On a class of active scalar equations with applications on MG equations Joint work with Prof. Susan Friedlander at USC

Anthony Suen

Department of Mathematics and Information Techology
The Education University of Hong Kong

Outline

Introduction

Diffusive case

Non-diffusive case

Other directions

Active scalar equations

Introduction

Introduction

Active scalar equations

We are interested on a type of active scalar equations on $\mathbb{T}^d \times [0,\infty)$ (or $\mathbb{R}^d \times [0,\infty)$):

$$\begin{cases}
\partial_t \theta + u \cdot \nabla \theta = -\kappa (-\Delta)^{\gamma} \theta + S, \\
u = M_{\nu}[\theta], \theta(x, 0) = \theta_0(x)
\end{cases}$$
(1.1)

where the vector field u is related to θ by some operator $M_{\nu}[\cdot]$. Here S, θ_0 are some given functions.

Set-up

- ▶ Unknown functions: $(u, \theta) = (u, \theta)(x, t)$
- \triangleright *u* is a vector and θ is a scalar
- \triangleright S, θ_0 are given
- ightharpoonup d: Dimension (mainly d = 2 or 3)
- $\nu, \kappa \in [0, \infty)$: "diffusive" constants
- $\gamma \in (0,1]$
- ▶ M_{ν} : A Fourier multiplier operator which relates u and θ , and M_{ν} depends on ν

What are M_{ν} 's?

 M_{ν} behaves drastically different for cases $\nu > 0$ and $\nu = 0$:

- $ightharpoonup \widehat{M_{\nu}[\theta]}(k) pprox |k|^{-2}\widehat{\theta}(k)$ when $\nu > 0$;
- $ightharpoonup \widehat{M_{\nu=0}[\theta]}(k) pprox |k| \hat{\theta}(k)$ when $\nu=0$.

Hence M_{ν} is smoothing of order 2 for $\nu > 0$, but M_0 becomes singular of order 1.

Some more assumptions

We further impose:

- $ightharpoonup \operatorname{div}(u) = 0$ (divergence-free for u)
- \blacktriangleright θ_0 , S are mean-zero on \mathbb{T}^d

Motivation

Active scalar equations have many applications on fluid mechanics:

- vorticity formulation of the 2D Euler equation (equation for ω);
- ▶ surface quasi-geostrophic (SQG) equation (for $u = \nabla^{\perp}(-\Delta)^{-\frac{1}{2}}\theta$);
- *magneto-geostrophic (MG) equation (comes from incompressible MHD);
- incompressible porous media (IPM) equation, etc.

MG equations

One important example comes from MG equations. The original model is given by (θ is the buoyancy field)

$$\partial_t \theta + u \cdot \nabla \theta = \kappa \Delta \theta + S \tag{1.2}$$

The constitutive law is obtained from the linear system

$$e_3 \times u = -\nabla P + e_2 \cdot \nabla b + \theta e_3 + \nu \Delta u, \tag{1.3}$$

$$0 = e_2 \cdot \nabla u + \Delta b, \tag{1.4}$$

$$\nabla \cdot u = 0, \nabla \cdot b = 0, \tag{1.5}$$

where (e_1, e_2, e_3) is the standard Cartesian unit vectors, P is the pressure and b is the magnetic field.

MG equations (cont'd)

Vector manipulations of (1.3)-(1.5) give the following expression

$$\{ [\nu \Delta^{2} - (\mathbf{e}_{2} \cdot \nabla)^{2}]^{2} + (\mathbf{e}_{3} \cdot \nabla)^{2} \Delta \} u$$

$$= -[\nu \Delta^{2} - (\mathbf{e}_{2} \cdot \nabla)^{2}] \nabla \times (\mathbf{e}_{3} \times \nabla \theta)$$

$$+ (\mathbf{e}_{3} \cdot \nabla) \Delta (\mathbf{e}_{3} \times \nabla \theta).$$
(1.6)

Hence by "solving" u in terms of θ from (1.6), we can write $u = M_{\nu}[\theta]$ and the explicit expression M_{ν} are given by...

