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consensus-based optimization (CBO)

CBO: an evolutionary type of gradient-free algorithms to find the
minimum of a given cost function.

The basic principles are the same as other aggregation (multi-point)
methods; Ant Colony Optimization, Particle Swarm Optimization,
Genetic algorithm, etc.:

1 First, spread the particles into the domain.
2 Second, evaluate current values from particles’ positions.
3 Third, process time-evolution toward the possible minimum

positions.

For a given L(x), we want xi (t) to approach x∗ := argminx∈Rd L(x).
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consensus-based optimization (CBO)

Therefore, each particle explores the domain based on the values of
other particles.

xi = i-th agent’s guess for argminx∈Rd L(x)

Iterate on t ∈ N:

xi (t + 1) = xi (t) + (interaction with other xj(t)’s), i = 1, . . . ,N

Then, we have the following three questions:
1 [Consensus] xi (t)− xj(t) decays to zero.
2 [Convergence] all xi (t) converge to its limit xi (∞).
3 [Optimality] xi (∞) ≈ argminx∈Rd L(x) for some i .

In a common multi-point algorithm, these three conditions may not be
satisfied, but works well in practical problems with high probability.
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consensus-based optimization (CBO)

Our interests lies in the consensus and convergence of the following
version of the CBO algorithm.

Algorithm [K.–Ha–Jin–Kim 2022] based on [Carrillo–Jin–Li–Zhu 2021]

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

γ > 0, ηi,`t ∼ N (0,
√
ζ) for each i , `, t and

X̄ i,∗
t := argminx∈{X j

t |j∈Ni (t)} L(x), Ni (t) ⊂ {1, 2, . . . ,N}.

This discrete time-evolution is based on the following stochastic
dynamics.

dX i
t = λ(X̄ i,∗

t − X i
t )dt + σ diag(X̄ i,∗

t − X i
t )dW i

t ,

which is surely gradient-free.
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consensus-based optimization (CBO)

SIMULATIONS:

Figure: Initial particle distribution and the Rastrigin cost function

Figure: Particle distribution at (left) t = 2, (middle) t = 10, (right) t = 50 7 / 47
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consensus-based optimization (CBO)

Figure: Animated simulations
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Previous works

Proposal of algorithms & Analysis of the convergence

• [Askari-Sichani–Jalili 2013] proposed and analyzed CBO without
noise

• [Pinnau–Totzeck–Tse–Martin 2017] proposed CBO with noise

• [Carrillo–Choi–Totzeck–Tse 2018] analyzed the convergence of the
kinetic CBO dynamics

• [Ha–Jin–Kim 2020,2021] analyzed the convergence of a simplified
CBO algorithm.

• [Fornasier–Huang–Pareschi–Sünnen 2020] proposed CBO on
hypersurfaces

• [Kim–Kang–Kim–Ha–Yang 2020] proposed CBO on the Stiefel
manifold

• [Carrillo–Jin–Li–Zhu 2021] proposed CBO for high dimensional
problems
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Two examples in Literature

The exploration of CBO algorithm has two parts of randomness.

Algorithm with interaction network [Askari-Sichani–Jalili 2013]

xi (t + 1) = xi (t) + γ(x̄∗i (t)− xi (t)), x̄∗i (t) = argminxk (t):k∈Ni (t) L(·)

Algorithm for noisy trajectory [Pinnau–Totzeck–Tse–Martin 2017]

dX i
t = λ(X̄ ∗t − X i

t )dt + σ|X̄ ∗t − X i
t |dW i

t ,

with

X̄ ∗t :=
1∑N

j=1 e
−βL(X j

t )

N∑
j=1

e−βL(X
j
t )X j

t .

The second X̄ ∗t is from the Laplace principle, which converges to the
argument minimum as β →∞.
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Algorithm in [Pinnau–Totzeck–Tse–Martin 2017]

Algorithm [Pinnau–Totzeck–Tse–Martin 2017]

dX i
t = λ(X̄ ∗t − X i

t )dt + σ|X̄ ∗t − X i
t |dW i

t with

X̄ ∗t =
1∑N

j=1 e
−βL(X j

t )

N∑
j=1

e−βL(X
j
t )X j

t .

