
Proper orthogonal decomposition method for multiscale elliptic PDEs with
random coefficients

Dingjiong Maa, Wai-ki Chinga, Zhiwen Zhanga,∗

aDepartment of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR.

Abstract

In this paper we propose to use the proper orthogonal decomposition (POD) method to solve multiscale

elliptic PDEs with random coefficients in the multi-query setting. Our method consists of offline and

online stages. In the offline stage, a small number of reduced basis functions are constructed within each

coarse grid block using the POD method. Moreover, local tensor spaces are defined to approximate the

multiscale random solution space. In the online stage, a weak formulation is derived and discretized

using the Garlerkin method to compute the solution. Since the reduced basis functions can efficiently

approximate the high-dimensional solution space, our method is very efficient in solving multiscale

elliptic PDEs with random coefficients. The convergence analysis of the proposed method is also

presented. Finally, numerical results are presented to demonstrate the accuracy and efficiency of the

proposed method for several multiscale stochastic problems with or without scale separation.

Keywords: Random partial differential equations (RPDEs); uncertainty quantification (UQ); proper

orthogonal decomposition (POD); multiscale reduced basis; over-sampling method; high-contrast

problem.

1. Introduction

Many physical and engineering applications involving uncertainty quantification (UQ) can be described

by stochastic partial differential equations (SPDEs, i.e., PDEs driven by Brownian motion) or partial

differential equations with random coefficients (RPDEs). In recent years, there has been an increased

interest in the simulation of systems with uncertainties, and several numerical methods have been

developed in the literature to solve SPDEs and RPDEs; see [18, 48, 8, 35, 23, 46, 7, 38, 37, 43, 45, 19]

and references therein. In this work, we shall consider a challenging problem in the UQ, i.e., solving

multiscale elliptic PDEs with random coefficients. Due to multiscale and random features in these

solutions, it is extremely challenging to solve this type of problem. This motivates us to develop

efficient numerical methods so that we can efficiently solve this type of problem.

Elliptic PDEs with multiscale coefficients have already become expensive to solve as they require

tremendous computational resource to resolve the smallest-scale of the solution. When the multiscale

coefficient has scale separation or periodic structure, one can apply homogenization theory to derive

an effective equation, which allows us to solve the problem on relatively coarse mesh. However, in

many applications, the multiscale coefficients usually do not satisfy the scale separation assumption

or may not have periodic structures. In the past four decades, many efficient methods have been
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developed for the multiscale PDEs in the literature; see [2, 6, 20, 26, 16, 24, 28, 12, 30, 34, 15, 32, 41]

and references therein.

Elliptic PDEs with multiscale and random coefficients (e.g. Eq.(1)) become more complicated

since the appearance of the random dimension further increases the dimension of the solution space.

Recently, Zabaras et al. proposed a stochastic variational multiscale method for diffusion in hetero-

geneous random media [5, 17], which combined the generalized polynomial chaos (gPC) method with

variational multiscale method to perform model reduction. However, when the stochastic dimension

direction is large, this method becomes expensive due to the fast growth of the number of the gPC

basis elements. In [3], Ghanem et al. considered the probabilistic equivalence and stochastic model

reduction in multiscale analysis. In [32], Kevrekidis et al. applied the equation-free idea to study

the stochastic incompressible flows. The last author of this paper has made some progress in devel-

oping numerical methods for stochastic multiscale PDEs by exploring the low-dimensional structure

of the solutions and constructing problem-dependent stochastic basis functions to solve these SPDEs.

In [13, 50, 27], a data-driven stochastic method was proposed to solve stochastic partial differential

equations with high-dimensional random input and/or multiscale coefficients.

In this paper, we shall use the proper orthogonal decomposition (POD) method to construct

multiscale reduced basis functions, which can be used to solve multiscale PDEs with random coefficients

in the multi-query setting. We consider the multiscale elliptic PDEs with random coefficients as follows,

−∇ · (aε(x, ω)∇uε(x, ω)) = f(x), x ∈ D, ω ∈ Ω, (1)

where a homogeneous boundary condition is imposed. More details about the setting of Eq.(1) will

be discussed in Section 3. Our method consists of offline and online stages. In the offline stage, we

perform model reduction for the multiscale problem. Specifically, a small number of multiscale reduced

basis functions are constructed within each coarse grid block using the POD method [9, 44, 47], which

captures the multiscale features of the solution space. In addition, local tensor product spaces are

constructed to approximate the solution space. It should be pointed out that the construction of

the basis functions only depends on the PDE operator in Eq.(1) and does not depend on the forcing

functions.

In the online stage, a weak formulation for Eq.(1) is derived in the tensor space and a global

linear equation system can be obtained using the Galerkin method. Our method is efficient in solving

(1) with a broad range of forcing functions. In addition, rigorous error analysis is provided to study

the error between the numerical solution obtained from our method and the exact solution. Finally,

numerical results are presented to demonstrate the accuracy and efficiency of the proposed method

for several multiscale stochastic problems with or without scale separation.

The rest of the paper is organized as follows. To make this paper self-contained, we give a brief

introduction of the POD method, the gPC basis functions, and the stochastic finite element method

(SFEM) in Section 2. In section 3, we review the multiscale finite element method and present our

derivations of the multiscale reduced basis functions. Then, the stochastic Galerkin discretization for

the multiscale elliptic PDEs with random coefficients will be discussed in Section 4. In addition, the

convergence analysis of our method will be presented. In Section 5, we discuss some numerical imple-

mentation issues and present several numerical results to demonstrate the accuracy and effectiveness

of our method. Finally, some concluding remarks are given in Section 6.
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2. Some preliminaries

2.1. Proper orthogonal decomposition method

The POD method, also known as Karhunen-Loève expansion (KLE) in stochastic process and sig-

nal analysis [31, 33], or the principal component analysis (PCA) in statistics [1], or singular value

decomposition (SVD) in linear algebra, or the method of empirical orthogonal functions (EOF) in

geophysical fluid dynamics [39, 21]. The POD method has firstly been introduced in solving the tur-

bulence in fluid dynamics. It aims to generate optimally ordered orthonormal basis functions in the

least squares sense for a given set of theoretical, experimental or computational data. Reduced-order

models (ROMs) or surrogate models are then obtained by truncating this optimal basis functions,

which provide considerable computational savings over the original high-dimensional problems. We

refer the interested readers to [44, 9, 47, 29] and references therein for more details.

Let X be a Hilbert space equipped with the inner product (·, ·)X and u(·, t) ∈ X, t ∈ [0, T ] be the

solution of a dynamic system. In practice, we approximate the space X with a linear finite dimensional

space V with dimV = d, where d represents the degree of freedom of the solution space. We should

point out that d can be extremely large for a high-dimensional problem. Given a set of snapshot of

solutions, a linear space V can be spanned, denoted as

V = span{u(·, t1), u(·, t2), ..., u(·, tN )}, (2)

where t1, · · · , tN ∈ [0, T ] are different time instances. The POD method aims to build a set of low-

dimensional basis functions {ϕ1(·), ϕ2(·), ..., ϕr(·)} with r � min(N, d) that optimally approximates

the input solution snapshots. The optimality means that given any integer r and linear independent

basis {ϕk(x)}rk=1, the POD basis functions minimize the following error

1

N

N∑
i=1

∣∣∣∣u(·, ti)−
r∑

k=1

(u(·, ti), ϕk(·))Xϕk(·)
∣∣∣∣2
X
, (3)

subject to the constraints that (ϕm(·), ϕn(·))X = δmn, 1 ≤ m,n ≤ r, where δmn = 1 if m = n,

otherwise δmn = 0.

