

2σ2 G(d), for 0 6 z 6 L,

w2(x, z + L, ω) = w2(x, z, ω), for 0 6 x 6 d.

(22)

Remark 3.3. As demonstrated in Eqs. (20), (21), and (22), the asymptotic expansion in (19)248

requires a sequential construction from lower order terms to high order terms and the partial249

derivatives of lower terms appear in the boundary condition for high terms. Numerically, we use250

the second-order finite difference scheme for (20), (21), and (22). For boundary conditions, we251

use the one-sided beam warming scheme to discretize ∂xw0(0, z) and ∂xw1(0, z, ω) so the overall252

numerical schemes are still of second order accuracy.253

Define v[n] =
∑n

k=0 ε
kwk. Note that w0 is a function of (x, z) only. The zeroth order approx-254

imation of the photoluminescence is255

I[u] ≈ I[v[0]] =
1

L

∫
Dε
w0(x, z) dxdz ≈ 1

L

∫
D0

w0(x, z) dxdz =: I0[v[0]], (23)

and so256

E[I[u]] ≈ E
[
I0[v[0]]

]
= I0[w0]. (24)
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For k = 1, 2, . . . ,K, let w1,k(x, z) be the solution to (21) with φk(z) in place of h̃(z, ω)257 
σ2∂xxw1,k + σ2∂zzw1,k − w1,k = 0 in D0,

∂xw1,k(d, z) = 0,

w1,k(0, z) = −dφk(z)∂xw0(0, z), for 0 6 z 6 l,

w1,k(x, z + L) = w1,k(x, z), for 0 6 x 6 d.

(25)

Then by linearity, the solution w1 to (21) with h̃ given by (18) can be expressed as258

w1(x, z, ω) =

K∑
k=1

λkθk(ω)w1,k(x, z). (26)

Hence the first order approximation of the photoluminescence becomes259

I[u] ≈ I[v[1]] =
1

L

∫
Dε
v[1](x, z, ω) dxdz ≈ 1

L

∫
D0

v[1](x, z, ω) dxdz

=
1

L

∫
D0

[w0(x, z) + εw1(x, z, ω)] dxdz

=
1

L

∫
D0

w0(x, z) dxdz +
ε

L

K∑
k=1

λkθk(ω)

∫
D0

w1,k(x, z) dxdz

= I0[w0] + ε
K∑
k=1

λkθk(ω)I0[w1,k] =: I1[v[1]],

(27)

and so260

E[I[u]] ≈ E
[
I1[v[1]]

]
= I0[w0] + ε

K∑
k=1

λkE[θk]I0[w1,k]. (28)

Next, we consider the second order approximation of the photoluminescence. Since h̃ and w1261

are given by (18) and (26), the boundary condition for w2 at x = 0 can be written as262

w2 =
K∑

j,k=1

λjλkθjθk

(
−dφj∂xw1,k +

G(d)

2σ2
d2φjφk

)
.

Introduce w2,j,k(x, z) as the solution to the boundary value problem (22) with the boundary263

condition at x = 0 replaced by264

w2,j,k = −dφj∂xw1,k +
G(d)

2σ2
d2φjφk.

Then265

w2(x, z, ω) =

K∑
j,k=1

λjλkθj(ω)θk(ω)w2,j,k(x, z),
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and consequently, the second order approximation of the photoluminescence is266

I[u] ≈ I[v[2]] =
1

L

∫
Dε
v[2](x, z, ω) dxdz

≈ 1

L

∫
D0

v[2](x, z, ω) dxdz − ε

2L

∫ L

0
v[2](0, z, ω)h(z, ω) dz

≈ 1

L

∫
D0

[w0 + εw1 + ε2w2] dxdz − ε

2L

∫ L

0
[w0 + εw1](0, z, ω)h(z, ω) dz

=
1

L

∫
D0

[w0 + εw1 + ε2w2] dxdz +
ε2

2L

∫ L

0
[dh̃(z, ω)]2∂xw0(0, z) dz

= I0[w0] + ε

K∑
k=1

λkθk(ω)I0[w1,k] + ε2
K∑

j,k=1

λjλkθj(ω)θk(ω)I0[w2,j,k]

+
ε2d2

2L

K∑
j,k=1

λjλkθj(ω)θk(ω)

∫ L

0
φj(z)φk(z)∂xw0(0, z) dz

=:I2[v[2]],

(29)

and we have267

E[I[u]] ≈ E
[
I2[v[2]]

]
=I0[w0] + ε

K∑
k=1

λkE[θk]I0[w1,k] + ε2
K∑

j,k=1

λjλkE[θjθk]I0[w2,j,k]

+
ε2d2

2L

K∑
j,k=1

λjλkE[θjθk]

∫ L

0
φj(z)φk(z)∂xw0(0, z) dz.