MG equations (cont'd)

$$\widehat{(M_{\nu})}_{1}(k) = [k_{2}k_{3}|k|^{2} - k_{1}k_{3}(k_{2}^{2} + \nu|k|^{4})]D(k)^{-1},
\widehat{(M_{\nu})}_{2}(k) = [-k_{1}k_{3}|k|^{2} - k_{2}k_{3}(k_{2}^{2} + \nu|k|^{4})]D(k)^{-1},
\widehat{(M_{\nu})}_{3}(k) = [(k_{1}^{2} + k_{2}^{2})(k_{2}^{2} + \nu|k|^{4})]D(k)^{-1},$$

where

$$D(k) = |k|^2 k_3^2 + (k_2^2 + \nu |k|^4)^2.$$

Directions of study

In view of the class of active scalar equations (1.1), we mainly discuss the cases when:

- ▶ (Diffusive) $\kappa > 0$, $\nu \ge 0$ and $\gamma = 1$
- (Non-diffusive) $\kappa = 0$ and $\nu \ge 0$

Diffusive case

Diffusive case

In this section, we focus on the following class of active scalar equations (we take $\kappa=1$):

$$\begin{cases}
\partial_t \theta + u \cdot \nabla \theta = \Delta \theta + S, \\
u = M_{\nu}[\theta], \theta(x, 0) = \theta_0(x),
\end{cases}$$
(2.1)

where $\nu \geq$ 0. The results on (2.1) can be summarised in Theorem 2.1 and references can be found in [FS18, FS21, FS22, FV11a].

Results on Diffusive case

Theorem 2.1

Let θ_0 and S be given with $\theta_0 \in L^2$ and $S \in L^2 \cap L^\infty$. Then for any $\nu \geq 0$, a Leray-Hopf weak solution θ^{ν} to (2.1) evolving from θ_0 is a classical solution.

Remarks on Theorem 2.1

For the case of MG equations, we can also address the convergence of θ when $\nu \to 0$. In [FS18], the authors showed that given $\tau > 0$, for all $s \ge 0$, we have

$$\lim_{\nu\to 0}\|(\theta^\nu-\theta)(t,\cdot)\|_{H^s}=0$$

whenever $t \geq \tau$.

Proof of Theorem 2.1

We focus on the singular case when $\nu=0$ and write $\theta=\theta^{\nu}$. Theorem 2.1 can be proved in the following steps:

- consider the linear problem when u is replaced by a given drift velocity v;
- show that a weak solutions of the linear drift-diffusion equation instantly become Hölder continuous in space-time;
- by "bootstraping", one can show higher regularity, i.e. $\theta \in C^{\infty}$;
- come back to the non-linear problem.

Linear problem

Consider

$$\begin{cases} \partial_t \theta + \mathbf{v} \cdot \nabla \theta = \Delta \theta + \mathbf{S}, \\ \theta(\mathbf{x}, \mathbf{0}) = \theta_0(\mathbf{x}), \end{cases}$$
 (2.2)

where v is a given divergence-free vector field with $v_j = \partial_{x_i} V_{ij}$ and

$$V_{ij} \in L^{\infty}(0,\infty;BMO) \cap L^{2}(0,\infty;H^{1}).$$

Why we need $V_{ij} \in BMO$?

Note that (2.2) is invariant under the scaling transformation

$$\theta(x,t) \to \theta^{(\lambda)}(x,t) = \theta(\lambda x, \lambda^2 t),$$

hence L^{∞} is the critical Lebesgue space with respect to the natural scaling of the equation.

Why we need $V_{ij} \in BMO$? (cont'd)

- ▶ In the original non-linear problem, if we write $u_j = \partial_{x_i} V_{ij}[\theta]$, then we can see that V_{ij} becomes Calderón-Zygmund zero-order operator, which maps L^{∞} to BMO.
- ► Hence for the linear problem, we assume $V_{ij} \in BMO$ as well.