Using the method of snapshot proposed by Sirovich [44], we know that the optimization problem

(3) can be reduced to an eigenvalue problem

Kv = λv, (4)

where K ∈ RN×N is the correlation matrix with (i, j)-element Kij = 1
N (u(·, ti), u(·, tj))X). We sort

the eigenvalues in a decreasing order as λ1 ≥ λ2 ≥ ... ≥ λN > 0 and the corresponding eigenvectors

are denoted by vk, k = 1, ..., N . It can be shown that the POD basis functions are constructed by

ϕk(·) =
1√
λk

N∑
j=1

(vk)ju(·, tj), 1 ≤ k ≤ N, (5)

where (vk)j is the j-th component of the eigenvector vk. The basis functions {ϕk}rk=1 minimizes the

error (3). This result as well as the error formula were proved in [22].

Proposition 2.1 ([22]). Let λ1 ≥ λ2 ≥ ... ≥ λN > 0 denote the positive eigenvalues of K in (4).

Then {ϕk}rk=1 constructed according to (5) is the set of POD basis functions of rank r ≤ N , and we

have the following error formula:

1

N

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣u(·, ti)−

r∑
k=1

(u(·, ti), ϕk(·))Xϕk(·)

∣∣∣∣∣
∣∣∣∣∣
2

X

=

N∑
k=r+1

λk.
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In practice, we shall make use of the decay property of eigenvalues in λk and choose the first r

dominant eigenvalues such that the ratio ρ =
∑r
k=1 λk∑N
k=1 λk

is big enough to achieve an expected accuracy,

for instance ρ = 99%. One would prefer the eigenvalues decays as fast as possible so that the fewer

POD basis functions can ensure the higher accuracy.

2.2. The generalized Polynomial Chaos (gPC) method

The multiscale elliptic PDEs with random coefficients (1) are often used to model flows in heteroge-

neous porous media such as water aquifer and oil reservoirs, where aε(x, ω) is used to model perme-

ability fields [49]. In practice, however, the data of the spatially varying permeability field is available

only at limited locations in the physical domain D. Therefore, we assume a(x, ω) is a second-order

random filed, i.e., a(x, ω) ∈ L2(D×Ω), with E [a(x, ω)] = ā(x) and covariance kernel C(x, y), where we

omit the superscript ε for notation simplicity. Using the KL expansion, the permeability field a(x, ω)

reads

a(x, ω) = ā(x) +

∞∑
i=1

√
λiξi(ω)φi(x),

where {λi, φi(x)} are eigenvalues and eigenfunctions of the covariance kernel C(x, y) and ξi(ω) are

independent and identically distributed (i.i.d) random variables. In practice, we truncate the KLE

into its first r terms and obtain the parametrization of the random coefficient as follows,

a(x, ω) ≈ ā(x) +
r∑
i=1

√
λiξi(ω)φi(x). (6)

Since the random coefficient a(x, ω) in Eq.(1) is parameterized by r i.i.d. random variables, i.e.,

ξ(ω) = (ξ1(ω), · · · , ξr(ω)), the Doob-Dynkin’s lemma [40] implies that the solution of Eq.(1) can also

be represented by a functional of these random variables, i.e. u(x, ω) = u(x, ξ1(ω), ..., ξr(ω)).

Let ρ(·) denote the distribution function of ξi(ω) and {Hi(ξ)}∞i=1 denote the one-dimensional poly-

nomials that are orthogonal to each other with respect to the distribution ρ(ξ), i.e.,∫
Ω

Hi(ξ)Hj(ξ)ρ(ξ)dξ = δij .

For some commonly used distributions, such as the Gaussian distribution and the uniform distribution,

such orthogonal polynomial sets are Hermite polynomials and Legendre polynomials, respectively. For

general distributions, such polynomial set can be obtained numerically. Furthermore, by a tensor

product representation, we can use the one-dimensional polynomial Hi(ξ) to construct a sufficient

orthonormal basis Hα(ξ)’s of L2 (Ω) as follows:

Hα(ξ) =

r∏
i=1

Hαi(ξi), α ∈ J∞r , (7)

where α is a multi-index and J∞r is a multi-index set of countable cardinality,

J∞r = {α = (α1, α2, · · · , αr) |αi ≥ 0, αi ∈ N} .

The zero multi-index corresponding to H0(ξ) = 1, which is used to represent the mean of the solution.

Clearly, the cardinality of J∞r is infinite. For the purpose of numerical computations, we prefer a
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finite set of polynomials. There are many choices of truncations. One possible choice is the set of

polynomials whose total orders are at most p, i.e.,

Jpr =

{
α |α = (α1, α2, · · · , αr) , αi ≥ 0, αi ∈ N, |α| =

r∑
i=1

αi ≤ p

}
. (8)

The cardinality of Jpr in (8) or the number of basis functions, denoted by Np = |Jpr |, is equal to (p+r)!
p!r! .

We may simply write such a truncated set as J when there is no ambiguity arises. The orthonormal

basis Hα(ξ) is the generalized Polynomial Chaos (gPC) basis, see [18, 48, 23] for more details.

2.3. Stochastic finite element method (SFEM)

The weak solution u(x, ω) to Eq.(10) is defined in a Hilbert space that has a tensor structure V =

H1
0 (D)⊗L2(Ω). A straightforward way to solve Eq.(10) is the stochastic finite element method (SFEM)

[18], where one seeks the numerical solution in a finite dimensional solution space with a tensor product

form, i.e., Vh,J = Xh ⊗ ΞJ. Here Xh is the finite element space spanned by the fine-scale nodal basis

functions and ΞJ is the random space spanned by the gPC basis functions Hα(ξ), α ∈ J.

In the SFEM, we first represent the solution u(x, ω) using the gPC basis functions Hα(ξ) as

u(x, ω) =
∑

α∈J uα(x)Hα(ξ). Then, we represent the gPC expansion coefficients uα(x) using the fine-

scale finite element nodal basis functions φi(x) as uα(x) =
∑Nx

i=1 uαiφi(x), where φi(x) are defined

on a fine mesh with size h < ε and Nh is dimension of the finite element space. This results in an

equivalent representation of the solution u(x, ω) in the tensor space Vh,J as

uh,p(x, ω) =
∑
α∈J

Nx∑
i=1

uαiφi(x)Hα(ξ). (9)

Finally, we apply the Galerkin method (with test space Vh,J) to derive a linear equation system for

uαi. When the dimension in random space (e.g. r in Eq.(6)) is large and/or the coefficient contains

multiscale features, the size of the coupled linear equation system becomes extremely huge. Thus, the

SFEM requires tremendous computational resources to solve Eq.(1).