(30)

In general, wn can be written as the sum of Kn functions, each of which solves a deterministic268

problem.269

The approximation accuracy of a finite series in (19) is given by the following theorem. Proof270

can be found in [10].271

Theorem 3.4. Assume D0 ⊂ Dε ⊂ Dε0 with ε ∈ [0, ε0] and ∂D0 ∈ C∞. Also assume G ∈272

C∞(Dε0) and h ∈ C∞(∂D0). Then, ∀n,m > 0,273 ∥∥v[n](ω)− u(ω)
∥∥
Hm(D0)

= O(εn+1) P− a.e. ω ∈ Ω, (31)

where u is the solution to (2) and v[n] =
∑n

k=0 ε
kwk.274

To proceed, let us recall the definition of Bochner spaces.275

Definition 3.5. Given a real number p > 1 and a Banach space X, the Bochner space is276

LpP(Ω, X) = {u : Ω→ X | ‖u‖LpP(Ω,X)is finite}

with277

‖u‖LpP(Ω,X) :=

{ (∫
Ω‖u(·, ω)‖pXd P(ω)

)1/p
, p <∞

ess supω∈Ω‖u(·, ω)‖X , p =∞.

Proposition 3.6. Given h ∈ L∞P (Ω, C1(∂D0)), then wn, n > 0 belongs to L2
P(Ω, H1(D0)) and278

hence279 ∥∥v[n] − u
∥∥
L2
P(Ω,H1(D0))

= O(εn+1).
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Proof. From Theorem 3.4, for m = 1, we have280 ∥∥v[n](ω)− u(ω)
∥∥
H1(D0)

= O(εn+1) P− a.e. ω ∈ Ω.

Since wn, n > 0 satisfies the same elliptic equation (20) with a boundary condition depending on281

wk, k 6 n−1. By the Lax-Milgram’s theorem, we have wn ∈ L2
P(Ω, H1(D0)), n > 0. Therefore,282

v[n] ∈ L2
P(Ω, H1(D0)), n > 0 and the desired result is obtained. �283

A direct consequence of Proposition 3.6 is284

‖E(v[n])− E(u)‖H1(D0) = O(εn+1). (32)

Based on the above assertions, we have285

Corollary 3.7. For (24), (28), and (30), we have the following approximation errors286 ∣∣∣E [I0[v[0]]
]
− E [I[u]]

∣∣∣ = O(ε1), (33)∣∣∣E [I1[v[1]]
]
− E [I[u]]

∣∣∣ = O(ε2), (34)∣∣∣E [I2[v[2]]
]
− E [I[u]]

∣∣∣ = O(ε3). (35)

In summary, by using the asymptotic expansion solution, we circumvent the difficulty of287

sampling the random function and solving PDEs on irregular domains for each sample. In our288

approach, there is no statistical error or errors from numerical quadratures as in MC method, SC289

method, and PCE method. However, our method is applicable only for small perturbation of the290

random interface, where a small n is sufficient in practice. The computational cost depends on291

the approximation order n and the number of modes K used to represent the random interface,292

and increases proportionally to Kn.293

4. Numerical Results294

In this section, we numerically investigate the accuracy and efficiency of the asymptotic-based295

method in computing photoluminescence and the efficiency in estimating the exciton diffusion296

length. In addition, we study of the validation of the diffusion-type model, i.e., under which297

condition the 1D model can be viewed as a good surrogate for the 2D model.298

4.1. Accuracy and efficiency of the asymptotic-based method. Consider the forward299

model defined by Eq. (2) over Dε := {(x, z) : x ∈ (h(z, ω), d), z ∈ (0, L)}. Recall that the300

random interface h(z, ω) between the donor and the acceptor is parameterized by h(z, ω) =301

h̄
∑K

k=1 λkθk(ω) sin(2kπ zL), where θk(ω) are i.i.d. uniform random variables and K is the num-302

ber of random variables in the model.303

We first solve (8) over the fixed domain Ds = (0, 1) × (0, 1) in the domain mapping method304

using the SC method. Note that the spatial differentiation operator in (9) depends on the305

random variables in a highly nonlinear fashion, which makes the WCE method and PCE method306

extremely difficult. In the asymptotic-based method, we solve deterministic boundary value307

problems (20), (21), and (22) over the fixed domain D0 = (0, d) × (0, L), respectively. Recall308

that in the asymptotic-based method, ε = h̄/d and the random interface becomes h̃(z, ω) =309 ∑K
k=1 λkθk(ω) sin(2kπz). In our simulation, the random interface h(z, ω) is parameterized by310