Linear problem (cont'd)

What we need:

- (a) weak solutions θ to (2.2) are bounded above for positive time;
- (b) weak solutions θ to (2.2) are Hölder continuous in positive time.

From L^2 to L^∞

To prove (a), by using the De Giorgi method,

- we make use of a recurrence nonlinear relation between consecutive truncations of θ at an increasing sequence of levels;
- we also make use of the energy inequality (which holds for weak solutions) that controls $|\nabla \theta|$ by θ , and the opposite effect of the Sobolev inequality that controls θ by $|\nabla \theta|$.

More precisely, for h > 0, we have the following level set energy inequality for the truncated function $(\theta - h)_+$:

$$\int |(\theta(t_2, x) - h)_+|^2 dx + 2 \int_{t_1}^{t_2} \int |\nabla(\theta - h)|^2$$

$$\leq \int |(\theta(t_1, x) - h)_+|^2 dx + 2 \int_{t_1}^{t_2} \int |S(\theta - h)_+|$$

for all $0 < t_1 < t_2 < \infty$.

Fix $t_0 > 0$ and define

$$c_n = \sup_{t_n \le t \le t_0} \int |\theta_n|^2 + 2 \int_{t_n}^{\infty} \int |\nabla \theta_n|^2,$$

where
$$\theta_n = (\theta(t, \cdot) - h_n)_+, t_n = t_0 - \frac{t_0}{2^n}, h_n = H - \frac{H}{2^n}$$

With the help of Sobolev inequality, we can show that

$$c_n \leq C_d \Big(rac{1}{t} + 1 \Big) \Big(rac{2^{n(rac{d+3}{d-1})}}{H^{rac{d}{d-1}}} \Big) c_{n-1}^{rac{d+1}{d-1}}.$$

for some constant $C_d > 0$ which depends only on d.

By choosing H > 0 large enough, we have $c_n \to 0$ and θ is bounded above by H. The outcome is that for all $t \in (0, 1]$, we have

$$\|\theta(\cdot,t)\|_{L^{\infty}} \leq C_{\mathcal{O}}\Big[\Big(1+rac{1}{t}\Big)^{rac{d-1}{4}}\Big(\| heta_0\|_{L^2}+\|S\|_{L^2}\Big)+\|S\|_{L^{\infty}}\Big].$$

Proving Hölder regularity

Next to prove (b), let Q_{ρ} be the parabolic cylinder

$$Q_{\rho} = B_{\rho}(x_0) \times [t_0, t_0 + \delta \rho^2]$$

for $\delta \in (0,1)$, $\rho > 0$ and $(x_0,t_0) \in \mathbb{T}^d \times (0,\infty)$. We want to show that the oscillation of θ in Q_ρ decays at some fixed rate as ρ decreases.

More precisely, we claim that

$$\Big(\sup_{Q_1}\theta-\inf_{Q_1}\theta\Big)\leq\alpha\Big(\sup_{Q_2}\theta-\inf_{Q_2}\theta\Big),$$

for some $\alpha \in (0,1)$ independent of R, where

$$Q_1 = B_r \times [t_1, t_1 + \delta_0 r^2]$$
 and $Q_2 = B_R \times [t_1, t_1 + \delta_0 R^2]$ with $R > r$.

Assume that $h_0 \leq \sup_{Q_{r_0}} \theta$ where $r_0 > 0$ is arbitrary. Using the de Giorgi type estimates, one can show that

$$\sup_{Q_{r_0/2}} \theta - h_0 \le C \left(\frac{|\{\theta > h_0\} \cap Q_{r_0}|^{\frac{1}{d+2}}}{r_0} \right)^{\frac{1}{2}} \left(\sup_{Q_{r_0}} \theta - h_0 \right), \quad (2.3)$$

where $C = C(d, ||V_{ij}||_{L^{\infty}_{t}BMO})$ is a positive constant.