We can formally send N →∞ to get

X̄ ∗t →
1∫

Rd e−βL(x)dρt

∫
Rd

e−βL(x)xdρt , ρt : prob. measure of X i
t .

If L has a unique minimizer x∗ in the support of ρt , then

m[ρt ] :=
1∫

Rd e−βL(x)dρt

∫
Rd

e−βL(x)xdρt→ x∗ as β →∞.
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Mean-field limit to the kinetic dynamics

From the mean-field limit process, the dynamics of

dX i
t = λ(X̄ ∗t − X i

t )dt + σ|X̄ ∗t − X i
t |dW i

t

becomes dynamics of the density ρt ∈ P(Rd) as a Fokker-Planck
equation:

∂tρt = λ∇ · ((x −m[ρt ])ρt) +
σ2

2
∆(|x −m[ρt ]|2ρt).

Theorem (Convergence) [Pinnau–Totzeck–Tse–Martin 2017]

If λ is large enough (compared to d , σ2, and e−β), then E(ρt) converges
and

Var(ρt) = O(e−ct), t →∞.

Idea:
d

dt
Var(ρt) = −2λVar(ρt) + (dσ2/2)

∫
(x −m[ρt ])

2dρt .
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Convergence for different noise

The same argument works with different multiplicative noise.

Algorithm for high dimension [Carrillo–Jin–Li–Zhu 2021]

dX i
t = λ(X̄ ∗t − X i

t )dt + σ diag(X̄ ∗t − X i
t )dW i

t .

Then, ρt ∈ P(Rd) satisfies the following Fokker-Planck equation:

∂tρt = λ∇ · ((x −m[ρt ])ρt) +
σ2

2

d∑
i=1

∂ii ((x −m[ρt ])
2
i ρt).

Theorem (Convergence) [Carrillo–Jin–Li–Zhu 2021]

If λ is large enough (not depending on the dimension d), then E(ρt)
converges and

Var(ρt) = O(e−ct), t →∞.
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Optimality of kinetic CBO

The optimality of the result also can be proved partially for a
Fokker-Planck equation (actual proof is on SDE with a distributed initial
data):

∂tρt = λ∇ · ((x −m[ρt ])ρt) +
σ2

2
∆(|x −m[ρt ]|2ρt).

Theorem (Optimality) [Fornasier–Klock–Riedl, 2021]

Suppose that the cost function L is coercive (far-field) and the initial data
ρ0 is nonzero near the minimum point. If λ is large enough (compared to
d , σ2) and a tolerance constant ε is given, then large enough α satisfies∫

(x − x∗)
2dρt = O(e−ct), until it is less then ε.

Idea: if ρ0 contains the minimum point, then m[ρt ] ∼ x∗ for t > 0.
It requires a quantitative estimate for Laplace principle.
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Limitations of kinetic approach

The kinetic equation approximating the CBO model has two significant
differences from the original discrete-time optimization algorithm.

1 Lack of interaction network structure:
All the individuals are considered as not-distinguishable particles.
Therefore, we cannot consider ‘local’ communication between
particles, but ‘global’ all-to-all interactions happen.

2 Support of density functions covers the whole space:
Since the density function becomes positive for the whole space, its
searching space becomes the whole domain. It implies that we
already evaluate all the cost values, so that the optimal point is
already known.

We should get back to the discrete-time dynamics in order to analyze the
performance of algorithms.
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CBO with interaction network without noise

Before we proceed to the analysis of CBO with RBM, we consider the
case without noise. This problem is related to the first CBO algorithm.

Algorithm with interaction network [Askari-Sichani–Jalili 2013]

xi (t + 1) = xi (t) + γ(x̄∗i (t)− xi (t)), x̄∗i (t) = argminxk (t):k∈Ni (t) L(·)

Until now, we considered kinetic interpretation of the CBO dynamics.
From now on, we analyze discrete-time CBO algorithm itself.