3. Model reduction for multiscale basis functions

We shall develop the model reduction method to solve Eq.(1). Our method consists of offline and

online stages. In the offline stage, we construct multiscale reduced basis functions using the POD

method. To this end, we consider the following multiscale elliptic PDEs with random coefficients,

−∇ · (aε(x, ω)∇uε(x, ω)) = f(x), x ∈ D,ω ∈ Ω, (10)

uε(x, ω) = 0, x ∈ ∂D, (11)

where D ∈ Rd is a bounded spatial domain, Ω is a sample space, and the smallest-scale information is

parameterized by ε. The coefficient aε(x, ω) = aε(x, ξ1(ω), ..., ξr(ω)) is parameterized by r independent

random variables and is uniformly coercive almost surely, i.e., there exist amin, amax > 0, such that

P (ω ∈ Ω : aε(x, ω) ∈ [amin, amax],∀x ∈ D) = 1. (12)

The force function f(x) ∈ L2(D) (not just H−1(D)) is assumed to be resolved on a coarse grid, which

is necessary for the compactness of the solution space.

5



3.1. Multiscale finite element basis functions

To make this paper self-contained, we first give a brief review of the multiscale finite element method

(MsFEM) [24]. In the MsFEM, we first partition the domain D into coarse grid blocks {Dk, 1 ≤ k ≤
K}, which can be triangles or quadrilaterals. The union of all triangles or quadrilaterals covers the

closure of D, and the intersection of different triangles or quadrilaterals is either empty, a common

node, or a common edge. The mesh size of coarse grid is H, which is H � ε. For each ω ∈ Ω, we

solve the following cell problems to obtain the multiscale finite element basis functions φkl(x, ω) on

Dk, 1 ≤ k ≤ K,

−∇ · (aε(x, ω)∇φkl(x, ω)) = 0, x ∈ Dk, ω ∈ Ω, (13)

φkl(x, ω) = θkl(x), x ∈ ∂Dk, l = 1, ..., d, (14)

where d is the number of vertexes on Dk (d=3 for triangle elements and d=4 for quadrilateral elements)

and θkl(x) are Dirichlet boundary conditions. In practice, we choose θkl(x) to be the bilinear or linear

basis functions. By solving the Eq.(13), the multiscale information of the Eq.(10) can be captured

through φkl(x, ω). Let φkl(x, ω) ∈ H1(Dk) be solutions of Eqns.(13) and (14). We have

φkl(x, ω) = φkl0 (x, ω) + θkl(x). (15)

The unknown homogeneous part φkl0 (x, ω) ∈ H1
0 (Dk) satisfies the following variational formulation

bε(φkl0 (x, ω), v;ω) = f ε(v;ω), ∀v ∈ H1
0 (Dk), (16)

where

bε(w, v;ω) =

∫
Dk
aε(x, ω)∇w · ∇vdx, (17)

f ε(v;ω) = −
∫
Dk
aε(x, ω)∇θkl(x) · ∇vdx. (18)

For each ω ∈ Ω, Eq.(13) is a deterministic problem. The convergence of the MsFEM for deterministic

problems has been proved in [25]. When the Eq.(13) has random coefficient, we have

Theorem 3.1. For each ω ∈ Ω, let aε(x, ω) = a(xε , ω) with a(xε , ω) be periodic in x
ε and smooth. Let

uε(x, ω) be the solution of Eq.(10) and uεH(x, ω) be the solution obtained from the space spanned by

the multiscale basis functions with linear boundary conditions. Then, we have

||uε − uεH ||L2(D) ≤ C1H
2||f ||L2(D) + C2

ε

H
, (19)

where ε < H and C1, C2 are generic constants that do not depend on ε and H.

The MsFEM gives the correct homogenized result as ε tends to zero. However, when H ∼ ε, the

multiscale solution has a large error, which is due to the resonance effect between the grid scale H and

the small-scale parameter ε of the problem. To reduce the resonance effect, Hou et al. proposed an

over-sampling technique in [25, 16]. The main observation is that the boundary layer in the boundary

is strongly localized within a width of order O(ε). If we solve Eqns.(13) and (14) in a domain with

size larger than H+ε and only use the interior information to construct the basis, we can significantly

reduce the effect of the boundary layer on the basis functions.
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Specifically, for each ω ∈ Ω, let ψkl be the basis functions satisfying the homogeneous elliptic

equation in a larger domain Sk ⊃ Dk (with dist(Sk, ∂Dk) ≥ ε), 1 ≤ k ≤ K,

−∇ · (aε(x, ω)∇ψkl(x, ω)) = 0, x ∈ Sk, (20)

ψkl(x, ω) = θkl(x), x ∈ ∂Sk, l = 1, ..., d, (21)

where d is the number of nodes on Sk and θkl(x) are linear functions defined on the boundary of Sk.

The MsFEM basis functions φki(x, ω) are obtained by taking linear combination of ψkl(x, ω), i.e.,

φki(x, ω) =

d∑
l=1

cilψ
kl(x, ω)|Dk , i, l = 1, ..., d, 1 ≤ k ≤ K, (22)

where the coefficients cil are determined by the condition φki(xl, ω) = δil and xl are the nodes of

domain Dk. The over-sampling technique results in a non-conforming MsFEM method though, it

significantly improves the convergence rate of the MsFEM [16]. In this paper, we shall let φki(x, ω)

denote the multiscale finite element basis functions obtained by using the over-sampling technique in

[25, 16]. In practice, we partition the coarse grids into fine grids with mesh size h� ε and numerically

solve the cell problem (13) or (20) to obtain φki(x, ω).

3.2. Construction of multiscale reduced basis functions

When Eq.(13) has random coefficient, the MsFEM becomes prohibitively expensive since we need to

compute φki(x, ω) for each sample of the permeability field aε(x, ω). To address this issue, we use

the POD method to build a small number of reduced basis functions that enable us to obtain the

approximated multiscale finite element basis functions within each coarse grids in a cheaper way.

In our method, we partition the physical domain D into a number of sub-domains Dk, k = 1, ...,K

and construct the partition of unity functions χk(x) [36], which allow us to restrict the global solution

on each local coarse grid. They satisfy

D =
K⋃
k=1

Dk, supp
(
χk(x)

)
⊂ Dk, χk(x) ≥ 0,

K∑
k=1

χk(x) = 1, ∀x ∈ D. (23)

Assumption 3.2. We assume that in the partition of unity the number of sub-domains Dk that

intersects Dl is bounded for each l and

K ≤ C

Hd
, diam(Dk) = O(H), |∇χk(x)| ≤ C

H
, ∀x ∈ D. (24)

Assumption 3.2 can be easily satisfied if we use uniform coarse grids; see Fig.1 for a partition of D.

In Fig.1, we show a typical sub-domain Dk, which is centered at xk and consists of four quadrilaterals

Dk
1 , Dk

2 , Dk
3 , and Dk

4 , i.e., Dk = ∪Dk
j , j = 1, 2, 3, 4. On each Dk

j , we define a bilinear quadrilateral nodal

basis function that equals one at xk and equals zero at other nodes. Let χk(x) denote the combination

of these four functions, which is our partition of unity function associated with xk. Equipped with the

partition of unity functions, we shall compute multiscale reduced basis functions within each Dk.
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Figure 1: Illustrations of the uniform coarse meshes and a typical sub-domain Dk.

