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Inviscid free-boundary fluid model (Euler equations)

Let v be the velocity of the fluid that occupies Dt ⊂ R3. Its motion is
described by

∂tv +∇vv +∇p = 0, div v = 0, in D.

Here, p is the pressure, D = ∪0≤t≤T{t} × Dt , Dt ≈ B(0, 1).
The unknowns are v = v(t, x), p = p(t, x) and Dt .

Initial and Boundary conditions:{
{x : (0, x) ∈ D} = D0,

v = v0 in {0} × D0,

{
Dt := ∂t +∇v |∂D ∈ T (∂D)

p = σH on ∂D,

where σ > 0 and H = mean curvature of ∂Dt .
LWP is well-known, e.g., Coutand-Shkoller (JAMS, 07), Shatah-Zeng
(ARMA, 11), etc.
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Real life examples

In many circumstances, the fluid domain moves with the velocity of the
fluid, e.g., the ocean surface and a metallic liquid droplet.
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Motion of a conducting fluid

We consider the motion of a conducting fluid (i.e., a plasma, a liquid
metal) described by

∂tv +∇vv +∇p = J × B, in D,
∂tB = −curlE , in D,

div v = 0, divB = 0 in D.

Here,

1 v = velocity, and D = ∪0≤t≤T{t} × Dt .

2 B = magnetic field of the fluid.

3 E = electric field generated by B.

4 J = current density, and thus J × B is the Lorentz force.
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Free-boundary MHD equations

We can simplify the system by removing E and J . Indeed, by invoking

1 Ohm’s law of ideal plasma E = −v × B, and

2 Ampère’s law J = curlB,

the above system becomes (recall Dt := ∂t +∇v )
Dtv +∇(p + 1

2 |B|
2) = (B · ∇)B, in D,

DtB = (B · ∇)v , in D,
div v = 0, divB = 0 in D.

Here, we define P := p + 1
2 |B|

2 to be the total pressure.
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IBVP

We consider 
Dtv +∇P = (B · ∇)B, in D,
DtB = (B · ∇)v , in D,
div v = 0, divB = 0 in D,

equipped with

{
{x : (0, x) ∈ D} = D0,

v = v0, B = b0 in {0} × D0,


Dt |∂D ∈ T (∂D),

B · N = 0, on ∂D,
P = σH on ∂D,

where N is the outward unit normal of ∂Dt . This system reduces to
Euler equations in the absence of B.
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Several remarks (Goedbloed-Poedts (2004))

i). The IBVP presented above can be viewed as a special case of the
general plasma-vacuum interface problem. In the general getting, Dt is
confined in a vacuum region Ωvac with another magnetic field B̂ verifies

curl B̂ = 0, div B̂ = 0, in Ωvac .

ii). We assume that our fluid is a perfect conductor, then
B · N = B̂ · N = 0. This leads to the boundary condition (the pressure
balance law)

p +
1

2
|B|2 − 1

2
|B̂|2 = σH, on ∂Dt .

iii). If we neglect the magnetic field in Ωvac , i.e., B̂ = 0, we get the model
we are considering.
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The surface tension

Surface tension results from the attraction of fluid molecules to each
other. The surface tension is what gives cohesion to the fluid surface, e.g.,
what keeps the fluid body together.

In particular, the surface tension “stabilizes” the motion of the fluid. In
fact, the free-boundary MHD Equations are ill-posed when σ = 0
[Hao-Luo, CMP 20], unless the physical sign condition

−∇NP ≥ c0 > 0, on ∂Dt .

is assumed.
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Importance of the surface tension

All fluids have surface tension. The case without surface tension is
merely a simplified model.

In the case of a conducting fluid, the effect of surface tension is
crucially important for modeling liquid metals (See,e.g.,
Molokov-Reed (2000)).

