
On steady states for the Vlasov-Schrödinger-Poisson system

Younghun Hong (with Sangdon Jin)

Chung-Ang University

October 27, 2022

Younghun Hong (Chung-Ang University) On steady states for the Vlasov-Schrödinger-Poisson system October 27, 2022 1 / 24



Physical background

a large number of electrons (collisonless)

• microscopic level → ex) Hartree-Fock, Dirac-Fock, ...

• mesoscopic level → electron gases ex) Vlasov-Poisson, Vlasov-Maxwell, ...

• macroscopic level → electron fluids ex) Euler-Poisson, ...
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Physical background

In some physical settings, electrons are confined strongly in certain direction(s).

⇒ kinetic+quantum hybrid models

Physics of semiconductors

◦ nanowires

◦ two-dimensional electron gases (2DEGs)
- at the heterojunction between two semiconductors

modulation-doped field-effect transistor (MODFET)
a high-electron-mobility-transistor (HEMT)

- a graphene

• Ben Abdallah-Méhats 2005: Rigorous derivation (via partial semi-classical limit)
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Domain

Space domain

Ω = ω × (0, 1) 3 (y , z) = x

- ω is a smooth bounded domain in R2.

- y ∈ ω: “unconfined” direction ↔ z ∈ (0, 1): “confined” direction

• Motivation: partial semi-classical limit

Ωε = ω × (0, ε) −→
scaling

Ω = ω × (0, 1) Ω = ω × (0, 1)

− ε2

2 ∆y − ε2

2 ∂
2
z − ε2

2 ∆y − 1
2∂

2
z −→

formally

|v |2
2 −

1
2∂

2
z

2D phase space

(y , v) ∈ ω × R2
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Non-interacting electrons: linear theory

Q) Minimize the energy of N non-interacting electrons in a bounded region

(1) kinetic description (mesoscopic scaling)

• electron gases  f (x , v) : Ω× R3 → [0, 1] (Pauli’s exclusion principle)

• Under the mass constraint ‖f ‖L1(Ω×R3) = N, minimize the energy

E(f ) =

∫∫
Ω×R3

( |v |2
2 + V (x)

)
f (x , v)dxdv .

⇒
minimizer

f ∗(x , v) = 1
( |v|

2

2
+V (x)≤µ)

for some µ > 0 such that ‖f ∗‖L1(Ω×R3) = N.
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Non-interacting electrons: linear theory

(2) quantum model (microscopic scaling)

• many electrons  self-adjoint γ : L2(Ω)→ L2(Ω) with 0 ≤ γ ≤ 1 (Pauli’s exclusion
principle)

• Under the mass(=particle number) constraint Tr(γ) = N ∈ N, minimize the energy

E(γ) = Tr
(
(−1

2 ∆x + V )γ
)
.

⇒
minimizer

1(− 1
2

∆x+V≤µ) =
N∑
j=1

|ψ∗j 〉〈ψ∗j |

for µ > 0 such that −1
2 ∆ + V has N normalized eigenfunctions {ψ∗j }Nj=1 whose

eigenvalues ≤ µ.

Notation: |ψ〉〈ψ| is a one-particle projection onto a unit vector ψ.

• operator 1(− 1
2

∆x+V≤µ) ↔ orthonormal set {ψ∗j }Nj=1 ⊂ L2(Ω)

Younghun Hong (Chung-Ang University) On steady states for the Vlasov-Schrödinger-Poisson system October 27, 2022 6 / 24



Non-interacting electrons: linear theory

(3) kinetic-quantum hybrid model

⇒
minimizer?

1
( |v|

2

2
−1

2∂
2
z +V (y ,z)≤µ)

• For each y ∈ ω, 1D Schrödinger operator −1
2∂

2
z + V (y , ·) acting on L2(0, 1) with

zero boundary.
- eigenvalues: λ∗1(y) < λ∗2(y) < λ∗3(y) < · · · → ∞
- normalized eigenfunctions: {χ∗j (y , ·)}∞j=1.