First, we compute samples of multiscale finite element basis functions within each Dk. Let

{aε(x, ωq)}Qq=1 be a set of realization of the coefficients that are obtained using Monte Carlo method

or stochastic collocation method [7], where Q is the number of realizations. Recall that Dk consists of

four quadrilaterals Dk
1 , Dk

2 , Dk
3 , and Dk

4 in Fig.1. For each aε(x, ωq) and within each Dk
j , j = 1, ..., 4,

we use the oversampling techniques (see Eqns.(20)-(22)) to compute the multiscale finite element basis

function φkj (x, ωq), where δH is the oversamping mesh size. We glue the four basis functions together

into one basis function φk(x, ωq), which is defined on the domain Dk. We remark that the basis func-

tions φk(x, ωq) are non-conforming and the interested reader is referred to [16] for the proof of the

convergence rate of the non-conforming MsFEM.

Let NH denote the set of interior vertices of coarse grids. For each xk ∈ NH , let {φk(x, ωq)}Qq=1

denote the MsFEM nodal basis functions associated with xk, which satisfy φk(xl, ωq) = δkl, ∀xl ∈ NH ,

∀ωq ∈ Ω. We aim to obtain a set of multiscale reduced basis from {φk(x, ωq)}Qq=1.

Let ζk0 (x) denote the sample mean of the basis functions, which is obtained using the Monte

Carlo method or the stochastic collocation method. We substract the mean ζk0 (x) from the samples

of the MsFEM basis and obtain the fluctuation of the MsFEM basis ϕk(x, ωq) = φk(x, ωq) − ζk0 (x),

q = 1, ..., Q. We define the snapshot of the fluctuations as

V = span{ϕk(x, ω1), ..., ϕk(x, ωQ)}. (25)

We apply the POD method to the snapshot of the fluctuations V and build a set of basis functions

{ζk1 (x), ζk2 (x), ..., ζkmk(x)} with mk � Q that optimally approximates the input solution snapshots.

More details can be found in Section 2.1. Moreover, we have the following approximate property

Proposition 3.3. Let λ1 ≥ λ2 ≥ ... ≥ λmk ≥ λmk+1
≥ ... > 0 denote the positive eigenvalues

of the covariance kernel associated with the snapshot of the fluctuations V and the corresponding

eigenfunctions are ζk1 (x), ..., ζkmk(x),.... Then, {ζkj (x)}mkj=1 will be the POD basis set and we have the

following error formula hold:

1

Q

Q∑
j=1

∣∣∣∣∣∣ϕk(x, ωj)− mk∑
i=1

(
ϕk(x, ωj), ζ

k
i (x)

)
X
ζki (x)

∣∣∣∣∣∣2
X

=

Q∑
s=mk+1

λs, (26)

where X = H1(D) and the number mk will be determined according to the ratio r =
∑mk
j=1 λj∑Q
j=1 λj

.
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Notice that ζk0 (x) and ζki (x), i = 1, ...,mk approximately capture the mean profile and fluctuation

of the MsFEM basis associated with xk, respectively. Thus, we expand the solution to Eqns.(20)-(22)

as follows,

φk(x, ω) ≈ ζk0 (x) +

mk∑
i=1

ci(ω)ζki (x), (27)

and use the Galerkin method to determine the coefficients ci(ω).

Remark 3.1. To compute the multiscale reduced basis functions, we need to partition the coarse

grids Dk into fine-scale quadrilateral elements with mesh h � ε, which requires a certain amount of

computational cost in the offline stage. However, the pre-computed reduced basis functions can be

repeatedly used in the online stage for different force functions f(x), which results in considerable

savings if we need to solve Eq.(10) with many different force functions.

Remark 3.2. Alternatively, we can apply a greedy-type algorithm to compute the multiscale reduced

basis {ζki }
mk
i=0 [42]. However, the focus of this paper is to develop efficient methods for multiscale

problems with random coefficients so we simply choose the POD method.

3.3. New discretization method using the multiscale reduced basis functions

Using the partition of unity functions and our multiscale reduced basis functions, we can approximate

the solution uε(x, ω) to Eq.(10) as

uε(x, ω) =
∑
α∈J

uεα(x)Hα(ξ) =
∑
α∈J

( K∑
k=1

χk(x)uεα(x)
)
Hα(ξ) =

∑
α∈J

( K∑
k=1

uε,kα (x)
)
Hα(ξ), (28)

where χk(x) is the partition of unity function associated with sub-domain Dk (see Eq.(23)) and

uε,kα (x) = χk(x)uεα(x). Instead of discretizing the multiscale solution uε,kα (x) on a fine-scale partition

of the sub-domain Dk, i.e.,

uε,kα (x) =

Nk
h∑

i=1

uε,kαi φi(x), (29)

where φi(x) are FE nodal basis functions defined on Dk with mesh size h < ε and Nk
h is the number

of FE basis functions, we approximate uε,kα (x) using our multiscale reduced basis functions {ζki (x)}mki=0

uε,kα (x) =

mk∑
i=0

uε,kαi ζ
k
i (x). (30)

This leads to the new discretization of the solution uε(x, ω) to Eq.(10) as

uεh,p(x, ω) =
∑
α∈J

K∑
k=1

mk∑
i=0

uε,kαi ζ
k
i (x)Hα(ξ). (31)

The number of unknowns in Eq.(31) is far less than that of SFEM discretization (9) because multiscale

reduced basis functions have already captured the low-dimensional structures in the solution space.

Finally, we substitute the new discretization form (31) into Eq.(10) and apply the Galerkin method in

the tensor space to determine the expansion coefficient uε,kαi . The stiffness matrix obtained from our

new discretization method can be used to solve Eq.(10) with many different force functions f(x).

9



Remark 3.3. We focus on constructing multiscale reduced basis functions in physical space to reduce

the computational cost in this paper. Therefore, we simply choose the gPC basis functions Hα(ξ) in

the random space. One can adopt the data-driven stochastic method developed in [13] to construct

more efficient stochastic basis functions. However, we do not want to complicate the presentation by

pursuing this avenue.

4. Error analysis

We shall analyze the error between the numerical solution obtained using our method, denoted by

uPOD(x, ω) and the exact solution u(x, ω). We assume the fine grids with mesh size h � ε so that

the error between the numerical solution uh(x, ω) obtained on the fine grids and u(x, ω) is accurate

enough and we simply use uh(x, ω) as a reference solution. To demonstrate the error, we need to

consider errors from the physical space and the random space approximation. Before proceeding to

the analysis, we first introduce some notations and assumptions.

4.1. Some notations and assumptions

We define the norm in the tensor space L2(D)⊗ L2(Ω) as

||u||L2(D)⊗L2(Ω) =
(∫

Ω

( ∫
D
u(x, ω)2dx

)
dP (ω)

) 1
2
, (32)

where P (ω) is the probability distribution function of random variable ξ(ω). In addition, we need

higher regularity in the random space when we estimate the convergence rate of our method in the

random space. Let Dν
ξu(x, ·) denote the ν-th order mixed derivatives of u(x, ·) with respect to the

variable ξ = (ξ1, ..., ξr) in the random space, where ν = (ν1, ..., νr) and νi are nonnegative integers.