K = 5 random variables. The accuracy of the asymptotic-based method is verified by two311

numerical tests. In the first test, θk ∼ U(0, 1), while in the second one θk ∼ U(−1, 1).312
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To compute the reference solution, we employ the finite difference method to discretize the313

spatial dimension of Eq. (8) with a mesh size H = 1
128 , and use the sparse-grid based SC method314

to discretize the stochastic dimension. We choose level six sparse grids with 903 quadrature315

points. After obtaining solutions at all quadrature points, we compute the expectation of the316

photoluminescence, which provides a very accurate reference solution. In the asymptotic-based317

method, we use the finite difference method to discretize the spatial dimension of boundary value318

problems (20), (25), and (22) for w2,j,k with a mesh size H = 1
64 . Expectations E[θk] in (28) and319

E[θjθk] in (30) can be easily computed beforehand. Therefore, given the approximate solutions320

w0, w1,k, and w2,j,k, we immediately obtain different order approximations of the expectation of321

the photoluminescence. This provides the significant computational saving over the SC method.322

For ε = 2−i, i = 2, ..., 7, Figure 2 shows the approximation accuracy of the asymptotic-based323

method. In Figure 2(a), θk ∼ U(0, 1). The approximated expectation of the photoluminescence324

obtained by using the zeroth, first and second order approximations are shown in the lines with325

circle, star, and triangle, with convergence rates 1.21, 1.99, and 3.81, respectively. In Figure326

2(b), θk ∼ U(−1, 1). In this case, E[θk] = 0, so the zeroth and first order approximations produce327

the same results. The second order approximation provides a better result. The corresponding328

convergence rates are 1.82, 1.82, and 3.06, respectively. These results confirm the theoretical329

estimates in Corollary 3.7.
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Figure 2. Convergent results of the asymptotic-based method with the zeroth, first,

and second order approximations. (a) θk ∼ U(0, 1). The slopes of the zeroth, first

and second order approximation results are 1.21, 1.99, and 3.81, respectively; (b) θk ∼
U(−1, 1). The slopes of the zeroth, first and second order approximation results are 1.82,

1.82, and 3.06, respectively.

330

We conclude this subsection with a discussion on the computational time of our method.331

In these two tests, on average it takes 164.5 seconds to compute one reference expectation of332

the photoluminescence. If we choose a low level SC method to compute the expectation of the333

photoluminescence, it takes 27.3 seconds to compute one reference expectation of the photo-334

luminescence that gives a comparable approximation result to our asymptotic-based method.335

However, our method with the second order approximation only takes 1.56 seconds to obtain336
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one result. We achieve a 18X speedup over the SC method. Generally, the ratio of the speedup337

is problem-dependent. It is expected that higher ratio of speedup can be achieved it one solves338

a problem where the random interface is parameterized by high-dimensional random variables.339

4.2. Estimation of the exciton diffusion length. In this section, we estimate the exciton340

diffusion length in an inverse manner with the asymptotic-based method as the forward solver.341

Since only limited photoluminescence data from experiments are available, we solve the forward342

model (2) to generate data in our numerical tests. Specifically, given the exciton diffusion343

length σ, the exciton generation function G, the in-plane dimension L, and the parametrization344

of the random interface h(z, ω), we solve Eq. (2) for a series of thicknesses {di}, and calculate the345

corresponding expectations of the photoluminescence data p{Ĩi} according to Eq. (3). Therefore,346

{di, Ĩi} serves as the “experimental” data. We then solve the minimization problem (6) based347

on our numerically generated data {di, Ĩi} to estimate the “exact” exciton diffusion length σ in348

the presence of randomness, denoted by σexact and will be used for comparison later.349

We fix L = 4 in all our numerical tests since it is found that this minimizer is not sensitive350

to the in-plane dimension L. We show the convergence history of exciton diffusion lengths for351

various ε in Figure 3, where the photoluminescence data are generated with σ = 5, σ = 10, and352

σ = 20, respectively. Here the relative error is defined as En,ε = |σexact−σn,εσexact
|, where n is the353

iteration number, σexact is the “exact” exciton diffusion length, and σn,ε is the numerical result354

defined in Eq. (7). To show more details about the accuracy of our asymptotic-based method,355

in Tables 1, 2, and 3, we list the relative errors of our method for plotting Figures 3(a), 3(b),356

and 3(c). In all numerical tests, we choose the same termination criteria |σ(n) − σ(n−1)| < 10−4
357

in the Newton’s method. Our asymptotic-based method performs well in estimating the exciton358

diffusion length. In general, the smaller amplitudes the random interface, the more accurate the359

exciton diffusion length and the smaller the iteration number. Additionally, for larger exciton360

diffusion lengths σexact, a faster convergence in the optimization approach is observed.361
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Figure 3. Convergence history of the exciton diffusion length for various ε, measured

in the relative error defined as En,ε = |σexact−σ
n,ε

σexact
| with n the iteration number. The

“exact” data is obtained by the 2D model (Eqs. (2) and (3)) with a prescribed σ. (a)

σ = 5; (b) σ = 10; (c) σ = 20.