• The above object means

1
( |v|

2

2
−1

2∂
2
z +V (y ,z)≤µ)

=
∞∑
j=1

f ∗j (y , v)|χ∗j (y , ·)〉〈χ∗j (y , ·)|,

where f ∗j = 1
( |v|

2

2
+λ∗j (y)≤µ)

.

It is equivalent to the sequences f∗ = {f ∗j }∞j=1 and χ∗ = {χ∗j }∞j=1.
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Non-interacting electrons: linear theory

(3) kinetic-quantum hybrid model (continued)

By “partial” semi-classical limits (see [Ben Abdallah-Méhats 2005]),
• f = {fj}∞j=1, 0 ≤ fj(y , v) ≤ 1 (distribution on the 2D phase space)
• χ = {χj}∞j=1, 〈χj(y , ·), χk(y , ·)〉L2(0,1) = δjk (quantum states)

M(f) =
∞∑
j=1

∫∫
ω×R3

fjdydv

E(f,χ) =
∞∑
j=1

∫∫
ω×R3

(
|v |2

2 + 1
2‖∂zχj‖2

L2(0,1)

)
fj(y , v)dydv

+
∞∑
j=1

∫∫
Ω×R3

V (x)|χj(x)|2fj(y , v)dxdv

⇒ (f∗,χ∗) minimizes the energy under the mass constraint M(f) = M.
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Vlasov-Schrödinger-Poisson model

We follow the setup of Ben Abdallah-Méhats 2004.

kinetic distribution sequence

f = {fj}∞j=1 with fj = fj(y , v) : ω × R2 → [0,∞).

The kinetic admissible class Ac.m. is the collection of kinetic distribution sequences
f ∈ `1(N; L1(ω × R2)) such that for all j ∈ N and all (y , v) ∈ ω × R2,

0 ≤ fj(y , v) ≤ 1 (Pauli exclusion principle).

quantum state sequence

χ = {χj}∞j=1 with χj = χj(y , z) : ω × (0, 1)→ C.

The quantum admissible class Aq.m. is defined as the collection of quantum state
sequences χ such that for all y ∈ ω, χj(y , ·) ∈ H1

0 (0, 1) and

〈χj(y , ·), χk(y , ·)〉L2(0,1) = δjk for all j , k ∈ N (partial orthonormality).

A pair (f,χ) ∈ Ac.m. ×Aq.m. is called admissible.
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Vlasov-Schrödinger-Poisson model

total density

ρ(f,χ)(x) :=
∞∑
j=1

ρfj (y)|χj(x)|2 =
∞∑
j=1

(∫
R2

fj(y , v)dv

)
|χj(x)|2

mass

M(f) =
∞∑
j=1

∫∫
ω×R3

fjdydv

energy

E(f,χ) =
∞∑
j=1

∫∫
ω×R3

(
|v |2

2 +
〈(
−1

2∂
2
z + Vext

)
χj , χj

〉
L2((0,1))

)
fjdxdv

+
1

2

∫
Ω
|∇Uρ(f,χ)

(x)|2dx ,

where and Uρ solves the Poisson equation
−∆Uρ = ρ in Ω,

Uρ = 0 on ∂ω × (0, 1),

∂zUρ = 0 on ω × {0, 1}.
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Vlasov-Schrödinger-Poisson model

⇒ The associated time evolution equation is the Vlasov-Schrödinger-Poisson
system.