The key application of (2.3) is to pick an increasing sequence H_n such that

$$H_n := \sup_{Q_2} \theta - \frac{\left(\sup_{Q_2} \theta - \inf_{Q_2} \theta\right)}{2^n},$$

then $H_n \to \sup_{Q_2} \theta$ and for sufficiently large n_1 (needed to be independent of R), we have

$$C\Big(\frac{|\{\theta>H_{n_1}\}\cap Q_2|^{\frac{1}{d+2}}}{R}\Big)^{\frac{1}{2}}<\frac{1}{2}.$$

Then we have

$$\sup_{Q_1} \theta \le H_{n_1} + \frac{1}{2} (\sup_{Q_2} \theta - H_{n_1}),$$

and hence

$$\left(\sup_{Q_1}\theta-\inf_{Q_1}\theta\right)\leq \left(1-\frac{1}{2^{n_1+2}}\right)\left(\sup_{Q_2}\theta-\inf_{Q_2}\theta\right).$$

This means that the oscillation of θ decays at a fixed rate with respect to distance, which implies Hölder continuity of θ at the arbitrary point (x_0, t_1) .

Active scalar equations

Diffusive case

Non-diffusive case

Non-diffusive case

In this section, we focus on the following class of active scalar equations:

$$\begin{cases}
\partial_t \theta + u \cdot \nabla \theta = S, \\
u = M_{\nu}[\theta], \theta(x, 0) = \theta_0(x),
\end{cases}$$
(3.1)

where $\nu \geq 0$. We subdivide the cases by

- (i) when $\nu = 0$;
- (ii) when $\nu > 0$.

For simplicity, we fix d = 3 (which is consistent with the MG equations).

Case (i) when $\nu = 0$

- When $\nu = 0$, the equation (3.1) is locally wellposed in analytic class of functions; see [FV11b].
- ▶ The idea is that when $\nu = 0$, there is at most one derivative loss in x.

Gevrey-space

Fix r>3. A function $\theta\in C^\infty(\mathbb{R}^3)$ belongs to the Gevrey class G^s where $s\geq 1$, if there exists $\tau>0$, known as the Gevrey-class radius, such that the G^s_{τ} -norm is finite, i.e.

$$\|\theta\|_{G^{s}_{\tau}}^{2} = \|\Lambda^{r}e^{\tau\Lambda^{\frac{1}{s}}}\theta\|_{L^{2}}^{2} = \sum_{k \in \mathbb{Z}^{3}_{s}} |k|^{2r}e^{2\tau|k|^{\frac{1}{s}}}|\widehat{\theta}(k)|^{2}.$$

Gevrey-space (cont'd)

- ▶ the exponent r > 3 gives us some "freedom" in the analysis.
- Since we are working in the mean-free setting, we take $\mathbb{Z}^3_* = \{k \in \mathbb{Z}^3 : |k| \neq 0\}$ and we define $G^s := \cup_{\tau > 0} G^s_{\tau}$.
- ▶ We point out that for the case when s = 1, G^s gives the space of analytic functions.

Local-in-time existence in analytic space

We take L^2 -inner product of (3.1) with $\Lambda^{2r}e^{2\tau\Lambda}\theta$ and obtain

$$\frac{1}{2} \frac{d}{dt} \|\theta\|_{G_{\tau}^{s}}^{2} - \dot{\tau} \|\Lambda^{\frac{1}{2}}\theta\|_{G_{\tau}^{s}}^{2}$$

$$= \langle u \cdot \nabla \theta, \Lambda^{2r} e^{2\tau \Lambda}\theta \rangle + \langle S, e^{2\tau \Lambda^{\frac{1}{s}}}\theta \rangle \tag{3.2}$$

where $\Lambda = (-\Delta)^{\frac{1}{2}}$ and $\tau = \tau(t) > 0$ is the radius of convergence.