However, the surface tension brings severe difficulty as it yields top order
terms on the boundary.
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Mercury droplets

Small droplets take spherical shapes owing to the surface tension, while
large droplets are rather flat due to the gravity.
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Our main result (rough form)

Theorem (Gu-L.-Zhang, 21’)

Let v0 ∈ H4.5 and b0 ∈ H4.5 be divergence-free vector fields with
(b0 · N )|∂D0 = 0. Then the free-boundary MHD equations with initial data
(v0, b0) admit a unique local strong solution.

The solution is in fact expressed in the Lagrangian coordinates in terms of
(η, v , q), where η is the flow map of the velocity v .
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Some previous results

Here comes a non-exclusive list of results concerning the free-boundary
MHD equations.

No surface tension

A priori estimate: Hao-Luo (ARMA, 14), Hao (ARMA, 17)

LWP: Gu-Wang (JMPA, 19)

Compressible MHD (LWP in anisotropic Sobolev space):
Trakhinin-Wang (ARMA, 21), a priori estimate by Lindblad-Zhang
(21’).

With surface tension

A priori estimate: L.-Zhang (SIMA, 21).

Compressible MHD (LWP in anisotropic Sobolev space):
Trakhinin-Wang (Math. Ann, 21).
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The Lagrangian Coordinates

It is convenient to study the free boundary MHD equations in the
Lagrangian coordinates (t, y), in which the free boundary becomes fixed.

η(t, y) = flow map,
dη(t, y)

dt
= v(t, η(t, y)),

η(t, ·) : Ω(= B(0, 1))→ Dt , η(0, y) = y .

The boundary becomes fixed under (t, y) coordinates.

Ω

t

Ω

Ω(t1)

Ω(t2)

Figure: Ω(t) = Dt
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The Lagrangian variables and derivatives

Let a := [∂yη]−1 cofactor matrix. We introduce

Dt = ∂t .

Lagrangian spatial derivative ∂µ = ∂
∂yµ

.

Eulerian spatial derivative ∇α = (∇a)α = ∂
∂xα

= aµα∂µ.

Set v = v(t, x(t, y)) (after a slight abuse of notation), b = B(t, x(t, y)),
and q = P(t, x(t, y)) to be the Lagrangian velocity, magnetic field, and
pressure, respectively. Then

B · ∇ = bβa
µβ∂µ.

div av = aµα∂µvα, div ab = aµα∂µbα.
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The MHD equations in the Lagrangian coordinates


Dtv − (B · ∇)B +∇P = 0, in D,
DtB = (B · ∇)v , in D,
div v = 0, divB = 0 in D,

becomes 
∂tvα − bβa

µβ∂µbα + aµα∂µq = 0 in [0,T ]× Ω;

∂tbα − bβa
µβ∂µvα = 0 in [0,T ]× Ω;

aµα∂µvα = 0, aµα∂µbα = 0 in [0,T ]× Ω.
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The first simplification: reference domain

For the sake of simplicity and clean notation, we take

Ω = T2 × (0, 1),

where T2 is the 2-torus, ∂Ω = Γ0∪Γ and Γ = T2×{1} is the top boundary
(corresponds to the moving boundary), Γ0 = T2 × {0} is the fixed bottom.
The choice of Ω allows us to work in one coordinate patch.

Under this setting, (y1, y2)-direction is tangential to Γ, y3-direction is
normal to Γ, and the outward unit normal to Γ is N = (0, 0, 1).

T2 ✗ {11

"Hi
- - -

r
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The Lagrangian boundary condition

Under this setting, P = σH becomes

aµαNµ︸ ︷︷ ︸
a3α

q + σ(
√
g∆gη

α) = 0, on Γ,

where gij = ∂ iη
µ∂jηµ, ∆g (·) = 1√

g ∂i (
√
gg ij∂j(·)), with g = det(gij).

Set n̂α = Nα ◦ η = a3α
√
g =unit outer normal to η(Γ). Then the BC on Γ

can be re-formulated as

a3αq = −σ(
√
g∆gη · n̂)n̂α, on Γ.
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The second simplification: a remarkable identity

Let’s recall the transport equations verified by b, namely

∂tbα − bβa
µβ∂µvα = 0.