4.3. Validation of the diffusion-type model. Now, we are in the position to validate the362

diffusion model in estimating the exciton diffusion length. We are interested in identifying under363

which condition the 1D model can be viewed as a good surrogate for the 2D model and how this364

condition relates to the property of organic semiconductors.365
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n ε = 0.01 ε = 0.02 ε = 0.04 ε = 0.08 ε = 0.16 ε = 0.32

1 2.711349 2.691114 2.620542 2.409153 2.132821 1.789203

2 0.033009 0.011998 0.048469 0.182973 1.100014 0.640850

3 0.000480 0.000238 0.000147 0.039389 0.915513 0.610645

4 0.000033 0.000318 0.001678 0.005017 0.313381 0.549289

5 0.000034 0.000317 0.001679 0.005194 0.037634 0.402861

6 0.030379 0.383125

7 0.030328 0.183904

8 0.002054

Table 1. Relative errors En,ε = |σexact−σn,εσexact
| for iteration number n = 1, 2, 3, ...,

and various ε. The prescribed σ is 5. Empty space means the numerical result

has already converged.

n ε = 0.01 ε = 0.02 ε = 0.04 ε = 0.08 ε = 0.16 ε = 0.32

1 0.677755 0.689595 0.737990 0.908029 0.414439 1.476995

2 0.392867 0.408261 0.476915 0.160001 0.084646 0.691197

3 0.089478 0.093146 0.092276 0.030613 0.029504 0.487247

4 0.006387 0.007161 0.008500 0.008827 0.027198 0.158495

5 0.000066 0.000377 0.002147 0.008453 0.027194 0.034154

6 0.000033 0.000340 0.002115 0.008453 0.021585

7 0.021471

Table 2. Relative errors En,ε = |σexact−σn,εσexact
| for iteration number n = 1, 2, 3, ...,

and various ε. The prescribed σ is 10.

n ε = 0.01 ε = 0.02 ε = 0.04 ε = 0.08 ε = 0.16 ε = 0.32

1 0.108867 0.109572 0.113283 0.126632 0.161406 0.237664

2 0.007695 0.008023 0.009952 0.016784 0.031044 0.040370

3 0.000070 0.000360 0.002080 0.008108 0.019861 0.024093

4 0.000031 0.000320 0.002038 0.008059 0.019782 0.023936

5 0.019782 0.023936

Table 3. Relative errors En,ε = |σexact−σn,εσexact
| for iteration number n = 1, 2, 3, ...,

and various ε. The prescribed σ is 20.

Again, only limited photoluminescence data from experiments are available and we have to366

solve the forward model to generate data in our numerical tests. Specifically, given the exciton367

diffusion length σ, the exciton generation function G, and the parametrization of the random368

interface h(ω), we solve Eq. (4) for a series of thicknesses {di}, and calculate the corresponding369

expectations of the photoluminescence data {Ĩi} according to Eq. (5). Therefore, {di, Ĩi} serves370

as the “experimental” data generated by the 1D model. We then solve the minimization problem371

(6) based on our numerically generated data {di, Ĩi} to estimate the “exact” exciton diffusion372

length σ in the presence of randomness, denoted by σexact and will be used for comparison.373
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In our numerical tests, we use the 1D model (4) with σ = 5 and σ = 10 to generate photolu-374

minescence data. di = 10i, i = 1, ..., 10, h̄ = 1, and ε = h̄/di. We use K = 10 random variables375

to parameterize the random interface. We set λk = kβ, where β 6 0 controls the decay rate of376

λk. The random interface therefore takes the form377

h(z, ω) = h̄
10∑
k=1

kβθk(ω) sin(2kπ
z

L
) (36)

with θk(ω) ∼ U [−1, 1]. Figure 4 plots the covariance function of the random interface defined378

by Eq. (36) for β = 0 and β = −2. It is clear that the smaller the β, the larger the correlation379

length.
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Figure 4. The covariance function of the random interface defined by Eq. (36) for

different β. (a) β = 0; (b) β = −2.