Then, we define the norm and seminorm in the random space as follows:

||u(x, ·)||2Hp(Ω) =

∫
Ω

∑
|ν|≤p

|Dν
ξu(x, ·)|2dP (ω), |u(x, ·)|2Hp(Ω) =

∫
Ω

∑
|ν|=p

|Dν
ξu(x, ·)|2dP (ω). (33)

In addition, we need the following assumption for the stability of the solution with respect to the

random dimension [11, 19], which is satisfied if a(x, ξ(ω)) satisfies certain regularity conditions. We

refer interested reader to [14] for more details.

Assumption 4.1. If u(x, ω) is the solution to Eqns. (10) and (11) and u(x, ω) ∈ Hp(Ω),∀x ∈ D.

Then we have the stability estimate as follows

||u(x, ·)||Hp(Ω) ≤ C1||f(x)||L2(D), ∀x ∈ D, (34)

where the constant C1 depends on the value of amin and amax.

4.2. Error Analysis

After introducing the necessary notations and assumption, we are in the position to proceed with the

error analysis. Applying the triangle inequality, we divide the error into three parts

||uh − uPOD|| ≤ ||uh − ugPCh ||+ ||ugPCh − ugPCH ||+ ||ugPCH − uPOD||, (35)

where uh refers to the reference solution obtained using FEM with fine mesh h and no discretization

in random space, ugPCh is computed using FEM with fine mesh h in physical space and gPC basis in
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random space, ugPCH is computed using MsFEM basis with coarse mesh H in physical space and gPC

basis in random space, and uPOD is obtained using the multiscale reduced basis in physical space and

gPC basis in random space. We have assumed that the error between uh and the exact solution u to

Eqns. (10) and (11) is negligible.

We first consider the error between uh and ugPCh and get the estimate result. To illustrate the

main idea, we assume the coefficient in Eq.(10) is parameterized by one-dimensional random variable

ξ(ω) = ξ1(ω) that follows uniform distribution U [−1, 1] and the basis functions in gPC method are

Legendre polynomials. But we emphasize that the convergence estimate (36) holds for general gPC

methods if we tensorize the orthogonal polynomials and use the multi-index.

Lemma 4.2. Let uh(x, ω) be the reference solution obtained using FEM with fine mesh h and ugPCh (x, ω)

be computed using FEM with same mesh in physical space and gPC basis in random space. Then we

get the following error estimate

||uh − ugPCh ||L2(D)⊗L2(Ω) ≤ C2N
−p||f(x)||L2(D), (36)

where N is the highest order of polynomial basis in the gPC method, p is an integer that quantifies

the regularity of uh(x, ω) in the random space (see Assumption 4.1), and C2 is independent of N but

depends on amin and amax.

Proof. Let Lk(ξ(ω)) be the Legendre polynomial of order k and SN be the space spanned by Legendre

polynomials of degree at most N , i.e., SN = span{Lk(ξ(ω))}Nk=0. Let PN denote the projection opera-

tor on SN . Specifically, we have the projection of uh(ω) onto SN defined as PNuh(ω) =
N∑
k=0

ukLk(ξ(ω)),

where the coefficients uk = (uh,Lk)
(Lk,Lk) and the inner product of two functions are defined as (v, w) ≡∫

Ω v(ω)w(ω)dP (ω). To estimate the decay rate in the projection coefficients, we use the property that

Legendre polynomials satisfy the Sturm-Liouville eigenvalue problem as follows,

LLk(ξ(ω)) =
d

dξ

(
(1− (ξ(ω))2)

d

dξ

)
Lk(ξ(ω)) = −k(k + 1)Lk(ξ(ω)). (37)

Some simple calculations imply that

(uh, Lk) = − 1

2k(k + 1)

∫ 1

−1
uhLLkdP (ω) = − 1

k(k + 1)
(L uh, Lk). (38)

Then, we repeat the above derivation and get (u, Lk) = (− 1
k(k+1))l(L lu, Lk), where l ≥ 1 is an integer.

Finally, we obtain the error estimate of the projection approximation as follows:

||uh(ω)− PNuh(ω)||2L2(Ω) =

∞∑
k=N+1

(uh, Lk)
2
L2(Ω)

(Lk, Lk)L2(Ω)
=

∞∑
k=N+1

1

(k(k + 1))2l||Lk||2L2(Ω)

(L luh, Lk)
2
L2(Ω)

≤ N−4l||L luh||2L2(Ω) ≤ C2N
−4l||uh||2H2l(Ω), (39)

where the Parseval’s identity is used in the first equation. In the gPC method, we know that

ugPCh (x, ω) = PNuh(x, ω). If we take the regularity index p = 2l and use the stability assumptions

(34) and integrate over the physical space, we prove the lemma.

When the coefficient in Eq.(10) is parameterized by r i.i.d. random variables ξ = (ξ1, ..., ξr), we

use the multi-index α = (α1, · · · , αr) , 0 ≤ αi ≤ Ni, αi ∈ N to label the gPC basis and the multi-index
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ν = (ν1, ..., νr), νi ≥ 0, νi ∈ N to label the order of the mixed derivatives. We define the tensorized

Legendre polynomials by Lα(ξ(ω)) =
∏r
i=1 Lαi(ξi(ω)) and SN = span{Lα(ξ(ω))}. Let PN denote the

projection operator on SN , i.e., PNuh(ω) = uαLα(ξ(ω)), where the Einstein summation convention is

used and N =
∏r
i=1Ni.

Corollary 4.3. Let uh(x, ω) be the reference solution and ugPCh (x, ω) = PNuh(x, ω) be the gPC solu-

tion obtained using the same mesh. Then we get the convergence estimate as follows,

||uh(x, ω)− PNuh(x, ω)||2L2(Ω) ≤ (N−4ν1
1 N−4ν2

2 ...N−4νr
r )||L νu||2L2(Ω). (40)

If the highest order of the polynomials are same in each random variable and let |ν| =
∑r

i=1 νi, we get

||uh(x, ω)− PNuh(x, ω)||2L2(Ω) ≤ N
−4|ν|
1 ||L νu||2L2(Ω) ≤ C2N

−4|ν|
1 ||u||2

H2|ν|(Ω)
. (41)

Remark 4.1. One may choose the best N -term Galerkin approximations in the gPC method [14],

which reduces the total number of basis and maintain an optimal convergence rate.

Remark 4.2. The orthogonal polynomials arise from a differential equation of the form

Q(x)f ′′(x) + L(x)f ′(x) = λf(x), (42)

where Q(x) and L(x) are polynomials and the function f(x) and the constant λ are obtained by

solving this Sturm-Liouville type eigenvalue problem. The solutions of (42) have singularities unless

λ takes on specific values. Let {λk, fk(x)}, k = 0, 1, ... denote the corresponding eigenvalues and

eigenfunctions. Then, {fk(x)} forms a set of orthogonal polynomials and the eigenvalues satisfy

λk = k(k−1)
2 Q′′(x) + kL′(x), see [4, 10]. Notice that λk ∼ O(k2), we have the error estimate (36) holds

for other orthogonal polynomials.