By contracting this equation with aνα, we have

aνα∂tbα − bβa
µβaνα∂µ∂tηα = 0.

Since aνα∂µηα = δνµ, the equation above becomes

aνα∂tbα + bβa
µβ(∂ta

να)∂µηα = 0,

which yields ∂t(a
ναbα) = 0. Thus

aναbα = aναbα|t=0 = bν0 . (0.1)
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By plugging (0.1) back to ∂tbα − bβa
µβ∂µvα = 0, we obtain

∂tbα − bµ0∂µ∂tηα = 0,

which is
∂t(bα − bµ0∂µηα) = 0.

This implies
bα = bµ0∂µηα = (b0 · ∂)ηα. (0.2)

Notice that this identity allows us to represent b in terms of its initial data
and η.
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The reformulated MHD equations



∂tv − (b0 · ∂)2η +∇aq = 0 in [0,T ]× Ω;

div av = 0, in [0,T ]× Ω;

div b0 = 0 in {t = 0} × Ω;

v3 = b3
0 = 0 on Γ0;

a3αq + σ(
√
g∆gη

α) = 0 on Γ;

b3
0 = 0 on Γ,

(η, v) = (id, v0) on {t = 0}×Ω.

(0.3)

We only need to solve η (which characterizes the moving domain) and v .
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The main result

Theorem (Gu-L.-Zhang, 21’)

Let η0 ∈ H4.5(Ω). Let v0 ∈ H4.5(Ω) and b0 ∈ H4.5(Ω) be divergence-free
vector fields with (b0 · N)|Γ∪Γ0 = 0. Then there exists some T > 0, only
depending on σ, v0, b0, such that the system (0.3) with initial data
(η0, v0, b0) has a unique strong solution (η, v , q) with the energy estimates

sup
0≤t≤T

(
‖η(t)‖2

4.5 + ‖v(t)‖2
4.5 + ‖(b0 · ∂)η(t)‖2

4.5

)
≤ C,

where C is a constant depends on ‖v0‖4.5, ‖b0‖4.5.
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MHD vs Euler

1 No extra regularity can be assumed on the vorticity.
For Euler equations, one can impose extra regularity on the initial
vorticity curl v0 and this leads to extra regularity on the flow-map η.
As a consequence, η may be more regularity than v .
However, η cannot be more regular than v in MHD equations.

2 There is a strong coupling between the velocity and magnetic fields.
In particular, curl v and curl (b0 · ∂)η have to be studied together. As
a consequence, the full (interior) Sobolev norm of v (and its time
derivatives) must be controlled together with the corresponding
Sobolev norm of (b0 · ∂)η.

We will revisit these two points when we construct the energy functional.
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The property of (b0 · ∂) derivative

There is a simple yet remarkable observation on the (b0 · ∂) derivative.
The energy estimate

sup
0≤t≤T

(
‖η(t)‖2

4.5 + ‖v(t)‖2
4.5 + ‖(b0 · ∂)η(t)‖2

4.5

)
≤ C(‖v0‖4.5, ‖b0‖4.5)

yields that ∂tη = v and (b0 · ∂)η are both controlled in H4.5; in other
words, (b0 ·∂) behaves exactly like the time derivative ∂t when acting on η!

This observation plays a crucial role in the energy estimate.
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The general strategy on constructing solutions

By replacing the nonlinear coefficients with given functions, the linearized
equations take the form:{

∂tv − (b0 · ∂)2η +∇åq = 0, div åv = 0, in Ω,

å3αq + σ(
√
g̊∆g̊η

α) = 0, on Γ,

where å = [∂η̊]−1 and g̊ij = ∂ i η̊
µ∂j η̊µ. Unfortunately, the a priori energy

estimate for free-boundary MHD equations cannot be carried over to the
linearized problem since it destroys the symmetry.

To overcome this, we will consider a suitable approximate problem which is
asymptotically consistent with the a priori estimates. We will construct
the approximate problem by adapting Coutand and Shkoller’s idea,
i.e., the artificial viscosity and smoothed κ-problem.
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The artificial viscosity

To overcome the above problem, we introduce an artificial viscosity term
in the Laplace-Young BC

a3αq = −σ(
√
g∆gη · n̂)n̂α + κ(1−∆)(v · n̂)n̂α.