Again, we have the following three questions:
1 [Consensus] xi (t)− xj(t) decays to zero.
2 [Convergence] all xi (t) converge to its limit xi (∞).
3 [Optimality] xi (∞) ≈ argminx∈Rd L(x) for some i .
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Algorithm in [Askari-Sichani–Jalili 2013]

We may rewrite the dynamics of [Askari-Sichani–Jalili 2013],

xi (t + 1) = xi (t) + γ(x̄∗i (t)− xi (t)), x̄∗i (t) = argminxk (t):k∈Ni (t) L(·),

as in the matrix form:

X (t + 1) = A(t)X (t).

Then, for small γ, A(t) is a diagonal-dominant stochastic matrix
(each entry≥ 0, each row sum= 1), where the diagonal term is (1− γ)
and there is only one off-diagonal term in each column, γ.

We expect that, if x̄∗i (t) = x̄∗j (t), then a kind of consensus works:

|xi (t + 1)− xj(t + 1)| ≤ (1− γ)|xi (t)− xj(t)|.
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Ergodicity coefficient

Question: How can we prove the consensus?
Answer: The Lyapunov approach as in the kinetic equation.

For a real vector x = (x1, . . . , xN) ∈ RN , we may set

D(x) := max
i,j
|xi − xj |.

For a stochastic matrix (each entry≥ 0, each row sum= 1) A = (aij), we
define its ergodicity coefficient as

α(A) := min
i,j

∑
k

min{aik , ajk} ∈ [0, 1].

Note: α(A) = 1 ⇔ all rows of A are identical.

Proposition [Markov 1906]

D(Ax) ≤ (1− α(A))D(x).
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Ergodicity coefficient

Proposition [Markov 1906]

D(Ax) ≤ (1− α(A))D(x).

Different proofs can be found in Liturature, and we may verify it directly:

D(Az) = max
i,j

(∑
k

aikzk −
∑
k

ajkzk)

= max
i,j

(∑
k

(aik −min{aik , ajk})zk −
∑
k

(ajk −min{aik , ajk})zk
)

≤ max
i,j

(
1−

∑
k

min{aik , ajk}
)(

max
k

zk −min
k

zk
)

=
(
1−min

i,j

∑
k

min{aik , ajk}
)
D(z)

= (1− α(A))D(x).
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Ergodicity with interaction network

If we use the full network structure,

xi (t + 1) = xi (t) + γ(x̄∗i (t)− xi (t)), x̄∗i (t) = argmin{xk (t):k=1,...,N} L(·),

then the situation becomes simple.

For example, if there are 4 particles and the third is the smallest at t,

A(t) =


1− γ 0 γ 0
0 1− γ γ 0
0 0 1 0
0 0 γ 1− γ

 .
α(A) := min

i,j

∑
k

min{aik , ajk} ∈ [0, 1].

Clearly, α(A(t)) = γ > 0 and the diameter decays to zero:

D(A(t)x) ≤ (1− γ)D(x), t ≥ 0.
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Ergodicity with random network

However, if N1(t) = N2(t) = {1, 2} and N3(t) = N4(t) = {3, 4},
particles between {1, 2} and {3, 4} do not interact each other.

For example, the stochastic matrix looks like

A(t) =


1− γ γ 0 0
0 1 0 0
0 0 1− γ γ
0 0 0 1

 .
Since this is a block matrix, the ergodicity constant should be zero:

α(A) := min
i,j

∑
k

min{aik , ajk} = 0. (i = 1, j = 3)

Therefore, the random network should mix the particles enough along
time in order to make the diameter decay.
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Analytical result in [Askari-Sichani–Jalili 2013]

Define
A((t, s]) := A(t − 1)A(t − 2) . . .A(s) (t > s).

Proposition [Askari-Sichani–Jalili 2013]

Assume that there exists 0 = t0 < t1 < t2 < . . . satisfying

∞∑
i=1

α(A((ti , ti−1])) =∞.

Then D(X (t))→ 0 as t →∞.

