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Introduction

Active scalar equations

We are interested on a type of active scalar equations on
Td × [0,∞) (or Rd × [0,∞)):{

∂tθ + u · ∇θ = −κ(−∆)γθ + S,
u = Mν [θ], θ(x ,0) = θ0(x)

(1.1)

where the vector field u is related to θ by some operator Mν [·].
Here S, θ0 are some given functions.
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Set-up

I Unknown functions: (u, θ) = (u, θ)(x , t)
I u is a vector and θ is a scalar
I S, θ0 are given
I d : Dimension (mainly d = 2 or 3)
I ν, κ ∈ [0,∞): “diffusive” constants
I γ ∈ (0,1]

I Mν : A Fourier multiplier operator which relates u and θ,
and Mν depends on ν

5 / 65 Anthony Suen Active scalar equations



Active scalar equations

Introduction

What are Mν ’s?

Mν behaves drastically different for cases ν > 0 and ν = 0:

I M̂ν [θ](k) ≈ |k |−2θ̂(k) when ν > 0;

I M̂ν=0[θ](k) ≈ |k |θ̂(k) when ν = 0.
Hence Mν is smoothing of order 2 for ν > 0, but M0 becomes
singular of order 1.
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Some more assumptions

We further impose:
I div(u) = 0 (divergence-free for u)
I θ0, S are mean-zero on Td
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Motivation

Active scalar equations have many applications on fluid
mechanics:
I vorticity formulation of the 2D Euler equation (equation for
ω);

I surface quasi-geostrophic (SQG) equation (for
u = ∇⊥(−∆)−

1
2 θ);

I *magneto-geostrophic (MG) equation (comes from
incompressible MHD);

I incompressible porous media (IPM) equation, etc.
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MG equations

One important example comes from MG equations. The
original model is given by (θ is the buoyancy field)

∂tθ + u · ∇θ = κ∆θ + S (1.2)

The constitutive law is obtained from the linear system

e3 × u = −∇P + e2 · ∇b + θe3 + ν∆u, (1.3)
0 = e2 · ∇u + ∆b, (1.4)

∇ · u = 0,∇ · b = 0, (1.5)

where (e1,e2,e3) is the standard Cartesian unit vectors, P is
the pressure and b is the magnetic field.
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MG equations (cont’d)

Vector manipulations of (1.3)-(1.5) give the following expression

{[ν∆2 − (e2 · ∇)2]2 + (e3 · ∇)2∆}u
= −[ν∆2 − (e2 · ∇)2]∇× (e3 ×∇θ) (1.6)

+ (e3 · ∇)∆(e3 ×∇θ).

Hence by “solving” u in terms of θ from (1.6), we can write
u = Mν [θ] and the explicit expression Mν are given by...
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MG equations (cont’d)

(̂Mν)1(k) = [k2k3|k |2 − k1k3(k2
2 + ν|k |4)]D(k)−1,

(̂Mν)2(k) = [−k1k3|k |2 − k2k3(k2
2 + ν|k |4)]D(k)−1,

(̂Mν)3(k) = [(k2
1 + k2

2 )(k2
2 + ν|k |4)]D(k)−1,

where

D(k) = |k |2k2
3 + (k2

2 + ν|k |4)2.
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Directions of study

In view of the class of active scalar equations (1.1), we mainly
discuss the cases when:
I (Diffusive) κ > 0, ν ≥ 0 and γ = 1
I (Non-diffusive) κ = 0 and ν ≥ 0
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Diffusive case
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Diffusive case

Diffusive case

In this section, we focus on the following class of active scalar
equations (we take κ = 1):{

∂tθ + u · ∇θ = ∆θ + S,
u = Mν [θ], θ(x ,0) = θ0(x),

(2.1)

where ν ≥ 0. The results on (2.1) can be summarised in
Theorem 2.1 and references can be found in [FS18, FS21,
FS22, FV11a].
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Results on Diffusive case

Theorem 2.1
Let θ0 and S be given with θ0 ∈ L2 and S ∈ L2 ∩ L∞. Then for
any ν ≥ 0, a Leray-Hopf weak solution θν to (2.1) evolving from
θ0 is a classical solution.
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Diffusive case

Remarks on Theorem 2.1

For the case of MG equations, we can also address the
convergence of θ when ν → 0. In [FS18], the authors showed
that given τ > 0, for all s ≥ 0, we have

lim
ν→0
‖(θν − θ)(t , ·)‖Hs = 0

whenever t ≥ τ .
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Diffusive case