We then analyse the error between ugPCh (x, ω) and ugPCH (x, ω) and obtain the following lemma.

Lemma 4.4. Let ugPCh (x, ω) and ugPCH (x, ω) be defined as above. We get the following error estimate

||ugPCh − ugPCH ||L2(D)⊗L2(Ω) ≤ C3H
2||f ||L2(D) + C4

ε

H
(43)

where ε < H and C3, C4 are constants that do not depend on ε and H.

Proof. Since ugPCh (x, ω) and ugPCH (x, ω) use the same gPC basis in the random space, we only need to

analyze the error in physical space. For each realization ωi, the problem (10) and (11) are reduced to

a deterministic problem and ugPCh (x, ωi) is a FEM reference solution and ugPCH (x, ωi) is the solution

obtained using the MsFEM with over-sampling technique. Then, Theorem 3.1 implies

||ugPCh (x, ωi)− ugPCH (x, ωi)||L2(D) ≤ C3H
2||f(x)||L2(D) + C4

ε

H
. (44)

Integrate over the random space, we prove Lemma 4.4.

Finally, we estimate the error between ugPCH (x, ω) and uPOD(x, ω).

Lemma 4.5. Let ugPCH be the solution obtained using the MsFEM basis on coarse mesh with size H in

physical space and gPC basis in random space, and uPOD be the solution obtained using our method.

We have the error estimate,

||ugPCH − uPOD||L2(D)⊗L2(Ω) ≤ C5

Q∑
i=m∗+1

λi, (45)

where C5 is a generic constant, m∗ is an integer that will be defined in the proof, Q is the sample

number in the basis snapshots, and λi are eigenvalues of the covariance kernel of the snapshot.
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Proof. Since ugPCH (x, ω) and uPOD(x, ω) are computed using the same gPC basis functions in the

random space, we only need to analyze the error in physical space. For each realize ωs, we have

ugPCH (x, ωs) =
∑K

k=1 Ukφ
k(x, ωs) and uPOD(x, ωs) =

∑K
k=1 Ũkφ̃

k(x, ωs), where φk(x, ωs) denote the

MsFEM basis associated with the sub-domain Dk and φ̃k(x, ωs) denote the approximated basis ob-

tained using our multiscale reduced basis functions. We shall use the Galerkin method to compute

the numerical solutions Uk and Ũk, k = 1, ...,K and estimate the error between ugPCH (x, ωs) and

uPOD(x, ωs).

Let A = (aij) and Ã = (ãij) denote the stiffness matrices associated with the MsFEM and our

method, where the entries in the matrices are defined as

aij =

∫
∇φi(x, ωs)aε(x, ωs)∇φj(x, ωs)dx, (46)

ãij =

∫
∇φ̃i(x, ωs)aε(x, ωs)∇φ̃j(x, ωs)dx. (47)

We estimate the difference between the entries aij and ãij by

|aij − ãij | =
∣∣∣ ∫ ∇φi(x, ωs)aε(x, ωs)∇φj(x, ωs)dx− ∫ ∇φ̃i(x, ωs)aε(x, ωs)∇φ̃j(x, ωs)dx∣∣∣

≤
∣∣∣ ∫ ∇φiaε∇φjdx− ∫ ∇φ̃iaε∇φjdx∣∣∣+

∣∣∣ ∫ ∇φ̃iaε∇φjdx− ∫ ∇φ̃iaε∇φ̃jdx∣∣∣
≤ ||aε||L∞(D)

(
||φj ||H1(D)||∇φi −∇φ̃i||L2(D) + ||φ̃i||H1(D)||∇φj −∇φ̃j ||L2(D)

)
. (48)

Recall that aε(x, ωs) is bounded almost surely, φi(x, ωs) and φ̃i(x, ωs) are bounded in H1 norm. If we

choose m∗ = min{mk}Kk=1, then the Proposition 3.3 implies

||∇φk −∇φ̃k||L2(D) ≤ ||φk − φ̃k||H1(D) =
∣∣∣∣yks − mk∑

i=1

(yks , ζ
k
i )H1(D)ζ

k
i

∣∣∣∣2
H1(D)

=

Q∑
j=mk+1

λj ≤
Q∑

j=m∗+1

λj . (49)

Combine Eqns.(48) and (49), we obtain |aij− ãij | ≤ C
∑Q

s=m∗+1 λs, where C is a generic constant and

may depend on amin and amax.

Now we obtain the error between A and Ã, i.e., Ã = A + Ea, where Ea is the error term and

is bounded by C
∑Q

s=m∗+1 λs. Let F = (fi) and F̃ = (f̃i) denote the right-hand side vectors, with

fi =
∫
φi(x, ωs)f(x)dx and f̃j =

∫
φ̃i(x, ωs)f(x)dx, respectively. Using a similar argument, we can get

F̃ = F + Ef , where Ef is the error term and is bounded by C
∑Q

s=m∗+1 λs.

Recall that ugPCH (x, ωs) =
∑K

k=1 Ukφ
k(x, ωs) and uPOD(x, ωs) =

∑K
k=1 Ũkφ̃

k(x, ωs). Let U =

(U1, ...UK)T and Ũ = (Ũ1, ...ŨK)T and they satisfy AU = F and ÃŨ = F̃ , respectively. After simple

calculations, we get U − Ũ = A−1(Ef + EaU) and the estimate

||U − Ũ ||l2 ≤ ||A−1||l2 ||Ef + EaU ||l2 ≤ C||f(x)||L2(D)

Q∑
s=m∗+1

λs, (50)

where C depends on amin and amax and we have used the fact A−1 is bounded above by amax
amin

.
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Let Φ = (φ1(x, ωs), ..., φ
K(x, ωs)) and Φ̃ = (φ̃1(x, ωs), ..., φ̃

K(x, ωs)). Then ugPCH (x, ωs) = ΦU and

uPOD(x, ωs) = Φ̃Ũ and we have the estimate

||ugPCH (x, ωi)− uPOD(x, ωi)||2L2(D) = ||ΦU − Φ̃Ũ ||L2(D) (51)

≤ ||ΦU − Φ̃U ||L2(D) + ||Φ̃U − Φ̃Ũ ||L2(D) (52)

≤ ||U ||l2 ||Φ− Φ̃||L2(D) + ||Φ̃||L2(D)||U − Ũ ||l2 (53)

According to the estimates (49) and (50), we obtain

||ugPCH (x, ωi)− uPOD(x, ωi)||2L2(D) ≤ C4||f(x)||L2(D)

Q∑
s=m∗+1

λs, (54)

where C4 depends on amin and amax. To achieve a given error tolerance ρ, we can choose the integer

m∗ according to the decay property of
∑Q

s=m∗+1 λs. Finally, integrating in the random space we can

complete our proof

||ugPCH − uPOD||L2(D)⊗L2(Ω) ≤ C4||f(x)||L2(D)

Q∑
s=m∗+1

λs. (55)

Theorem 4.6. If uh is the reference solution to Eqns.(10) and (11) and uPOD(x, ω) is the solution

obtained using our method, then we have the error estimate as follows

||uh−uPOD||L2(D)⊗L2(Ω) ≤
r∏
i=1

N−2νi
i ||L νuh||L2(Ω) +

(
C2H

2 +C4

Q∑
s=m∗+1

λs

)
||f(x)||L2(D)⊗L2(Ω) +C3

ε

H

(56)

where h and H are fine and coarse mesh size respectively, Ci, i = 2, 3, 4, 5 are constants depend on

amin and amax and diameter of the domain but do not depend on ε, H and h, and λs are eigenvalues

obtained in the POD method with m∗ chosen such that
Q∑

s=m∗+1
λs/

Q∑
s=1

λi is smaller than a given error

tolerance ρ.