Local-in-time existence in analytic space (cont'd)

Treating u as $\nabla \theta$, we can show that

$$|\langle u \cdot \nabla \theta, \Lambda^{2r} e^{2\tau \Lambda} \theta \rangle| \leq C \|\Lambda^{\frac{1}{2}} \theta\|_{G_{\tau}^{s}}^{2} \|\theta\|_{G_{\tau}^{s}},$$

hence if τ is chosen to be decreasing sufficiently fast, one can obtain from (3.2) that $\frac{d}{dt}\|\theta\|_{G^s_{\tau}}^2 < 0$ in short time, which gives local existence of θ in analytic space.

Illposedness for MG equations

- In general, the equation (3.1) may not be wellposed in Sobolev space.
- In the case of MG equation, the equation is in fact illposed in Sobolev spaces; see [FV11b].
- This is due to the "evenness" of the operator $M_{\nu=0}$ (for the Fourier multiplier) which prevents a commutator-type cancellation.
- More precisely, we lost control on the term (when taking $u \approx \nabla \theta$)

$$\int [(-\Delta)^{\frac{s}{2}}(u\cdot\nabla\theta)][(-\Delta)^{\frac{s}{2}}\theta].$$

Hadamard Illposedness

A Cauchy problem for a certain partial differential equation is called wellposed in *X* in the sense of Hadamard, if

- ▶ for any initial data in X, the problem has a unique solution in $L^{\infty}(0, T; X)$, with T depending only on the initial data in the X-norm, and
- ▶ the solution map $Y \to L^{\infty}(0, T; X)$ satisfies some continuity properties, for a suitable space $Y \subset X$.

Illposedness for MG equations (cont'd)

To show illposedness,

- we construct a steady state and a sequence of eigen-functions, with arbitrarily large eigenvalues, for the linearized MG equation around this steady state.
- by a perturbative argument, one can further show that linear Illposedness implies the Lipschitz Illposedness for the nonlinear problem.
- the results are summarised in Theorem 3.1 which was proved in [FV11b].

Illposedness for MG equations (cont'd)

Theorem 3.1

The non-diffusive MG equations are locally Lipschitz (X, Y) ill-posed in Sobolev spaces $Y \subset X$ embedded in $W^{1,4}(\mathbb{T}^3)$.

Case (ii) when $\nu > 0$

- ▶ Given $\nu > 0$ and initial datum $\theta_0 \in W^{s,3}$ with s > 0, we can prove that (3.1) has a unique global-in-time solution $\theta \in W^{s,3}$; see [FS19].
- ► The main reason for the global-in-time existence is that, the 2-order smoothing effect from M_{ν} provides us better control on $\|u\|_{L^{2}_{\nu}L^{\infty}_{\nu}}$.
- The results are summarised in Theorem 3.2.

Global-in-time existence of $W^{s,3}$ solutions

Theorem 3.2

Let $\nu > 0$ and $\theta_0 \in W^{s,3}$ for s > 0, and let S = S(x) be a C^{∞} -smooth source term. Then we have

$$\|\theta(\cdot,t)\|_{W^{s,3}} \le C\|\theta_0\|_{W^{s,3}} \exp\left(C\int_0^t \|\nabla u(\cdot,\tilde{t})\|_{L^\infty} d\tilde{t} + Ct\|S\|_{W^{s,3}}\right).$$

Here C > 0 is a dimensional constant.

Global-in-time existence in Gevrey space

- ▶ When the initial datum θ_0 and forcing term S are in some Gevrey-class G^s for $s \ge 1$, we can prove that there exists global-in-time Gevrey-class G^s solution to (3.1).
- ► The results are summarised in Theorem 3.3 which was proved in [FS19].