(1) A kinetic distribution sequence f(t) = {fj(t, y , v)}∞j=1 obeys the 2D Vlasov
equation

∂t fj + v · ∇y fj − λj(t, y) · ∇v fj = 0 on (0,T )× ω × R2,

fj(0, y , v) = fj ,0(y , v) on ω × R2,

fj(t, y , v) = gj(t, y , v) on (0,T )× Σ−,

where the outgoing set is given by

Σ− =
{

(y , v) ∈ ∂ω × R2 : v · ny < 0
}

and ny is the outgoing normal vector at y ∈ ∂ω.
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Vlasov-Schrödinger-Poisson model

(2) For each (t, y) ∈ [0,T )× ω, a partially orthonormal quantum state sequence
χ(t, y , ·) = {χj(t, y , ·)}∞j=1 solves the quasistatic 1D Schrödinger equation with
respect to the z-variable,

(
−∂

2
z

2
+ (U + Vext)(t, y , ·)

)
χj(t, y , ·) = λj(t, y)χj(t, y , ·) on (0, 1),

χj(t, y , z) = 0 if z = 0, 1,

where λj(t, y) is the j-th eigenvalue of the operator −∂2
z

2 + (U + Vext)(t, y , ·).

(3) For each t ∈ [0,T ), the self-consistent electronic potential U(t, ·) satisfies the
Poisson equation 

−∆U = ρ in Ω,

U = 0 on ∂ω × (0, 1),

∂zU = 0 on ω × {0, 1}.

with ρ = ρ(f(t),χ(t)).

Ben Abdallah-Méhats 2004: Existence of a global solution.
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Vlasov-Schrödinger-Poisson model: Main Result

Assume that Vext ∈ C (Ω) ∩ C 1(Ω) and Vext ≥ 0.

We consider the mass-constraint energy minimization problem

Emin(M) := inf
{
E(f,χ) : (f,χ) is admissible and M(f) = M

}
.

1D spectral theory

Given a potential function U ∈ L2(0, 1), let

H[U] = −1
2∂

2
z + U(z)

be the Schrödinger operator acting on L2(0, 1) with zero boundary condition.

• H[U] has only countably many simple eigenvalues

λ1[U] < λ2[U] < λ3[U] < · · · < λj [U] < · · · → ∞.

• j-th L2(0, 1)-normalized eigenfunction is given by

χj [U] ∈ H1
0 (0, 1).
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Vlasov-Schrödinger-Poisson model: Main Result

Theorem (Minimization of the free energy; H’-Jin, Preprint 2022)

1 (Existence) The variational problem Emin(M) has a minimizer (f∗,χ∗).

2 (Uniqueness) The minimizer (f∗,χ∗) is unique in the sense that if (f̃
∗
, χ̃∗) is

another minimizer, then Uρ(f∗,χ∗)
= Uρ

(f̃
∗
,χ̃∗)

.

3 (Self-consistent equation) For some µ > 0,

f ∗j (y , v) = 1( |v|2
2

+λ∗j (y)≤µ
), λ∗j (y) = λj [(Uρ(f∗,χ∗)

+ Vext)(y , ·)]

and χ∗j = χ∗j [(Uρ(f∗,χ∗)
+ Vext)(y , ·)].

4 (Monotone finite subband structure) For a.e. (y , v) ∈ ω × R2, f ∗j (y , v) is strictly

decreasing in j and f ∗j (y , v) ≡ 0 for j ≥
√

3µ
π .

Remarks
◦ Ben Abdallah-Méhats 2004: Existence of a stationary solution.
◦ Structural information.
◦ A larger class of steady states are constructed (free energy minimizers).
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Vlasov-Schrödinger-Poisson model: Main Result

Theorem (Conditional dynamical stability; H’-Jin, Preprint 2022)

For M > 0, a unique minimizer (f∗,χ∗) for the problem Emin(M) constructed in the
previous theorem is a stable solution to the Vlaosv-Schrödinger-Poisson system in the
following sense: Given ε > 0, there exists δ > 0 such that the following hold. We
assume that

1 (f0,χ0) ∈ Ac.m. ×Aq.m., |M(f0)−M| ≤ δ and |E(f0,χ0)− E(f∗,χ∗)| ≤ δ.