Sketch of proof: From

X (tn) = A((tn, tn−1]) . . .A((t1, t0])X (0)

we have

D(X (tn)) = (1− α(A((tn, tn−1])) . . . (1− α(A((t1, t0])))D(X (0))

≤ exp(−α(A((tn, tn−1])) . . . exp(−α(A((t1, t0])))D(X (0)).
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An example of random network: Random Batch Method

Another way to introduce randomness to the dynamics, is a random
network.

Algorithm 2 [Carrillo–Jin–Li–Zhu 2021]

xi (t + 1) = xi (t) + (λI + diag(noise))(x̄∗i (t)− xi (t)),

x̄∗i (t) = argminxk (t):k∈Ni (t) L(·) or
1∑

j∈Ni (t)
e−βL(X

j
t )

∑
j∈Ni (t)

e−βL(X
j
t )X j

t ,

where the neighborhood Ni (t) is determined by the graph G (t), which is
a disjoint union of P-vertex complete graphs, determined by a randomly
chosen partition of {1, . . . ,N} into P-element sets.

Such partition of a graph is called Random Batch Method (RBM)
[Jin–Li–Liu, 2020].
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Random Batch Method(RBM)

Remaining question: how we achieve the sufficient condition.

Random Batch Method [Jin–Li–Liu, 2020] suggests a simple way to
generate a random network with mixing particles.

At each time n, we choose (randomly) a partition of {1, . . . ,N} with size
P, (2 ≤ P ≤ N): for m = dN/Pe,
{1, . . . ,N} = Bn1 ∪ · · · ∪ Bnm, |Bn` | = P for ` < m and |Bnm| ≤ P.

Figure: Pairing from 10 particles (P = 2)
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random network and the ergodicity

From RBM, we expect that

A((s + m, s]) := A(s + m − 1)A(s + m − 2) . . .A(s) (m > 0)

has a positive ergodicity with a high probability if m is large enough.
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Figure: (Left two) examples of random networks from RBM (P = 2,N = 36),
(Right) an average of independent 400 matrices.

Lemma: positive ergodicity of RBM

Assume that for any i and j , there exists one batch at a time
t ∈ [s, s + m) containing i and j . Then, α(A((s + m, s])) ≥ γ(1− γ)m.
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Consensus with RBM

Extending the result of [Askari-Sichani–Jalili 2013], we may prove that
RBM also guarantees the consensus almost surely.

First, from ergodicity argument, we have

D(X (tkm)) ≤ exp
(
− γ(1− γ)m

k∑
s=1

Gs,m
)
D(X (0)),

where Gs,m is a boolean random variable that becomes 1 if there exists
one batch at a time t ∈ [(s − 1)m, sm) containing both i and j . Then,

lim
k→∞

1
k

k∑
s=1

Gs,m = E[Gs,m] = pm > 0.

Therefore, we conclude the decay of the diameter

D(X (tkm)) ≤ exp(−Λ(m, k)k)D(X (0)),

lim
k→∞

Λ(m, k) = γ(1− γ)mpm.

In other words, the algorithm satisfy consensus.
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Stochastic dynamics; Geometric Brownian Motion

Geometric Brownian motion: When the noise differs by the state
values, particle trajectory may converge to the equilibrium.

Let St be the process following

dSt = −µStdt + σStdBt , µ, σ ∈ R,
= St(−µdt + σdBt).

Then, from dSt/St , St has an explicit solution;

St = S0 exp
(
−(µ+ σ2/2)t + σBt

)
.

Therefore, as t →∞, St tends to zero.

“Multiplicative noise may result convergence (µdt & σdBt)."
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Main result: Consensus of a general CBO algorithm

Multiplicative noise, whole domain, linear reverting drift:
⇒ almost sure convergence.

1 There are many interacting particles.
2 The consensus, i.e., the decay of relative positions.
3 The discrete-time dynamics requires analysis of ergodicity.