Global-in-time existence in Gevrey space (cont'd)

Theorem 3.3

Fix $\nu > 0$ and $s \ge 1$. Let θ_0 and S be of Gevrey-class s with radius of convergence $\tau_0 > 0$. There exists a unique Gevrey-class s solution θ to (3.1) on $\mathbb{T}^3 \times [0,\infty)$ with radius of convergence at least $\tau = \tau(t)$ for all $t \in [0,\infty)$, where τ is a decreasing function satisfying

$$\tau(t) \ge \tau_0 e^{-C\left(\|e^{\tau_0 \Lambda^{\frac{1}{S}}}\theta_0\|_{L^2} + 2\|e^{\tau_0 \Lambda^{\frac{1}{S}}}S\|_{L^2}\right)t}.$$
 (3.3)

Here C > 0 is a constant which depends on ν but independent of t.

Proof of Theorem 3.3

We take L^2 -inner product of (3.1) with $e^{2\tau\Lambda^{\frac{1}{8}}}\theta$ and obtain

$$\frac{1}{2} \frac{d}{dt} \| e^{\tau \Lambda^{\frac{1}{5}}} \theta \|_{L^{2}}^{2} - \dot{\tau} \| \Lambda^{\frac{1}{25}} e^{\tau \Lambda^{\frac{1}{5}}} \theta \|_{L^{2}}^{2} \\
\leq \left| - \langle u \cdot \nabla \theta, e^{2\tau \Lambda^{\frac{1}{5}}} \theta \rangle \right| + \| e^{\tau \Lambda^{\frac{1}{5}}} S \|_{L^{2}} \| e^{\tau \Lambda^{\frac{1}{5}}} \theta \|_{L^{2}}. \tag{3.4}$$

The key is to show that

$$\left| -\langle e^{\tau \Lambda^{\frac{1}{s}}} (u \cdot \nabla \theta), e^{\tau \Lambda^{\frac{1}{s}}} \theta \rangle \right| \leq C_{\tau} \| e^{\tau \Lambda^{\frac{1}{s}}} \theta \|_{L^{2}} \| \Lambda^{\frac{1}{2s}} e^{\tau \Lambda^{\frac{1}{s}}} \theta \|_{L^{2}}^{2}, \quad (3.5)$$

but how can we get that "extra" τ ? We make use of the divergence-free property of u, which gives

$$\langle u \cdot \nabla \Lambda^r e^{\tau \Lambda^{\frac{1}{s}}} \theta, \Lambda^r e^{\tau \Lambda^{\frac{1}{s}}} \theta \rangle = 0.$$

We then insert the above term to the non-linear term in question and get

$$\begin{aligned} & \left| \langle u \cdot \nabla \theta, e^{2\tau \Lambda^{\frac{1}{s}}} \theta \rangle \right| \\ &= \left| \langle u \cdot \nabla \theta, e^{2\tau \Lambda^{\frac{1}{s}}} \theta \rangle - \langle u \cdot \nabla e^{\tau \Lambda^{\frac{1}{s}}} \theta, e^{\tau \Lambda^{\frac{1}{s}}} \theta \rangle \right| \\ &= \left| i(2\pi)^{3} \sum_{i+k=l} (\hat{u}(j) \cdot k) (\hat{\theta}(k) \cdot \overline{\hat{\theta}}(l)) e^{\tau |l|^{\frac{1}{s}}} (e^{\tau |l|^{\frac{1}{s}}} - e^{\tau |k|^{\frac{1}{s}}}) \right|, \end{aligned}$$

where $j, k, l \in \mathbb{Z}_*^3$ are the Fourier frequencies.

We make use of the inequality $e^x - 1 \le xe^x$ for $x \ge 0$ and the triangle inequality $|k+j|^{\frac{1}{s}} \le |k|^{\frac{1}{s}} + |j|^{\frac{1}{s}}$ to obtain

$$\left| e^{\tau |I|^{\frac{1}{s}}} - e^{\tau |k|^{\frac{1}{s}}} \right| \leq C_{\tau} \frac{|j|}{|k|^{1 - \frac{1}{s}} + |I|^{1 - \frac{1}{s}}} e^{\tau |I|^{\frac{1}{s}}} e^{\tau |k|^{\frac{1}{s}}}.$$

This will give us the τ we need!