380

The convergence history of the exciton diffusion length for various β is plotted in Figure 5,381

where the photoluminescence data is generated by the 1D model (Eqs. (4) and (5)) with σ = 5382

and σ = 10. Again, the relative error is defined as En,β = |σexact−σn,βσexact
|, where n is the iteration383

number, σexact is the “exact” exciton diffusion length, and σn,β is the numerical result defined in384

Eq. (7). Note that σn,β depends also on ε implicitly but we omit its dependence for convenience.385

Tables 4 and 5 list the relative errors of our method for plotting Figure 5. The same criteria386

|σ(n) − σ(n−1)| < 10−4 is used here. The numerical exciton diffusion length obtained by our387

method converges to the reference one with the relative error less than 1% when β 6 −1.388

Our numerical results show that a faster decay of the eigenvalues λk leads to a better agree-389

ment between the results of the 1D model and the 2D model. The smaller the β, the better the390

agreement. On the other hand, the smaller the β, the larger the correlation length. Therefore,391

the larger the correlation length, the better the agreement. Our study sheds some light on how392

to select a model as simple as possible without loss of accuracy for describing exciton diffusion393

in organic materials. In the chemistry community, it is known that under careful fabrication394

conditions [12, 29], organic semiconductors, including small molecules and polymers, can form395

crystal structures, which have large correlation lengths. As a consequence, exciton diffusion in396

these materials can be well described by the 1D model [27, 20, 32]. For organic materials with397
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Figure 5. Convergence history of the exciton diffusion length for various β, measured

in the relative error defined as En,β = |σexact−σ
n,β

σexact
| with n the iteration number. The

“exact” data is obtained by the 1D model (Eqs. (4) and (5)) with a prescribed σ. (a)

σ = 5; (b) σ = 10.

n β = 0 β = −0.5 β = −1.0 β = −1.5 β = −2.0

1 0.647340 0.808503 0.829974 0.832905 0.833375

2 0.565447 0.804754 0.801511 0.798962 0.798645

3 0.347626 0.797750 0.765892 0.759374 0.758543

4 0.049548 0.785281 0.718355 0.707335 0.705927

5 0.100595 0.764404 0.648943 0.630438 0.628049

6 0.086369 0.731288 0.530314 0.492754 0.487726

7 0.086302 0.679544 0.205261 0.005156 0.044032

8 0.593736 0.029160 0.000781 0.000829

9 0.415006 0.004952 0.000777 0.000410

10 0.210863 0.004758 0.000410

11 0.015892

12 0.011628

Table 4. Relative errors En,β = |σexact−σn,βσexact
| for iteration number n = 1, 2, 3, ...,

and various β. The prescribed σ is 5.

low crystalline order, i.e., small correlation length, however, our result suggests that the 1D398

model is not a good surrogate of the high dimensional models.399

5. Conclusion400

In this paper, we model the exciton diffusion by a diffusion-type equation with appropriate401

boundary conditions over a random domain. The exciton diffusion length is extracted via min-402

imizing the mean square error between the experimental data and the model-generated data.403

Since the measurement uncertainty for the domain boundary is much smaller compared to the404
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n β = 0 β = −0.5 β = −1.0 β = −1.5 β = −2.0

1 0.420520 0.322303 0.307239 0.305058 0.304686

2 0.182350 0.081737 0.067669 0.065660 0.065316

3 0.076150 0.014086 0.005175 0.003874 0.003647

4 0.061968 0.009871 0.001699 0.000493 0.000281

5 0.061776 0.009857 0.001690 0.000483 0.000272

6 0.061776

Table 5. Relative errors En,ε = |σexact−σn,βσexact
| for iteration number n = 1, 2, 3, ...,

and various β. The prescribed σ is 10.

device thickness, we propose an asymptotic-based method as the forward solver. Its accuracy405

is justified both analytically and numerically and its efficiency is demonstrated by comparing406

with the SC method as the forward solver. Moreover, we find that the correlation length of ran-407

domness is the key parameter to determine whether a 1D surrogate is sufficient for the forward408

modeling.409

The discussion here focuses on the photoluminescence experiment. For the photocurrent410

experiment, from the modeling perspective, the forward model is the same but the objective411

function is different. An exciton either contributes to the photoluminescence or the photocurrent,412

so the photocurrent is defined as the difference between a constant (total exciton contribution)413

and the photoluminescence [9]. Therefore, the proposed method can be applied straightforwardly414

with very little modification.415
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Nguyen for stimulating discussions. Part of the work was done when J. Chen was visiting417

Department of Mathematics, City University of Hong Kong. J. Chen would like to thank its418

hospitality. J. Chen acknowledges the financial support by National Natural Science Foundation419

of China via grant 21602149. L. Lin and X. Zhou acknowledge the financial support of Hong420

Kong GRF (109113, 11304314, 11304715). Z. Zhang acknowledges the financial support of Hong421

Kong RGC grants (27300616, 17300817) and National Natural Science Foundation of China via422

grant 11601457.423

References424

1. H. Antoniadis, L. J. Rothberg, F. Papadimitrakopoulos, M. Yan, M. E. Galvin, and M. A. Abkowitz, Enhanced425

carrier photogeneration by defects in conjugated polymers and its mechanism, Phys. Rev. B 50 (1994), 14911–426