Proof of Theorem 2.1

We focus on the singular case when ν = 0 and write θ = θν .
Theorem 2.1 can be proved in the following steps:
I consider the linear problem when u is replaced by a given

drift velocity v ;
I show that a weak solutions of the linear drift-diffusion

equation instantly become Hölder continuous in
space-time;

I by “bootstraping”, one can show higher regularity, i.e.
θ ∈ C∞;

I come back to the non-linear problem.
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Linear problem

Consider {
∂tθ + v · ∇θ = ∆θ + S,
θ(x ,0) = θ0(x),

(2.2)

where v is a given divergence-free vector field with vj = ∂xi Vij
and

Vij ∈ L∞(0,∞; BMO) ∩ L2(0,∞; H1).
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Diffusive case

Why we need Vij ∈ BMO?

Note that (2.2) is invariant under the scaling transformation

θ(x , t)→ θ(λ)(x , t) = θ(λx , λ2t),

hence L∞ is the critical Lebesgue space with respect to the
natural scaling of the equation.
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Diffusive case

Why we need Vij ∈ BMO? (cont’d)

I In the original non-linear problem, if we write uj = ∂xi Vij [θ],
then we can see that Vij becomes Calderón-Zygmund
zero-order operator, which maps L∞ to BMO.

I Hence for the linear problem, we assume Vij ∈ BMO as
well.
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Diffusive case

Linear problem (cont’d)

What we need:
(a) weak solutions θ to (2.2) are bounded above for positive

time;
(b) weak solutions θ to (2.2) are Hölder continuous in positive

time.
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From L2 to L∞

To prove (a), by using the De Giorgi method,
I we make use of a recurrence nonlinear relation between

consecutive truncations of θ at an increasing sequence of
levels;

I we also make use of the energy inequality (which holds for
weak solutions) that controls |∇θ| by θ, and the opposite
effect of the Sobolev inequality that controls θ by |∇θ|.
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From L2 to L∞ (cont’d)

More precisely, for h > 0, we have the following level set energy
inequality for the truncated function (θ − h)+:∫

|(θ(t2, x)− h)+|2dx + 2
∫ t2

t1

∫
|∇(θ − h)|2

≤
∫
|(θ(t1, x)− h)+|2dx + 2

∫ t2

t1

∫
|S(θ − h)+|

for all 0 < t1 < t2 <∞.
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From L2 to L∞ (cont’d)

Fix t0 > 0 and define

cn = sup
tn≤t≤t0

∫
|θn|2 + 2

∫ ∞
tn

∫
|∇θn|2,

where θn = (θ(t , ·)− hn)+, tn = t0 − t0
2n , hn = H − H

2n
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Diffusive case

From L2 to L∞ (cont’d)

With the help of Sobolev inequality, we can show that

cn ≤ Cd

(1
t

+ 1
)(2n( d+3

d−1 )

H
4

d−1

)
c

d+1
d−1
n−1.

for some constant Cd > 0 which depends only on d .
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From L2 to L∞ (cont’d)

By choosing H > 0 large enough, we have cn → 0 and θ is
bounded above by H. The outcome is that for all t ∈ (0,1], we
have

‖θ(·, t)‖L∞ ≤ Cd

[(
1 +

1
t

) d−1
4
(
‖θ0‖L2 + ‖S‖L2

)
+ ‖S‖L∞

]
.
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Proving Hölder regularity

Next to prove (b), let Qρ be the parabolic cylinder

Qρ = Bρ(x0)× [t0, t0 + δρ2]

for δ ∈ (0,1), ρ > 0 and (x0, t0) ∈ Td × (0,∞). We want to show
that the oscillation of θ in Qρ decays at some fixed rate as ρ
decreases.
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Diffusive case

Proving Hölder regularity (cont’d)

More precisely, we claim that(
sup
Q1

θ − inf
Q1
θ
)
≤ α

(
sup
Q2

θ − inf
Q2
θ
)
,

for some α ∈ (0,1) independent of R, where
Q1 = Br × [t1, t1 + δ0r2] and Q2 = BR × [t1, t1 + δ0R2] with R > r .
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Diffusive case

Proving Hölder regularity (cont’d)

Assume that h0 ≤ supQr0
θ where r0 > 0 is arbitrary. Using the

de Giorgi type estimates, one can show that

sup
Qr0/2

θ − h0 ≤ C
( |{θ > h0} ∩Qr0 |

1
d+2

r0

) 1
2
(

sup
Qr0

θ − h0

)
, (2.3)

where C = C(d , ‖Vij‖L∞t BMO) is a positive constant.
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Diffusive case