We also need the 2-order smoothing assumption on M_{ν} to get

$$\|\Lambda^{2+\frac{1}{2s}}e^{\tau\Lambda^{\frac{1}{s}}}u\|_{L^{2}}\leq C_{\nu}\|\Lambda^{\frac{1}{2s}}e^{\tau\Lambda^{\frac{1}{s}}}\theta\|_{L^{2}}$$

and

$$\|\Lambda^2 e^{\tau \Lambda^{\frac{1}{5}}} u\|_{L^2} \leq C_{\nu} \|e^{\tau \Lambda^{\frac{1}{5}}} \theta\|_{L^2},$$

which will be important for showing (3.5).

Hence we obtain from (3.4) that

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\|e^{\tau\Lambda^{\frac{1}{S}}}\theta\|_{L^{2}}^{2} - \dot{\tau}\|\Lambda^{\frac{1}{2s}}e^{\tau\Lambda^{\frac{1}{S}}}\theta\|_{L^{2}}^{2} \\ &\leq C\tau\|e^{\tau\Lambda^{\frac{1}{S}}}\theta\|_{L^{2}}\|\Lambda^{\frac{1}{2s}}e^{\tau\Lambda^{\frac{1}{S}}}\theta\|_{L^{2}}^{2} + \|e^{\tau\Lambda^{\frac{1}{S}}}S\|_{L^{2}}\|e^{\tau\Lambda^{\frac{1}{S}}}\theta\|_{L^{2}}. \end{split}$$

Choose $\tau > 0$ such that

$$\dot{\tau} + C\tau \| e^{\tau \Lambda^{\frac{1}{s}}} \theta \|_{L^2} = 0,$$

then we have

$$\frac{1}{2}\frac{d}{dt}\|e^{\tau\Lambda^{\frac{1}{s}}}\theta\|_{L^{2}}^{2}\leq\|e^{\tau\Lambda^{\frac{1}{s}}}S\|_{L^{2}}\|e^{\tau\Lambda^{\frac{1}{s}}}\theta\|_{L^{2}},$$

which gives

$$\|e^{\tau(t)\Lambda^{\frac{1}{s}}}\theta(t)\|_{L^{2}} \leq \|e^{\tau_{0}\Lambda^{\frac{1}{s}}}\theta_{0}\|_{L^{2}} + 2\|e^{\tau_{0}\Lambda^{\frac{1}{s}}}S\|_{L^{2}}$$

and τ satisfies the lower bound (3.3).

Other directions

Other directions

Due to limited time, there are still some other directions of study which haven't been discussed, for example:

- we can study the fractionally diffusive case for the equation (1.1) when $\kappa > 0$, $\nu \ge 0$ and $\gamma \in (0, 1)$.
- the cases for $\nu = 0$ and $\nu > 0$ are very different.

Case when $\nu = 0$

In [FRV12], the authors showed that the nonlocal operator $(-\Delta)^{\gamma}$ produces a sharp dichotomy across the value $\gamma = \frac{1}{2}$:

- ▶ when $\gamma \in (\frac{1}{2}, 1)$, the equation (1.1) is locally wellposed in Sobolev spaces;
- ▶ when $\gamma \in (0, \frac{1}{2})$, the equation (1.1) becomes Lipschitz ill-posed;
- ▶ when $\gamma = \frac{1}{2}$, the problem is globally well-posed for $\kappa \gg 1$, respectively ill-posed for $\kappa \ll 1$.

Case when $\nu > 0$

In [FS21,FS22], if S, $\theta_0 \in H^1$, the authors proved that the equation (1.1) has a global-in-time solution $\theta \in H^1$. Furthermore, one has the following theorem about global attractor:

Theorem 4.1

Let $S \in L^{\infty} \cap H^1$. For ν , $\kappa > 0$ and $\gamma \in (0,1]$, the solution map $\pi^{\nu}(t) : H^1 \to H^1$ associated to (1.1) possesses a unique global attractor $\mathcal{G}^{\nu} \subset H^1$.