Algorithm 1 [K.–Ha–Jin–Kim 2022]

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

γ > 0, ηi,`t ∼ N (0,
√
ζ) for each i , `, t and

X̄ i,∗
t := argminx∈{X j

t |j∈Ni (t)} L(x), Ni (t) ⊂ {1, 2, . . . ,N}.
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Main result: Consensus of a general CBO algorithm

For the CBO algorithm

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

we assume X̄ i,∗
t is in the convex hull of information at i :

X̄ i,∗
t :=

∑
j∈Ni (t)

fij(t)X j
t : convex combination,

∑
j∈Ni (t)

fij(t) = 1, ∀i .

Theorem (K.–Ha–Jin–Kim 2022)

For sufficiently small (not depending on d) ζ := Var(ηi,lt ),
(1) for some positive constant ε,

Emax
i,j
‖X i

t − X j
t ‖ = O(e−εt), t →∞.

(2) the following holds almost surely: for some positive constant ε,

max
i,j
‖X i

t − X j
t ‖ = O(e−εt), t →∞.
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Ergodicity argument?

A(t) =


1− γ γ 0 0
0 1 0 0
0 0 1− γ γ
0 0 0 1


becomes

Aε(t) =


1− γ+ε γ−ε 0 0

0 1 0 0
0 0 1− γ+ε γ−ε
0 0 0 1

 .
Then, A is stochastic but can have negative elements and negative
ergodicity.
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Ergodicity coefficient revisited

For a real vector x = (x1, . . . , xN) ∈ RN , define

D(x) := max
i,j
|xi − xj |.

For a matrix P = (pij) with “each entry∈ R, each row sum= 1”,
define its ergodicity coefficient as

α(P) := min
i,j

∑
k

min{pik , pjk} ∈ (−∞, 1].

Note: α1(P) = 1 ⇔ all rows of P are same.

Proposition [Alpin–Gabassov 1976]

D(Px) ≤ (1− α(P))D(x).
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Reformulation of the algorithm

We may reformulate the dynamics

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

into the matrix form:

xlt+1 =
[
(1− γ)IN + γCt−H`

t (IN − Ct)
]
x`t , 1 ≤ ` ≤ d , t ≥ 0,

with Ct := (fij(X
1
t , . . . ,X

N
t ))1≤i,j≤N , x`t := (x1,`

t , . . . , xN,`t )>, and

H`
n := diag(η1,`

n , . . . , ηN,`n ).

The basic idea is the same as dynamics without noise.

D(x`n+1) ≤ [1− α(product of n − n0 + 1 matrices)]D(x`n0
) < D(x`n0

).
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Proof of the Main Result

From the analysis without noise, we may set

A(t) := (1− γ)IN + γCt ,

then the ergodicity of A is the same as before:

α
(
A(s + m − 1)A(s + m − 2) . . .A(s)

)
≥ α

(
γ(1− γ)m−1

s+m−1∑
r=s

Cr

)
≥ γ(1− γ)m−1Gs,m.

Again, Gs,m is 1 if the network is mixed enough, and 0 otherwise.

In the noisy case, the transition matrix is no more A(t) but Aε(t),

Aε(t) =
[
(1− γ)IN + γCs−H`

s (IN − Cs)
]

=: A(s) + B(s).

Our strategy is to consider B(s) := −H`
s (IN − Cs) as error terms.

36 / 47



Introduction kinetic CBO with noise CBO with intearction network With noise and random interactions Summary

Properties of ergodicity coefficient

Lemma (sub-additivity and worst-case estimation)

1 α(A + B) ≥ α(A) + α(B),

2 α(B) ≥ −‖B‖1,∞, where ‖B‖1,∞ := max
1≤i≤N

N∑
j=1

|aij |.

For example,
α [A(s) + B(s)]

≥ α(A(s)) + α(B(s))

≥ α(A(s))− ‖B‖1,∞
= α(A(s))− ‖ − H`

s (IN − Cs)‖1,∞
≥ α(A(s))− 2‖H`

s ‖1,∞.