14915.427

2. I. Babuska, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential428

equations with random input data, SIAM J. Numer. Anal. 45 (2007), 1005–1034.429

3. I. Babuska, R. Tempone, and G. Zouraris, Galerkin finite element approximations of stochastic elliptic partial430

differential equations, SIAM J. Numer. Anal. 42 (2004), 800–825.431

4. A. Bejan, Shape and structure: From engineering to nature, Wiley, 2000.432

5. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light,433

Pergamon Press, Oxford, 1965.434

6. H. J. Bungartz and M. Griebel, Sparse grids, Acta Numer. 13 (2004), 147–269.435

7. R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numer. 7 (1998), 1–49.436

8. R. H. Cameron and W. T. Martin, The orthogonal development of non-linear functionals in series of437

Fourier-Hermite functionals, Ann. Math. (1947), 385–392.438



19

9. J. Chen, J. D. A. Lin, and T.-Q. Nguyen, Towards a unified macroscopic description of exciton diffusion in439

organic semiconductors, Commun. Comput. Phys. 20 (2016), 754–772.440

10. J. Chen, L. Lin, Z. Zhang, and X. Zhou, Two-parameter asymptotic expansions for elliptic equations with441

small geometric perturbation and high contrast ratio, 2017, arXiv:1708.04385.442

11. M. Dambrine, I. Greff, H. Harbrecht, and B. Puig, Numerical solution of the Poisson equation on domains443

with a thin layer of random thickness, SIAM J. Numer. Anal. 54 (2016), no. 2, 921–941.444

12. J.A. Dirksen and T.A. Ring, Fundamentals of crystallization: Kinetic effects on particle size distributions and445

morphology, Chem. Eng. Sci. 46 (1991), 2389–2427.446

13. S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature 428 (2004),447

911–918.448

14. R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach., Springer-Verlag, New449

York, 1991.450

15. M. B. Giles, Multilevel Monte Carlo path simulation, Operations Research 56 (2008), 607–617.451

16. P. Glasserman, Monte Carlo methods in financial engineering, vol. 53, Springer Science, 2003.452

17. M. Guide, J. D. A. Lin, C. M. Proctor, J. Chen, C. Garcia-Cervera, and T.-Q. Nguyen, Effect of copper453

metalation of tetrabenzoporphyrin donor material on organic solar cell performance, J. Mater. Chem. A 2454

(2014), 7890–7896.455

18. T. Y. Hou, W. Luo, B. Rozovskii, and H. M. Zhou, Wiener chaos expansions and numerical solutions of456

randomly forced equations of fluid mechanics, J. Comput. Phys. 216 (2006), 687–706.457
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Appendix A. Newton’s method499

The Newton’s method works as follows: Given σ(0), for k = 1, 2, . . . ,500

σ(k) = σ(k−1) − αk
∂
∂σJ(σ(k−1))
∂2

∂σ2J(σ(k−1))
, (37)

where αk ∈ (0, 1] is given by the line search technique.501

For example, we take (6) as the minimization problem and the domain mapping formulation

in §3.1 as the forward problem. Other combinations can be worked out similarly. In 2D, for the

first derivatives, we have

∂

∂σ
J(σ) =

2

N

N∑
i=1

(
E[I(σ, di)]− Ĩi

)
E[
∂I

∂σ
]

and502

∂I(σ, di)

∂σ
=

∫ 1

0

∫ 1

0

∂u

∂σ
(di − h)dydz.

Denote the derivatives of u(y, z) with respective to the parameter σ by503

u1(y, z) :=
∂u

∂σ
(y, z), and u2(y, z) :=

∂2u

∂σ2
(y, z).

Differentiating (8) with respect to σ directly, we have504

σ2Lu1 − u1 = −2σLu, (y, z) ∈ Ds, (38)

and u1 shares the same boundary condition as u.505

For the second derivatives, we have

∂2

∂σ
J(σ) =

2

N

N∑
i=1

(
E[
∂I

∂σ
]

)2

+
2

N

N∑
i=1

(
E[I(σ, di)]− Ĩi

)
E[
∂2I

∂σ2
]

and
∂2I(σ, di)

∂σ2
=

∫ 1

0

∫ 1

0
u2(y, z)(di − h)dydz,

and u2 satisfies506

σ2Lu2 − u2 = −2Lu− 4σLu1, (y, z) ∈ Ds. (39)

Again, the same boundary condition applies for u2.507

To ease the implementation, we rewrite (38) and (39) using (8)508

σ2Lu1 − u1 = − 2

σ
(u− g),

σ2Lu2 − u2 =
6

σ2
(u− g)− 4

σ
u1.