Here, ∆ = ∂
2
1 + ∂

2
2. With the addition of the artificial viscosity term, the

BC is converted into a parabolic-type BC, and thus finding a solution (κ
fixed) for the following linearized equations

∂tη = v in Ω;

∂tv − (b0 · ∂)2η +∇åq = 0 in Ω;

å3αq = −σ(
√
g̊∆g̊ η̊ · n̊)n̊α + κ(1−∆)(v · n̊)n̊α on Γ,

becomes easy (e.g., by Galerkin’s method).
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Loss of regularity on Γ

The next step is to use the solution to the linearized equations to
approximate the solution to the nonlinear equations. This requires to study
the energy estimate.

The standard Hodge elliptic estimate yields that we need to control |v3|4
(boundary Sobolev norms). However, the BC

å3αq = −σ(
√
g̊∆g̊ η̊ · n̊)n̊α + κ(1−∆)(v · n̊)n̊α

yields merely the control of v · n̊. Therefore, we need to control

|v · (N − n̊)|4.

But this yields a loss of regularity since N − n̊ = −
∫ t

0 ∂t n̊ ∼ −
∫ t

0 ∂v̊ ,
which cannnot be controlled in H4(Γ).
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The tangential smoothing

To overcome this issue, we replace n̊ by its “tangentially smoothed”
version. Specifically, let ζ = ζ(y1, y2) ∈ C∞c (R2) be a standard cut-off
function supported in the unit ball. For each κ > 0, Let

ζκ(y1, y2) =
1

κ2
ζ
(y1

κ
,
y2

κ

)
.

Define

Λκf (y1, y2, y3) :=

∫
R2

ζκ(y1 − z1, y2 − z2)f (z1, z2) dz1 dz2,

and let {
−∆η̃ = −∆η, in Ω,

η̃ = Λ2
κη on ∂Ω.
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Smoothed equations

We are now able to define the smoothed cofactor matrix ã := [∂η̃]−1, as
well as the smoothed g̃ij and ñ. Given these, we have the smoothed MHD
equations (κ-problem)

∂tη = v in Ω;

∂tv − (b0 · ∂)2η +∇ãq = 0 in Ω;

ã3αq = −σ(
√
g∆gη · ñ)ñα + κ(1−∆)(v · ñ)ñα on Γ,

as well as the linearized equations
∂tη = v in Ω;

∂tv − (b0 · ∂)2η +∇˚̃aq = 0 in Ω;
˚̃a3αq = −σ(

√
g̊∆g̊ η̊ · ˚̃n)̊ñα + κ(1−∆)(v · ˚̃n)̊ñα on Γ.

Notice that |N − ˚̃n|4 .
∫ t

0 |∂˚̃v |4 .κ−1

∫ t
0 |v̊ |4.
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Uniform-in-κ energy estimate for the nonlinear κ-problem

Now, each κ-problem (with fixed κ) admits a solution in [0,Tκ].

Our final step is to prove an uniform-in-κ energy estimate in some fixed
time interval [0,T ], which then allows us to obtain a solution to the
original problem by letting κ→ 0.

The crucial step is to come up with a correct energy functional. We recall
i). η has to be as regular as v .
ii). In Ω, v and (b0 · ∂)η have to be controlled in the same Sobolev spaces
due to coupling. Indeed, the evolution equation verified by curl ãv reads

∂t(curl ãv)− (b0 · ∂)curl ã((b0 · ∂)η) = commutator.