Global attractor

A compact set $\mathcal{G}^{\nu} \subset H^1$ is a global attractor for $\pi^{\nu}(\cdot)$ if

- $\blacktriangleright \pi^{\nu}(t)\mathcal{G}^{\nu} = \mathcal{G}^{\nu} \text{ for all } t \in \mathbb{R};$
- ▶ for any bounded set K, $dist(\pi^{\nu}(t)K, \mathcal{G}^{\nu}) \to 0$ as $t \to \infty$, where $dist(A, B) = \sup_{a \in A} \inf_{b \in B} ||a b||_{H^1}$.

Remarks on the global attractor

We can obtain some additional properties on the attractors \mathcal{G}^{ν} under the assumption that $\gamma \in [\frac{1}{2}, 1]$, which gives

 $ightharpoonup \mathcal{G}^{\nu}$ is fully invariant, namely

$$\pi^{\nu}(t)\mathcal{G}^{\nu}=\mathcal{G}^{\nu}, \qquad \forall t\geq 0.$$

- \triangleright \mathcal{G}^{ν} is maximal in the class of H^1 -bounded invariant sets.
- \triangleright \mathcal{G}^{ν} has finite fractal dimension.

Remarks on the global attractor (cont'd)

The reasons why we need to restrict to $\gamma \in [\frac{1}{2}, 1]$:

- ▶ one need a bound for $\|\nabla u\|_{L^{\infty}}$ in terms of $\|(-\Delta)^{\frac{1}{2} + \frac{\gamma}{4}}\theta\|_{L^2}$;
- which can only be true when $\gamma \geq 1$ (and $d \leq 3$).

Some more directions

There are some future directions of study, for example:

Address the average behaviour of the energy dissipation rate by considering the limits of

$$\kappa \langle |\nabla \theta^{\kappa,\nu}|^2 \rangle = \kappa \lim_{T \to \infty} \frac{1}{T} \int_0^T \int |\nabla \theta^{\kappa,\nu}|^2 dx ds$$

as κ , $\nu \rightarrow 0$;

Study how "odd" or "evenness" for the constitutive laws M_{ν} can affect the solutions of the abstract system (1.1).

Thank You! :-)

References

- FRV12 S. Friedlander, W. Rusin, and V. Vicol, On the supercritically diffusive magnetogeostrophic equations, Nonlinearity 25, no. 11, 3071–3097, 2012.
 - FS15 S. Friedlander and A. Suen 2015, Existence, uniqueness and regularity results for the viscous magneto-geostrophic equation, Nonlinearity, Vol. 28, no. 9, pp. 3193–3217, 2015.
 - FS18 S. Friedlander and A. Suen, Solutions to a class of forced drift-diffusion equations with applications to the magneto-geostrophic equations, Annals of PDE, 4(2):14, 2018.
 - FS19 S. Friedlander and A. Suen, *Wellposedness and convergence of solutions to a class of forced non-diffusive equations with applications*, J. Math. Fluid Mech., 21, 21-50, 2019.

References (cont'd)

- FS21 S. Friedlander and A. Suen, *Vanishing diffusion limits and long time behaviour of a class of forced active scalar equations*, Arch. Rational Mechanics Ana., 240, no. 3, 1431-1485, 2021.
- FS22 S. Friedlander and A. Suen, *On a class of forced active scalar equations with small diffusive parameters*, to appear in Pure and Applied Functional Analysis.
- FV11a S. Friedlander and V. Vicol, Global wellposedness for an advection-diffusion equation arising in magnetogeostrophic dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(2): pp. 283–301, 2011.
- FV11b S. Friedlander and V. Vicol, *On the ill/wellposedness and nonlinear instability of the magnetogeostrophic equations*, Nonlinearity, 24(11):3019–3042, 2011.

Acknowledgement

S. Friedlander is supported by NSF DMS-1613135 and A. Suen is supported by Hong Kong General Research Fund (GRF) grant project number 18300720 and 18300821.