Proof. For notation simplicity, we use || · || to denote the norm || · ||L2(D)⊗L2(Ω). Using the triangle

inequality, we get

||uh − uPOD|| ≤ ||uh − ugPCh ||+ ||ugPCh − ugPCH ||+ ||ugPCH − uPOD|| (57)

and Theorem 4.6 is a simple conclusion of the three lemmas we have proved above.

5. Numerical results

5.1. An example with an oscillatory coefficient

We consider the following multiscale elliptic PDE with random coefficient on D = [0, 1]× [0, 1]

−∇ · (aε(x, y, ω)∇uε(x, y, ω)) = f(x, y), (x, y) ∈ D,ω ∈ Ω, (58)

uε(x, y, ω) = 0, (x, y) ∈ ∂D. (59)
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The multiscale and random features are described by the coefficient

aε(x, y, ω) = 0.2 +
1

2 + p1 sin( 2π(x−y)
ε1

)
ξ1(ω) +

1

4 + p2 sin( 2πx
ε2

)
ξ2(ω) +

2 + p3 cos( 2π(x−0.5)
ε3

)

2− p3 sin( 2π(y−0.5)
ε3

)
ξ3(ω), (60)

where [p1, p2, p3] = [1.6, 1.4, 1.5], [ε1, ε2, ε3] = [ 1
19.3 ,

1
15.4 ,

1
23.7 ], and {ξi(ω)}3i=1 are independent uniform

random variables in [0, 1]. We choose the parameters of the coefficient (60) in such a way that it will

generate oscillatory features in the solution.

Multiquery results in the online stage. We shall show that our multiscale reduced basis can be used

to solve a multi-query problem. We use the standard FEM to discretize the physical space. We choose

a 256× 256 fine mesh to well resolve the physical space of the solution uε(x, y, ω). Since the solution

uε(x, y, ω) is smooth in random space, we use a sparse-grid based stochastic collocation (SC) method

to discretize the random space. First, we conduct a convergence study and find that the relative errors

of the mean and the standard deviation (STD) between the solutions obtained by a seven-level sparse

grids in the SFEM and higher-level sparse grids are smaller than 0.1% both in the L2 and the H1

norm. Therefore, we choose the solution obtained using the seven-level sparse grids (with 207 points)

as the reference solution.

To implement our method, in the physical space we take the coarse grids to be 16×16 and fine grids

to be 256×256. For the coefficient (60) with 3 random variables, we choose the gPC basis functions of

total order 4 and keep the POD modes to be 4, which means that we use 5 multiscale reduced basis

in each interior coarse mesh. The force function f(x, y) should be well-resolved by the coarse mesh.

We choose f(x, y) ∈ F = {sin(kiπx+ φi) cos(liπy + ϕi)}20
i=1, where ki and li are uniformly distributed

over the interval [0, 4], while φi and ϕi are uniformly distributed over the interval [0, 1].

In Fig.2 and Fig.3, we show the relative errors of the mean and the STD of our method in the

L2 norm and the H1 norm, respectively. One can see that our method is efficient in solving multi-

query problem. In Fig.4, we show the mean and STD of the solution corresponding to f(x, y) =
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Figure 2: The mean error of our method in the L2 norm and the H1 norm.

sin(1.3πx + 0.1) cos(2.1πy + 0.12). We use the notation SC to denote the reference solution and the

reduction method to denote the solution obtained using our method. One can see that the mean and

the STD of the DSM solution match with the mean and the STD of the reference solution very well.

Verification of the convergence rate with respect to coarse mesh. We choose the coefficient as follows

aε(x, y, ω) = 0.1 +
2 + p1 sin(2π(x−y)

ε1
)

2− p1 cos(2π(x−y)
ε1

)
ξ1(ω), (61)
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Figure 3: The STD error of our method in the L2 norm and the H1 norm.
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where p1 = 1.6 and ε1 = 1
14 . In our test, the highest order of the gPC basis functions is 6 and the

number of the POD modes is 4. We change the coarse mesh grid from 4× 4 to 32× 32, compare the

results on different meshes, and calculate the numerical error with respect to the reference solution

obtained on the fine mesh with size 1
256 . In Fig.5, we plot the convergence results with respect

to meshsize H in both the L2 norm and the H1 norm. We approximately obtain a second-order

convergence for the error in the L2 norm and a first-order convergence for the error in the H1 norm.
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Figure 5: Convergence results with respect to mesh size, where H = 1
4
, 1

8
, 1

16
and 1

32
. Left is for the mean error in the

L2 norm and the slope is -2.3. Right is for the mean error in the H1 norm and the slope is -1.3.

Verification of the convergence rate with respect to the polynomial order. We fix the course mesh

size to be H = 1
16 and number of the POD modes to be 4. We choose the coarse mesh and POD

modes in such a way that the error from physical space and the POD error are small and the error

is dominant by the random space. We test two different types of coefficients. In the first case, the

coefficient is given by Eq.(61) and we change the polynomial order from 1 to 7. In Fig.6, we plot

convergence results with respect to different polynomial orders. In the second case, the coefficient is

given by Eq.(60), which is parameterized by three random variables and we change the highest order

of the gPC basis from 1 to 6. One can see the exponential decay of the error with respect to the

polynomial orders.

1 2 3 4 5 6 7

gPC order

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e 
L

2
 E

rr
or

1 2 3 4 5 6

gPC order

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

R
el

at
iv

e 
L

2
 E

rr
or

Figure 6: Convergence results with respect to the polynomial chaos order, where H = 1
16

. Left is for the one r.v. case.

Right is for the three r.v.s case.

Investigate the decay of error for POD modes. We consider the multiscale problem with the

coefficient (60) and choose the coarse mesh grid as 16× 16, the fine mesh grid as 256× 256, and the

polynomial order of the gPC as 4. In Fig.7, we show the relative error of the mean with respect to the

17



increasing of the number of the POD modes. Meanwhile, we show the cumulative sum of the eigenvalue

ratio in the POD decomposition. One can find that when we increases the number of the POD modes

(namely the multiscale reduced basis), we observe a fast decay in the relative error of the mean and

fast increasing in the cumulative sum of the eigenvalue ratio in the POD decomposition, which implies

that the POD basis can efficiently explore the low-dimensional structures of the multiscale random

solution. We observe the qualitative decay of the error for the STD (not shown here).
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Figure 7: Convergence results with respect to the number of the POD modes.