Proving Hölder regularity (cont’d)

The key application of (2.3) is to pick an increasing sequence
Hn such that

Hn := sup
Q2

θ −
(supQ2

θ − infQ2 θ)

2n ,

then Hn → sup
Q2

θ and for sufficiently large n1 (needed to be

independent of R), we have

C
( |{θ > Hn1} ∩Q2|

1
d+2

R

) 1
2
<

1
2
.
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Proving Hölder regularity (cont’d)

Then we have

sup
Q1

θ ≤ Hn1 +
1
2

(sup
Q2

θ − Hn1),

and hence(
sup
Q1

θ − inf
Q1
θ
)
≤
(

1− 1
2n1+2

)(
sup
Q2

θ − inf
Q2
θ
)
.

This means that the oscillation of θ decays at a fixed rate with
respect to distance, which implies Hölder continuity of θ at the
arbitrary point (x0, t1).
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Non-diffusive case
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Non-diffusive case

In this section, we focus on the following class of active scalar
equations: {

∂tθ + u · ∇θ = S,
u = Mν [θ], θ(x ,0) = θ0(x),

(3.1)

where ν ≥ 0. We subdivide the cases by
(i) when ν = 0;
(ii) when ν > 0.

For simplicity, we fix d = 3 (which is consistent with the MG
equations).
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Non-diffusive case

Case (i) when ν = 0

I When ν = 0, the equation (3.1) is locally wellposed in
analytic class of functions; see [FV11b].

I The idea is that when ν = 0, there is at most one derivative
loss in x .
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Non-diffusive case

Gevrey-space

Fix r > 3. A function θ ∈ C∞(R3) belongs to the Gevrey class
Gs where s ≥ 1, if there exists τ > 0, known as the
Gevrey-class radius, such that the Gs

τ -norm is finite, i.e.

‖θ‖2Gs
τ

= ‖Λr eτΛ
1
s θ‖2L2 =

∑
k∈Z3

∗

|k |2r e2τ |k |
1
s |θ̂(k)|2.
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Non-diffusive case

Gevrey-space (cont’d)

I the exponent r > 3 gives us some “freedom” in the
analysis.

I Since we are working in the mean-free setting, we take
Z3
∗ = {k ∈ Z3 : |k | 6= 0} and we define Gs := ∪τ>0Gs

τ .
I We point out that for the case when s = 1, Gs gives the

space of analytic functions.
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Non-diffusive case

Local-in-time existence in analytic space

We take L2-inner product of (3.1) with Λ2r e2τΛθ and obtain

1
2

d
dt
‖θ‖2Gs

τ
− τ̇‖Λ

1
2 θ‖2Gs

τ

= 〈u · ∇θ,Λ2r e2τΛθ〉+ 〈S,e2τΛ
1
s θ〉 (3.2)

where Λ = (−∆)
1
2 and τ = τ(t) > 0 is the radius of

convergence.
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Non-diffusive case

Local-in-time existence in analytic space (cont’d)

Treating u as ∇θ, we can show that

|〈u · ∇θ,Λ2r e2τΛθ〉| ≤ C‖Λ
1
2 θ‖2Gs

τ
‖θ‖Gs

τ
,

hence if τ is chosen to be decreasing sufficiently fast, one can
obtain from (3.2) that d

dt ‖θ‖
2
Gs
τ
< 0 in short time, which gives

local existence of θ in analytic space.
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Non-diffusive case

Illposedness for MG equations

I In general, the equation (3.1) may not be wellposed in
Sobolev space.

I In the case of MG equation, the equation is in fact illposed
in Sobolev spaces; see [FV11b].

I This is due to the “evenness” of the operator Mν=0 (for the
Fourier multiplier) which prevents a commutator-type
cancellation.

I More precisely, we lost control on the term (when taking
u ≈ ∇θ) ∫

[(−∆)
s
2 (u · ∇θ)][(−∆)

s
2 θ].
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Non-diffusive case

Hadamard Illposedness

A Cauchy problem for a certain partial differential equation is
called wellposed in X in the sense of Hadamard, if
I for any initial data in X , the problem has a unique solution

in L∞(0,T ; X ), with T depending only on the initial data in
the X -norm, and

I the solution map Y → L∞(0,T ; X ) satisfies some
continuity properties, for a suitable space Y ⊂ X .
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Non-diffusive case

Illposedness for MG equations (cont’d)

To show illposedness,
I we construct a steady state and a sequence of

eigen-functions, with arbitrarily large eigenvalues, for the
linearized MG equation around this steady state.