29 / 35



More observations

iii). Mixed space-time derivatives: Our energy consists terms with mixed
space-time derivatives. The time derivatives are needed since we will study
the elliptic estimates of q using Neumann BC

ñ · ∇ãq = ∂tv · ñ + (b0 · ∂)2η · ñ,

obtained by taking the ñ-normal component of ∂tv − (b0 · ∂)2η+∇ãq = 0.
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iv). The full Sobolev norms of v and (b0 · ∂)η: The div-curl estimate

‖X‖s . ‖divX‖s−1 + ‖curlX‖s−1 + |∂X 3|s− 3
2
.

will be used to study the estimate of v and (b0 · ∂)η and their time
derivatives. Here, |∂X 3|s− 3

2
is comparable with |∂(ΠX )3|s− 3

2
, Πα

λ = n̂αn̂λ.

This term appears in the tangential energy estimates. In particular, we will
study the tangential energy estimates with

∂4
t , ∂∂

3
t , ∂

2
∂2
t , ∂

3
∂t , ∂

3
(b0 · ∂)

which yield

|∂(Π∂3
t v)3|0, |∂(Π∂∂2

t v)3|0, |∂(Π∂
2
∂tv)3|0,

|∂(Π∂
3
v)3|0, |∂(Π∂

3
(b0 · ∂)η)3|0,

respectively.
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v). The weighted energy functional: Let’s consider the tangential energy
estimate with ∂4

t . The term corresponds to the artificial viscosity is

−κ
∫ T

0

∫
Γ
∂4
t vα∂

4
t

(
(1−∆)(v · ñ)ñα

)
.

Up to the top order, this yields the positive energy term κ
∫ T

0

∫
Γ |∂

4
t v · ñ|21

with the error term

κ

∫ T

0

∫
Γ
(∂∂4

t v · ñ)(v · ∂4
t ∂ñ) ∼ κ

∫ T

0

∫
Γ
(∂∂4

t v · ñ)(v · ∂2
∂3
t ṽ).

We have to control ∂
2
∂3
t v directly by the trace lemma, and this suggests

that our energy should contain
∫ T

0 ‖
√
κ∂3

t v‖2.5, and in view of ii). we also

need
∫ T

0 ‖
√
κ∂3

t (b0 · ∂)η‖2.5.
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The full energy

Let E = E (1) + κE (2) + κE (3), where

E (1) := ‖η‖2
4.5 + ‖v‖2

4.5 + ‖∂tv‖2
3.5 +

∥∥∂2
t v
∥∥2

2.5
+
∥∥∂3

t v
∥∥2

1.5
+
∥∥∂4

t v
∥∥2

0

+ ‖(b0 · ∂)η‖2
4.5 + ‖∂t(b0 · ∂)η‖2

3.5 +
∥∥∂2

t (b0 · ∂)η
∥∥2

2.5
+
∥∥∂3

t (b0 · ∂)η
∥∥2

1.5

+
∥∥∂4

t (b0 · ∂)η
∥∥2

0
+
∣∣∂ (Π∂3

t v
)∣∣2

0
+
∣∣∂ (Π∂∂2

t v
)∣∣2

0
+
∣∣∣∂ (Π∂

2
∂tv
)∣∣∣2

0

+
∣∣∣∂(Π∂3

v
)∣∣∣2

0
+
∣∣∣∂(Π∂3

(b0 · ∂)η
)∣∣∣2

0
,

E (2) := σ

∫ T

0

( ∣∣∂4
t v · ñ

∣∣2
1

+
∣∣∂3

t v · ñ
∣∣2
2

+
∣∣∂2

t v · ñ
∣∣2
3

+ |∂tv · ñ|24 + |(b0 · ∂)v · ñ|24
)
dt,

E (3) :=

∫ T

0

(∥∥∂4
t v
∥∥2

1.5
+
∥∥∂4

t (b0 · ∂)η
∥∥2

1.5
+
∥∥∂3

t v
∥∥2

2.5
+
∥∥∂3

t (b0 · ∂)η
∥∥2

2.5

)
+
∥∥∂2

t v
∥∥2

3.5
+
∥∥∂2

t (b0 · ∂)η
∥∥2

3.5
+
∥∥∂tv∥∥2

4.5
+
∥∥∂t(b0 · ∂)η

∥∥2

4.5

)
dt.
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Thank you!
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