2 (f(t),χ(t)) is a unique global weak solution to the Vlasov-Schrödinger-Poisson
system with initial data (f0,χ0), and f(t) satisfies the the specular-reflection
boundary condition. Moreover, M(f(t),χ(t)) =M(f0,χ0) and
E(f(t),χ(t)) = E(f0,χ0) for all t ∈ R.

Then,
sup
t∈R
‖∇(Uρ(f(t),χ(t))

− Uρ(f∗,χ∗)
)‖2

L2(Ω) ≤ ε.

Remarks
◦ It is conditional, because well-posedness is not known for the VSP model.
◦ first stability result for the kinetic-quantum hybrid model.
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Difficulties in construction of an energy minimizer

Sketch of the proof: existence of an energy minimizer

◦ By concentration-compactness principle.

Let {(f(n),χ(n))}∞n=1 be a minimizing sequence. Taking the n→∞ limit, we will
obtain a minimizer.

◦ Some new ideas are needed.
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Difficulties in construction of an energy minimizer

1. Lack of compactness with respect to the j-index

All j-summed quantities are invariant under translation in j .

2. Compactness of the quantum state part

Not obvious to obtain compactness for the quantum states {χ(n)}∞n=1.

Can we use the quantity

∞∑
j=1

∫∫
ω×R2

‖∂zχ(n)
j (y , ·)‖2

L2(0,1)f
(n)
j (y , v)dydv?

• How to get a uniform bound for ‖∂zχ(n)
j (y , ·)‖L2(0,1).

• Even they are bounded, the choice of convergent sub-sequence depends on y .
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Ideas to prove existence of a minimizer: 3-Step refinement

Step 1: Rearrangement

◦ The mass and the energy are invariant under the rearrangement by(
f σj (y , v), χσj (x)

)
=
(
fσ(j ;y ,v)(y , v), χσ(j ;y ,v)(x)

)
for each (y , v) ∈ ω × R2.

⇒ Rearranging (f(n),χ(n)), we assume that ‖∂zχ(n)
j (y , ·)‖L2(0,1) is non-decreasing in j .

◦ By the min-max principle (+orthonormality), ‖∂zχ(n)
j (y , ·)‖L2(0,1) ≥ πj√

3
.

⇒ Emin(M)← E(f(n),χ(n)) ≥ 1

2

∞∑
j=1

∫∫
ω×R3

‖∂zχ(n)
j (y , ·)‖2

L2(0,1)fj(y , v)dxdv

≥ π2

6

∞∑
j=1

j2‖f (n)
j ‖L1(ω×R2).

The rearranged minimizing sequence obeys the uniform weighted summation bound

sup
n≥1


∞∑
j=1

j2‖f (n)
j ‖L1(ω×R2)

 ≤ 6

π2
Emin(M) + on(1).
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Ideas to prove existence of a minimizer: 3-Step refinement

Step 2: Partial minimization with fixed quantum states

Fix a quantum state χ(n) in a minimizing sequence in Step 1, and minimize the energy.

Emin(M;χ(n)) := inf
{
E(f,χ(n)) : f is admissible and M(f) = M

}
.

◦ By standard concentration-compactness principle, we prove existence of a minimizer.

Replace f(n) by the above minimizer ⇒ refined minimizing sequence (f(n),χ(n))

◦ Each f(n) solves the self-consistent equation (or Euler-Lagrange equation)

f
(n)
j = 1( |v|2

2
+h

(n)
j (y)≤µ(n)

)

where h
(n)
j (y) := 〈(−∂2

z
2 + Uρ

(f(n),χ(n))
+ Vext)χ

(n)
j , χ

(n)
j 〉L2(0,1).
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Ideas to prove existence of a minimizer: 3-Step refinement

Step 2: Partial minimization with fixed quantum states (continued)

◦ Rearranging, we may assume that h
(n)
j (y) is non-increasing ⇒ h

(n)
j (y) ≥ πj√

3
.