I by a perturbative argument, one can further show that
linear Illposedness implies the Lipschitz Illposedness for
the nonlinear problem.

I the results are summarised in Theorem 3.1 which was
proved in [FV11b].
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Non-diffusive case

Illposedness for MG equations (cont’d)

Theorem 3.1
The non-diffusive MG equations are locally Lipschitz (X ,Y )
ill-posed in Sobolev spaces Y ⊂ X embedded in W 1,4(T3).
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Non-diffusive case

Case (ii) when ν > 0

I Given ν > 0 and initial datum θ0 ∈W s,3 with s > 0, we can
prove that (3.1) has a unique global-in-time solution
θ ∈W s,3; see [FS19].

I The main reason for the global-in-time existence is that,
the 2-order smoothing effect from Mν provides us better
control on ‖u‖L2

t L∞x
.

I The results are summarised in Theorem 3.2.
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Non-diffusive case

Global-in-time existence of W s,3 solutions

Theorem 3.2
Let ν > 0 and θ0 ∈W s,3 for s > 0, and let S = S(x) be a
C∞-smooth source term. Then we have

‖θ(·, t)‖W s,3

≤ C‖θ0‖W s,3 exp

(
C
∫ t

0
‖∇u(·, t̃)‖L∞dt̃ + Ct‖S‖W s,3

)
.

Here C > 0 is a dimensional constant.
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Non-diffusive case

Global-in-time existence in Gevrey space

I When the initial datum θ0 and forcing term S are in some
Gevrey-class Gs for s ≥ 1, we can prove that there exists
global-in-time Gevrey-class Gs solution to (3.1).

I The results are summarised in Theorem 3.3 which was
proved in [FS19].
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Non-diffusive case

Global-in-time existence in Gevrey space (cont’d)

Theorem 3.3
Fix ν > 0 and s ≥ 1. Let θ0 and S be of Gevrey-class s with
radius of convergence τ0 > 0. There exists a unique
Gevrey-class s solution θ to (3.1) on T3 × [0,∞) with radius of
convergence at least τ = τ(t) for all t ∈ [0,∞), where τ is a
decreasing function satisfying

τ(t) ≥ τ0e
−C

(
‖eτ0Λ

1
s θ0‖L2 +2‖eτ0Λ

1
s S‖L2

)
t
. (3.3)

Here C > 0 is a constant which depends on ν but independent
of t.

46 / 65 Anthony Suen Active scalar equations



Active scalar equations

Non-diffusive case

Proof of Theorem 3.3

We take L2-inner product of (3.1) with e2τΛ
1
s θ and obtain

1
2

d
dt
‖eτΛ

1
s θ‖2L2 − τ̇‖Λ

1
2s eτΛ

1
s θ‖2L2

≤
∣∣∣− 〈u · ∇θ,e2τΛ

1
s θ〉
∣∣∣+ ‖eτΛ

1
s S‖L2‖eτΛ

1
s θ‖L2 . (3.4)
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Non-diffusive case

Proof of Theorem 3.3 (cont’d)

The key is to show that∣∣∣∣−〈eτΛ
1
s (u · ∇θ),eτΛ

1
s θ〉
∣∣∣∣ ≤ Cτ‖eτΛ

1
s θ‖L2‖Λ

1
2s eτΛ

1
s θ‖2L2 , (3.5)

but how can we get that “extra” τ?
We make use of the divergence-free property of u, which gives

〈u · ∇Λr eτΛ
1
s θ,Λr eτΛ

1
s θ〉 = 0.
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Non-diffusive case

Proof of Theorem 3.3 (cont’d)

We then insert the above term to the non-linear term in
question and get∣∣∣〈u · ∇θ,e2τΛ

1
s θ〉
∣∣∣

=
∣∣∣〈u · ∇θ,e2τΛ

1
s θ〉 − 〈u · ∇eτΛ

1
s θ,eτΛ

1
s θ〉
∣∣∣

=
∣∣∣i(2π)3

∑
j+k=l

(û(j) · k)(θ̂(k) · ¯̂θ(l))eτ |l|
1
s (eτ |l|

1
s − eτ |k |

1
s )
∣∣∣,

where j , k , l ∈ Z3
∗ are the Fourier frequencies.
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Non-diffusive case

Proof of Theorem 3.3 (cont’d)

We make use of the inequality ex − 1 ≤ xex for x ≥ 0 and the
triangle inequality |k + j |

1
s ≤ |k |

1
s + |j |

1
s to obtain∣∣∣eτ |l| 1s − eτ |k |

1
s
∣∣∣ ≤ Cτ

|j |
|k |1−

1
s + |l |1−

1
s

eτ |l|
1
s eτ |k |

1
s .