Therefore, small noise ε(s) := 2‖H`
s ‖1,∞ could be absorbed to α(A(s)).
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Proof of the Main Result

Note that α(A(s)) is usually zero, so we consider a series as before.
We expand the matrix multiplications to get

α
(
[A(s + m − 1) + B(s + m − 1)][A(s + m − 2) + B(s + m − 2)] . . . [A(s) + B(s)]

)
≥ γ(1− γ)m−1Gs,m−2 [(1 + ε(s + m − 1)) · · · (1 + ε(s))− 1], ε(s) := 2‖H`

s ‖1,∞.

Note that the error term vanishes as the noise strength goes zero,

max
t,i,`
|ηi,`t |2 → 0.

Hence, if the variance of noise is small enough, then it seems that

α(product of the matrices) > 0.

A rigorous proof needs the law of large numbers.
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Proof of the Main result

For n ∈ [km, (k + 1)m), we conclude

D(x`n) ≤ exp

[
− γ(1− γ)m−1

k∑
j=1
G(j−1)m,jm

+
k+1∑
j=1

2
[(

1 + 2‖H`
jm−1‖∞

)
· · ·
(
1 + 2‖H`

(j−1)m‖∞
)
− 1
] ]
D(x`0)

= exp

[
− γ(1− γ)m−1

(
1
k

k∑
j=1
G(j−1)m,jm

)
·
k

n
· n

+

(
1

k + 1

k+1∑
j=1

2
[(

1 + 2‖H`
jm−1‖∞

)
· · ·
(
1 + 2‖H`

(j−1)m‖∞
)
− 1
])
·
k + 1
n
· n
]
D(xl0).

Now we can use the strong law of large numbers to estimate the average
values in the decay constant to conclude the result:

D(xln) exponentially decays almost surely.

39 / 47



Introduction kinetic CBO with noise CBO with intearction network With noise and random interactions Summary

Optimality argument for CBO algorithm

We have proved that the CBO algorithm terminates with exponential
convergence speed.

Our remaining question is the optimality of the final result.

Unfortunately, we only have little information about it.

In the kinetic level, the optimality is guaranteed if ρ0 is nonzero
around the global minimum x∗.
However, this implies that we already evaluate the global minimum
by the current candidate particles.
Since m[ρt ] ∼ x∗ is critically used, this makes critical difficulty.
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Monotonicity of CBO algorithm

A partial optimality result can be written when X̄ i,∗
t is the argument

minimum of L:{
X i
t+1 = X i

t + (γI + diag(ηi,1t , . . . ηi,dt ))(X̄ i,∗
t − X i

t ), i = 1, · · · ,N,
X̄ i,∗
t := X k

t with k = min argminj∈[i ]t L(X j
t ).

Proposition (Monotonicity of the optimum candidate)

For all n ≥ 0, we have

min
1≤j≤N

L(X j
n+1) ≤ min

1≤j≤N
L(X j

n).

It guarantees that our guesses on minimizer get improved along time.
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Numerical simulations

In principle, the particles’ initial positions should surround the global
minimum.
In practice, the simulation on Rastrigin functions suggests high
probabilities to find the minimum, more than 88%:

N = 100, γ = 0.01, ζ = 0.5,P = 10, d = 2, . . . , 10.

Figure: The landscape of Rastrigin function in d=2 (2D).
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Numerical simulations

The simulation result shows that if P gets smaller,
then the success rate grows but the cost of computation also grows.

Figure: Success rates from 1000 simulations.
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Numerical simulations
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Figure: Average number of steps until stopping criterion holds.

The stopping criterion is made with the change of positions,

N∑
i=1

|x in+1 − x in|2 < 10−3.
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Summary and remaining questions

Remarks
1 The convergence of CBO algorithm holds with multiplicative
and heterogeneous noise.

2 The particles searches the minimizer along noisy sample paths in
initial convex hull with randomized exploration direction.

3 No performance estimates to find the global minimizer.
4 The number of steps differ from the batch size P and dimension d ,

however, there is no clear explanation on it.

Future directions
1 Optimality of kinetic CBO dynamics when the initial data does not

contains the global minimizer. (for example, an annulus)
2 Optimality of particle CBO dynamics in a simple situation, for

example, in 1D.
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Thank you very much
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