(40)

In the k−th step of Newton’s method, knowing σ(k−1), we solve (8) and (11) for u(k−1), solve509

(40) for u
(k−1)
1 and u

(k−1)
2 , and then update σ(k) according to (37).510

In 1D, we have

∂I(σ, di)

∂σ
= (di − ξ)

∫ 1

0
u1(y)dy,

∂2I(σ, di)

∂σ2
= (di − ξ)

∫ 1

0
u2(y)dy
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with u1(y) and u2(y) satisfying the same boundary condition as u(y) (Eq. (15)) and

L1u1(y)− u1(y) = − 2

σ
(u−G),

L1u2(y)− u2(y) =
6

σ2
(u−G)− 4

σ
u1,

respectively.511

Appendix B. Asymptotic expansion512

Using the change of variables, we first rewrite Eq. (2) in x̃ = x/d and z̃ = z/L (still use x and z513

to represent x̃ and z̃). Note that the domain Dε becomes Ds,ε := {(x, z) ∈ (h(z, ω)/d, 1)× (0, 1)}.514

Denote ε = h̄/d, then515

Ds,ε :=
{

(x, z) ∈ (εh̃(z, w), 1)× (0, 1)
}
,

where h̃(z, w) =
∑

k λkθk(ω)φk(z). Define L̃ = σ2
(
d−2∂xx + L−2∂zz

)
− 1, then

L̃uε(x, z) + g(x) = 0, (x, z) ∈ Ds,ε (41a)

∂xuε(1, z) = 0, uε(εh̃(z, w), z) = 0, 0 < z < 1 (41b)

uε(x, z) = uε(x, z + 1), εh̃(z, w) < x < 1 (41c)

with uε(x, z) and g(x) representing u(x, z) and G(d−x) after the change of variables, respectively.516

Ds,ε depends on ω, which brings great difficulty in numerical simulation. It is easy to see, as517

ε → 0, Ds,ε becomes a fixed domain Ds = (0, 1)× (0, 1). To check the limit of uε, we introduce518

the following problem for ulay posed in the thin layer Lε:519 
L̃ulay + g(x) = 0 in Lε,

ulay = uε = 0, ∂nulay = ∂nuε, on Γε,

ulay(x, z + L) = ulay(x, z), for (x, z) ∈ Lε.
(42)

where uε, the solution to equation (41), is presumably given. n is the outward normal of Ds,ε520

on Γε. At any point (εh̃(z, ω), z) ∈ Γε, n is parallel to the vector (−1, εh̃′(z, ω)). Here521

Lε = {(x, z) : 0 ∧ (εh̃(z, ω)) < x < 0 ∨ εh̃(z, ω), 0 < z < 1}

and522

Γε := Lε ∩ Ds,ε = {(εh̃(z, ω), z) : 0 6 z 6 1}.

In Figure 1, Lε = {(x, z) : 0 < x < εh̃(z, ω), 0 < z < 1} for positive h̃(z, ω) along Γε. For later523

use, we define Γ0 := {(0, z) : 0 6 z 6 1}.524

Note that Eq. (42) is in fact a Cauchy problem of the time evolution equation not a boundary-525

value problem of the elliptic PDE. The velocity is specified on the interface Γε by ∂nuε and the526

wave travels along the normal n. So, the solution of (42) exists for 0 6 x 6 εh̃(z, ω) [10].527

Particularly, we have the existence of the value of ulay at x = 0.528
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B.1. The solution on regular domain and its asymptotic expansion. Now the solutions529

uε and ulay are both well-defined on Ds,ε and Lε by (41) and (42), respectively. In the next,530

we introduce a function piecewisely defined by these two functions on the regular domain D531

and want to find the correct equation for this function on D in order to carry our asymptotic532

method.533

Let wε be defined on D = Ds,ε ∪ Lε as follows534

wε(x, z) :=

{
uε(x, z) in Ds,ε,

ulay(x, z) in Lε.
(43)

This definition is justified by (42) and immediately implies the following obvious but important535

fact which arises from the boundary condition on the interface Γε of uε:536

wε(x, z) = 0 on Γε. (44)

It is easy to see that wε is the unique solution to the following problem where ulay at x = 0537

is given a prior :538 
L̃wε +G(d− x, z) = 0 in D,
wε(0, z) = ulay(0, z), for 0 6 z 6 1,

∂xwε(1, z) = 0, for 0 6 z 6 1,

wε(x, z + 1) = wε(x, z), for (x, z) ∈ D.