5.2. An example whose coefficient does not have scale separation

We consider the multiscale elliptic PDE (58)-(59) with a coefficient aε(x, y, ω), which is a random

linear combination of three deterministic coefficient fields plus a constant, i.e.,

aε(x, y, ω) =
3∑
i=1

ξi(ω)ki(x, y) + 0.5 (62)

where {ξi}3i=1 are independent uniform random variables in [0, 1], and ki(x, y), i = 1, ..., 3 are deter-

ministic coefficient fields without scale separation. Specifically, ki(x, y) = |θi(x, y)|, where θi(x, y),

i = 1, ..., 3 are defined on a 5× 5, 9× 9, and 17× 17 grids over the domain D. For each grid cell, the

value of θi(x, y) is normally distributed. In Fig.8, we show four samples of the coefficient aε(x, y, ω).

One can see that the coefficient does not have any periodic structure.

Multiquery results in the online stage. The implementation of the SFEM and our method are

exactly the same as in the previous example. In the online stage we use them to solve the problem (58)

with different f(x, y). We randomly generate 20 force functions f(x, y) ∈ {sin(kiπx + li) cos(miπx +

ni}20
i=1, where ki, li, mi, and ni are random numbers. In Fig.9, we show the relative error for the mean

obtained using our method in the L2 norm and the H1 norm, respectively. The results for the STD

error are similar (not shown here).

Verification of the convergence rate with respect to meshsize H. We test the problem (58)-(59) with

coefficient (62). We choose the highest order of the gPC basis functions as 4 and the number of POD

modes as 4. We choose the coarse mesh grids as 4 × 4 , 8 × 8, 16 × 16, and 32 × 32. We compare

the results on different grids and compute the numerical error with respect to the reference solution

obtained on the fine mesh 1
256 . In Fig.10, we plot the convergence results with respect to meshsize H.

The convergence rate is 0.84 in the L2 norm and is 0.65 in the H1 norm since other sources of error

may become dominant in this example.

Verification of the convergence rate with respect to the polynomial order. We fix the course mesh

size to be H = 1
16 and keep the number of the POD modes to be 4. Then we test two different
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Figure 8: Four coefficient samples of a(x, y, ω).
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Figure 9: The mean error of our method in the L2 norm and the H1 norm.
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Figure 10: Convergence results with respect to mesh size. Left is for the error in the L2 norm and the slope is -0.84.

Right is for the error in H1 norm and the slope is -0.65.
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coefficients. In the first case, the coefficient is given by aε(x, y, ω) = ξ1(ω)k1(x, y) + 0.5, which is

parameterized by one random variable. We change the polynomial order from 1 to 7. In Fig.11, we

plot the convergence of the relative mean error with respect to polynomial orders. In the second case,

the coefficient is given by (62) and we change the highest polynomial order from 1 to 6. One can see

the errors decay exponentially with respect to the polynomial order. Moreover, one can observe that

the errors get stagnant since other sources of error may become dominant.
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Figure 11: Convergence results with respect to the polynomial chaos order, where H = 1
16

and POD modes 4. Left is

for one r.v. case. Right is for three r.v.s case.

Investigate the decay of error for POD modes. We consider the multiscale problem with the

coefficient (62) and choose the coarse mesh grid as 16× 16, the fine mesh grid as 256× 256, and the

polynomial order of the gPC as 4. In Fig.12, we show the relative error of the mean with respect to

the increasing of the number of the POD modes (namely the multiscale reduced basis). We find that

the relative error of the mean decreases when we increases the number of the POD modes. We observe

the qualitative decay of the error for the STD (not shown here).
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Figure 12: Convergence results with respect to the number of the POD modes.

5.3. An example with a high-contrast coefficient

Finally, we consider the multiscale elliptic PDE (58)-(59) with a high-contrast coefficient. The coeffi-

cient aε(x, y, ω) is given by

aε(x, y, ω) = 0.2 + 20ξ1(ω)1D1(x, y) + 60ξ2(ω)1D2(x, y) + 100ξ3(ω)1D3(x, y), (63)

where ξi(ω) ∈ U [0, 1] and 1Di(x, y), i = 1, 2, 3 are indicator functions. The local domains D1 =

B1(x1, 0.1)∪B2(x2, 0.1), D2 = [0.125, 0.875]× [0.375, 0.5], D3 = B3(x3, 0.1)∪B4(x4, 0.1)∪B5(x5, 0.1),
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where Bi(xi, r) are the circles with the radius r = 0.1 and the centers at x1 = (0.25, 0.75), x2 =

(0.625, 0.75), x3 = (0.1875, 0.1875), x4 = (0.5, 0.1875), and x5 = (0.8125, 0.1875). In Fig.13, we show

two samples of the coefficient aε(x, y, ω). One can see that the coefficient (63) has high-contrast

features, where the highest contrast is 100
0.2 = 500.
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Figure 13: Two samples of the coefficient a(x, y, ω).

Multiquery results in the online stage. The implementation of the SFEM and our method are

exactly the same as in the previous two examples. We randomly generate 20 force functions f(x, y) ∈
{sin(kiπx+ li) cos(miπx+ni}20

i=1, where ki, li, mi, and ni are random numbers. In Fig.14, we show the

relative error for the mean obtained using our method in the L2 norm and the H1 norm, respectively.

The results for the STD error are similar (not shown here). Thus, our method is efficient in solving

this problem with a high-contrast coefficient.
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Figure 14: The mean error of our method in L2 norm and H1 norm.

Verification of the convergence rate with respect to the meshsize H. We test the problem (58)-(59)

with coefficient (63). We choose the highest order of the gPC basis functions as 4 and the number of

POD modes as 4. We choose the coarse mesh grids as 4× 4 , 8× 8, 16× 16, and 32× 32. We compare

the results on different grids and compute the numerical error with respect to the reference solution

obtained on the fine mesh 1
256 . In Fig.15, we plot the convergence results with respect to meshsize H.

The convergence rate is 1.8 in the L2 norm and is 1.12 in the H1 norm.

Investigate the decay of error for POD modes. Finally, we choose the coarse mesh grid as 16× 16,

the fine mesh grid as 256 × 256, and the polynomial order of the gPC as 4. In Fig.16, we show the

relative error of the mean with respect to the increasing of the number of the POD modes (namely

the multiscale reduced basis). We find that the relative error of the mean decreases when we increases
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Figure 15: Convergence results with respect to mesh size. Left is for the mean error in the L2 norm and the slope is

-1.80. Right is for the mean error in the H1 norm and the slope is -1.12.

the number of the POD modes. We observe the qualitative decay of the error for the STD (not shown

here).
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Figure 16: Convergence results with respect to the number of the POD modes.

6. Conclusion

In this paper, we proposed a proper orthogonal decomposition method for multiscale elliptic PDEs

with random coefficients. Our method consists of offline and online stages. In the offline stage, we

constructed a set of reduced basis functions within each coarse grid block using the POD method, which

allows us to explore the low-dimensional structures hidden in the solution space. In the online stage,

we can efficiently solve the multiscale SPDEs using our multiscale reduced basis functions. Under

mild conditions, we analyse the error between the numerical solution obtained from our method and

the exact solution. We presented several numerical examples for 2D stochastic elliptic PDEs with

stochastic multiscale coefficients to demonstrate the accuracy and efficiency of our proposed method.
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