◦ µ(n) is bounded uniformly in n.

⇒

 • (monotonicity) f
(n)
j (y , v) is non-increasing in j for each (y , v)

• (finite subbands) f
(n)
j ≡ 0 for all j ≥ J + 1 (J is independent of n).
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Ideas to prove existence of a minimizer: 3-Step refinement

Step 3: Partial minimization with fixed kinetic distributions

Fix f(n) in a minimizing sequence in Step 2, and minimize the energy.

Emin(M; f(n)) := inf
{
E(f(n),χ) : χ is admissible

}
Theorem (Ben Abdallah-Méhats 2004)

For q > 4
3 , if Vext ∈ Lq

′
(ω; L∞(0, 1)), ‖{ρfj}∞j=1‖`1(N;Lq(ω)) <∞ and {ρfj (y)}∞j=1 is

non-increasing for each y ∈ ω, then the Schrödinger-Poisson equation
−∆V = ρ(f,χ[V+Vext]) in Ω,

V = 0 on ∂ω × (0, 1),

∂zV = 0 on ω × {0, 1},

where χ[V + Vext] =
{
χj [V + Vext]

}∞
j=1

, has a unique solution U∗ ∈ H1(ω).

⇒ For f(n), we obtain V (n)  χ(n) =
{
χj [V

(n) + Vext]
}∞
j=1

.

We claim that χ(n) minimizes the energy E(f(n),χ).
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Ideas to prove existence of a minimizer: 3-Step refinement

Step 3: Partial minimization with fixed kinetic distributions (continued)

Lemma (Coercivity of the free energy)

Suppose that f is non-increasing and has only finitely many non-zero subbands and
(f,χ∗) ∈ Ac.m. ×Aq.m. with

χ∗ = χ[U∗ + Vext] and E(f,χ∗) <∞,

where U∗ is the solution to the Schrodinger-Poisson equation. Then, for any
(̃f, χ̃) ∈ A↓c.m. ×Aq.m. with M(̃f) =M(f), we have

E (̃f, χ̃)− E(f,χ∗) ≥ 1

2
‖∇(Uρ(̃f,χ̃)

− Uρ(f,χ∗)
)‖2

L2(Ω).

⇒ refined minimizing sequence {(f(n),χ(n))}∞n=1.

Remark By refinements, we obtain a minimizing sequence such that

(1) f
(n)
j ≡ 0 for all j ≥ J + 1 and f

(n)
j (y , v) is non-increasing in j .

(2) χ
(n)
j is the j-th function of −1

2∂
2
z + Uρ

(f(n),χ(n))
+ Vext.
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Ideas to prove existence of a minimizer: 3-Step refinement

Last step: n→∞

Lemma (Stability for 1D Schrödinger operator)

If U,V ∈ L2(0, 1), then there exists C > 0, independent of U, V and j, such that

|λj [U]− λj [V ]|+ ‖χj [U]− χj [V ]‖L∞(0,1) ≤ Ce
C(‖U‖L2(0,1)+‖V ‖L2(0,1))‖U − V ‖L1(0,1).

elliptic regularity (Poisson equation) ⇒ {Uρ
(f(n),χ(n))

}∞n=1 is uniformly bounded and

equi-continuous in Ω. ⇒ So is {χ(n)
j (x)}∞n=1 in Ω (only finite j ’s are meaningful).

◦ By Arzelà-Ascoli, χ
(n)
j (x)→ χ∗j in C (Ω) passing to a subsequence.

◦ f (n)
j ⇀ f ∗j in L2(ω × R2) and ρ

f
(n)
j

⇀ ρf ∗j in L
6
5 (ω) passing to a subsequence.

Then, we can show that (f∗,χ∗) is a desired minimizer (by lower semi-continuity).

• coercivity estimate ⇒ uniqueness and stability.
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Thank you for your attention!
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