This will give us the τ we need!
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Non-diffusive case

Proof of Theorem 3.3 (cont’d)

We also need the 2-order smoothing assumption on Mν to get

‖Λ2+ 1
2s eτΛ

1
s u‖L2 ≤ Cν‖Λ

1
2s eτΛ

1
s θ‖L2

and
‖Λ2eτΛ

1
s u‖L2 ≤ Cν‖eτΛ

1
s θ‖L2 ,

which will be important for showing (3.5).
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Non-diffusive case

Proof of Theorem 3.3 (cont’d)

Hence we obtain from (3.4) that

1
2

d
dt
‖eτΛ

1
s θ‖2L2 − τ̇‖Λ

1
2s eτΛ

1
s θ‖2L2

≤ Cτ‖eτΛ
1
s θ‖L2‖Λ

1
2s eτΛ

1
s θ‖2L2 + ‖eτΛ

1
s S‖L2‖eτΛ

1
s θ‖L2 .
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Non-diffusive case

Proof of Theorem 3.3 (cont’d)

Choose τ > 0 such that

τ̇ + Cτ‖eτΛ
1
s θ‖L2 = 0,

then we have

1
2

d
dt
‖eτΛ

1
s θ‖2L2 ≤ ‖eτΛ

1
s S‖L2‖eτΛ

1
s θ‖L2 ,

which gives

‖eτ(t)Λ
1
s θ(t)‖L2 ≤ ‖eτ0Λ

1
s θ0‖L2 + 2‖eτ0Λ

1
s S‖L2

and τ satisfies the lower bound (3.3).
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Other directions
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Other directions

Other directions

Due to limited time, there are still some other directions of study
which haven’t been discussed, for example:
I we can study the fractionally diffusive case for the equation

(1.1) when κ > 0, ν ≥ 0 and γ ∈ (0,1).
I the cases for ν = 0 and ν > 0 are very different.
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Other directions

Case when ν = 0

In [FRV12], the authors showed that the nonlocal operator
(−∆)γ produces a sharp dichotomy across the value γ = 1

2 :
I when γ ∈ (1

2 ,1), the equation (1.1) is locally wellposed in
Sobolev spaces;

I when γ ∈ (0, 1
2), the equation (1.1) becomes Lipschitz

ill-posed;
I when γ = 1

2 , the problem is globally well-posed for κ� 1,
respectively ill-posed for κ� 1.
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Other directions

Case when ν > 0

In [FS21,FS22], if S, θ0 ∈ H1, the authors proved that the
equation (1.1) has a global-in-time solution θ ∈ H1.
Furthermore, one has the following theorem about global
attractor:

Theorem 4.1
Let S ∈ L∞ ∩ H1. For ν, κ > 0 and γ ∈ (0,1], the solution map
πν(t) : H1 → H1 associated to (1.1) possesses a unique global
attractor Gν ⊂ H1.
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Other directions

Global attractor

A compact set Gν ⊂ H1 is a global attractor for πν(·) if
I πν(t)Gν = Gν for all t ∈ R;
I for any bounded set K , dist(πν(t)K ,Gν)→ 0 as t →∞,

where dist(A,B) = supa∈A infb∈B ‖a− b‖H1 .
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Other directions

Remarks on the global attractor

We can obtain some additional properties on the attractors Gν
under the assumption that γ ∈ [1

2 ,1], which gives
I Gν is fully invariant, namely

πν(t)Gν = Gν , ∀t ≥ 0.

I Gν is maximal in the class of H1-bounded invariant sets.
I Gν has finite fractal dimension.
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Other directions

Remarks on the global attractor (cont’d)

The reasons why we need to restrict to γ ∈ [1
2 ,1]:

I one need a bound for ‖∇u‖L∞ in terms of ‖(−∆)
1
2 + γ

4 θ‖L2 ;
I which can only be true when γ ≥ 1 (and d ≤ 3).

60 / 65 Anthony Suen Active scalar equations



Active scalar equations

Other directions

Some more directions

There are some future directions of study, for example:
I Address the average behaviour of the energy dissipation

rate by considering the limits of

κ〈|∇θκ,ν |2〉 = κ lim
T→∞

1
T

∫ T

0

∫
|∇θκ,ν |2dxds

as κ, ν → 0;
I Study how “odd” or “evenness” for the constitutive laws Mν

can affect the solutions of the abstract system (1.1).
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Thank You! :-)
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