(45)

We start with the following ansätz for wε,539

wε(x, z) =
∞∑
n=0

εnwn(x, z) for (x, z) ∈ D. (46)

Plug this ansätz into the equation (45), and match the terms at the same order of ε, then we540

obtain the following equations for wn in D:541 {
L̃w0 + g(x) = 0,

L̃wn = 0, n > 1.
(47)

Next, we discuss the boundary conditions for these PDEs. The two of the boundary conditions542

in (45), ∂xwε(1, z) = 0 and wε(x, z+ 1) = wε(x, z), do not depend on ulay. Thus, the ansätz (46)543

simply gives us the same boundary conditions for each wn:544

∂xwn(1, z) = 0, and wn(x, z + 1) = wn(x, z). (48)

The boundary condition of (45) at x = 0, i.e., on Γ0, depends on the data ulay on this boundary.545

If one works on this boundary condition, it is possible to solve the Cauchy problem (42) for small546

ε analytically so that ulay(x = 0, z) can be obtained in terms of uε (i.e., wε), and eventually547

certain connections for wn can be built. But the use of the very original boundary condition548

(44) on Γε ⊂ ∂Ds,ε, not on ∂D, actually significantly simplifies the calculations and finally offers549

more friendly results. The details follow below.550

For the condition (44) on the interface Γε where x = h̃(z, ω), (46) implies551

wε(εh̃, z) =
∞∑
n=0

εnwn(εh̃, z) = 0. (49)
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The Taylor expansion in ε552

wn(εh̃, z) =
∞∑
k=0

εkh̃k

k!
∂kxwn(0, z), (50)

then gives553

∞∑
k=0

∞∑
n=0

εn+k h̃
k

k!
∂kxwn(0, z) = 0,

which, by a change of the indices m = k + n, is equivalent to554

∞∑
m=0

εm
m∑
k=0

h̃k

k!
∂kxwm−k(0, z) = 0.

Then by matching the terms with the same order of ε, we obtain:555

m∑
k=0

h̃k

k!
∂kxwm−k(0, z) = 0,

i.e.,556 {
w0(0, z) = 0,

wm(0, z) = −
∑m

k=1
h̃k

k! ∂
k
xwm−k(0, z), ∀m > 1.

(51)

This provides a recursive expression of the boundary condition at x = 0 for the m-th order term557

wm.558

In summary, the expansion of uε inside Ds,ε is realized via the expansion (46), wε =
∑∞

n=0wn,559

insideD. Formally, each term wn satisfies the equation where the boundary condition at Γ0 ⊂ ∂D560

is defined recursively:561 
L̃w0 + g(x) = 0 in D,
w0(0, z) = 0, on Γ0,

∂xw0(1, z) = 0, for 0 6 z 6 1,

w0(x, z + 1) = w0(x, z), for (x, z) ∈ D,

(52)

and for n > 1,562 
L̃wn = 0 in D,
wn(0, z) = −

∑n
k=1

h̃k

k! ∂
k
xwn−k(0, z), on Γ0,

∂xwn(1, z) = 0, for 0 6 z 6 1,

wn(x, z + 1) = wn(x, z), for (x, z) ∈ D.

(53)

In particular for m = 1, 2, 3, the above boundary conditions on Γ0 are

w1(0, z) = −h̃∂xw0(0, z), (54)

w2(0, z) = −h̃∂xw1(0, z)− 1

2
h̃2∂xxw0(0, z), (55)

w3(0, z) = −h̃∂xw2(0, z)− 1

2
h̃2∂xxw1(0, z)− 1

6
h̃3∂3

xw0(0, z). (56)

If we reverse the change of variables x̃ = x/d and z̃ = z/L, (52) recovers (20), (53) when563

n = 1 and n = 2 recovers the equations in (21) and (22). Boundary conditions in (21) and (22)564

can be recovered by using the inverse Lax-Wendroff procedure [10]. In the boundary conditions565
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for wn on Γ0, the second and higher order partial derivatives with respect to x may be converted566

to the partial derivatives with respect to z by repeatedly using the partial differential equations567

σ2∂xxwn + σ2∂zzwn − wn + δ0,nG(d− x) = 0.

Let us take order n = 0 for example. Since w0(0, z) = 0, we have568

σ2∂xxw0(0, z) + σ2∂zzw0(0, z)− w0(0, z) +G(d) = σ2∂xxw0(0, z) +G(d) = 0,

then569

∂xxw0(0, z) = − 1

σ2
G(d).

This simplifies (55) to be570

w2(0, z) = −h̃(z)∂xw1(0, z) +
h̃2(z)

2σ2
G(d). (57)

It is also easy to see that571

∂2
xw1(0, z) = −∂2

zw1(0, z) + w1(0, z)/σ2.

To compute ∂3
xw0(0, z), we take the derivative with respect to x on both sides of the equation572

and get573

σ2∂3
xw0 + σ2∂zz∂xw0 − ∂xw0 −G′(d− x) = 0,

then taking values at x = 0 yields574

∂3
xw0(0, z) =

1

σ2

[
−σ2∂zz∂xw0(0, z) + ∂xw0(0, z) +G′(d)

]
.

The other high order partial derivatives with respect to x can also be converted to the partial575

derivatives with respect to z similarly by using the corresponding partial differential equations.576
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