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Background of nematic liquid
crystals
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Nematic liquid crystals

Liquid crystal is a state of matter between liquid and solid crystal.

Nematic liquid crystals material consists of rod–like molecules. The orientational
order of the molecules is retained when the liquid crystals flow.

Patterns in liquid crystals can be found when light passes through a region
occupied by liquid crystals where the molecules align in some special ways.

Liquid crystals have been widely applied to the industry of display devices,
photonic devices and biological sensors.

A research focus of liquid crystals : the study of its orientation.
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Phases of nematic liquid crystals

Liquid crystals are optically anisotropic.

Liquid crystals refract light in different degree (refractive index) when it comes
from different directions.

We use a triaxial ellipsoid to illustrate the shape of the crystalline in different
phases.
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Landau–de Gennes theory

Let

S0 := 5–dimensional vector space consisting of real 3× 3 symmetric traceless
matrices;

BR(x) := open ball in R3 with center x and radius R; BR = BR(0).

The Landau–de Gennes theory (also known as the Q–tensor theory) uses the
tensor Q(x) : BR −→ S0 as an order parameter to describe the orientation of the
equilibrium state of liquid crystals.

The normalized eigenvectors of Q(x) give the three principal axes of the liquid
crystal at x .

The corresponding eigenvalues measure the degree of orientation.
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In LdG theory, different phases of nematic liquid crystals can be characterized by
quantitative relationships of the eigenvalues of Q.

Let λ1, λ2 and λ3 be the eigenvalues of Q(x). The liquid crystals are

(1). isotropic at x if λ1 = λ2 = λ3 = 0;

(2). positively uniaxial at x if λ1 = λ2 < λ3;

(3). negatively uniaxial at x if λ1 = λ2 > λ3;

(4). biaxial at x if λ1 < λ2 < λ3;
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The director field n(x) determined by Q(x) is defined to be the normalized
eigenvector associated with the largest eigenvalue.

It represents the preferred orientation of the molecule at a given point.

Defects (or disclinations) are locations where the director field n(x) of the
molecules is discontinuous.

Note that even if Q(x) is continuous, its director field n(x) may be discontinuous.

Patterns in liquid crystals will be found around the defects.

Ho Man TAI Pattern Formation in Nematic Liquid Crystals 8 Dec, 2022 7 / 51



Landau–de Gennes theory

For an order parameter Q(x) : BR −→ S0 , its Landau–de Gennes energy
functional in the one–constant limit is:∫

BR

1

2

∣∣∇Q
∣∣2︸ ︷︷ ︸

elastic energy

−a2

2

∣∣Q∣∣2 −√
6tr

(
Q3

)
+

1

2

∣∣Q∣∣4︸ ︷︷ ︸
bulk energy

.

Elastic energy : It measures the distortions of molecules.

Bulk energy : It determines the preferred phases.

The quantity −a2 is the reduced temperature.

The remaining two coefficients are determined by the material.
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The Euler–Lagrange equation :

−∆Q = a2Q + 3
√
6

(
Q2 − 1

3
|Q|2I3

)
− 2|Q|2Q in BR . (1)

In the spherical droplet problem, equation (1) is coupled with the strong
anchoring hedgehog boundary condition:

Q =

√
3

2
aHa

(
x

|x |
⊗ x

|x |
− 1

3
I3

)
on ∂BR , where Ha :=

3 +
√
9 + 8a2

2
√
2a

. (2)

There are three fundamental defect structures of the solutions to (1) and (2).
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Fundamental defects (or disclinations) of the equilibrium solutions

(1). Radial hedgehog :

it was first discovered by Schopohl and Suckin in 1988;

the molecules are uniaxial everywhere in BR , except the origin where the
isotropic structure is found;

the director field equals
x

|x |
.

Numerical simulation by Hu-Qu-Zhang 2016:
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(2). Half–degree ring disclination :

For large a, it is found that radial hedgehog is not stable.

It was first discovered by Penzenstadler and Trebin in 1989 numerically.

Numerical simulation by Hu-Qu-Zhang in 2016:

We can imagine that the isotropic core in the radial hedgehog broadens to the
ring. (rmk 0 is no longer iso.)
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the molecules are not isotropic at the origin and are uniaxial on the ring;

the molecules are biaxial away from and near the ring;

the director field is undefined on the ring;

the angle of the director field is changed by π when it travels around the ring.

Red shaded region : biaxial Arrow : director field
Blue cross : uniaxial (the ring) Red line : director field not defined
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(3). Split–core disclination :

It was first discovered by Gartland and Mkaddem in 2000 numerically.

Numerical simulation by Hu-Qu-Zhang in 2016:

We can imagine that the isotropic core in the radial hedgehog is split into the
core.(rmk 0 is no longer iso.)
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the molecules are uniaxial on a open line segment of z–axis;

isotropic structure is found on the line segment;

the molecules are biaxial for the points away from and near the line segment.

the director field is undefined on the line segment.

Red shaded region : biaxial (the core) Arrow : director field
Blue line : uniaxial Red line : director field not defined
Green cross : isotropic
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A rigorous proof of the existence of solutions with the half-degree ring disclination
and the split-core disclination have been open for more than 20 years.
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Ultimate objective

The ultimate objective :

Construct two solutions to equation (1):

−∆Q = a2Q + 3
√
6

(
Q2 − 1

3
|Q|2I3

)
− 2|Q|2Q in BR ,

with the hedgehog boundary condition:

Q =

√
3

2
aHa

(
x

|x |
⊗ x

|x |
− 1

3
I3

)
on ∂BR .

such that they admit half–degree ring and split–core disclinations respectively, for
large enough a > 0.

Key and difficulty : To control the eigenvalues of Q.
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Procedure:

(1). transform the Q–tensor equation to a 5–vector equation (E–L equation of
some energy Ea) in B1 with unknown w ∈ R5 (with some symmetries in w);

(2). impose the Signorini problems to the energy Ea (minimization problems with
thin obstacle) with obstacle condition on T := B1 ∩ {z = 0}. Denote the
solutions to these problems by wa;

(3). study the uniform convergence of wa on T (as a tends to ∞ along some
sequence), by using energy decay estimate;

(4). determine the sign of wa,3(0) by using (3) and the properties of the limiting
map of wa (up to a subsequence);

(5a). half–degree ring disclination: use the sign condition in (4) to control the
eigenvalues and director field of Q (determined by wa);

(5b). split–core disclination: use the sign condition in (4) and the asymptotic
behavior of wa near its zeros to control the eigenvalues and director field of
Q.
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The ideas of (1) and (2) come from the numerical study in the work
”Fine structure of defects in radial nematic droplets” by Gartland and Mkaddem
in 2000.

They found the the third component (after the transformation from Q to w) of
the half-degree ring solution and the split-core disclination solution are positive
and negative at the origin, respectively.
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(1). transform the Q–tensor equation to a 5–vector equation (E–L equation of
some energy Ea) with unknown w ∈ R5 (with some symmetries in w);

(2). impose the Signorini problems to the energy Ea (minimization problems with
thin obstacle) with obstacle on T := B1 ∩ {z = 0}. Denote the solutions to
these problems by wa;

(3). study the uniform convergence of wa on T (as a tends to ∞ along some
sequence), by using energy decay estimate;

(4). determine the sign of wa,3(0) by using (3) and the properties of the limiting
map of wa (up to a subsequence);

(5a). half–degree ring disclination: use the sign condition in (4) to control the
eigenvalues and director field of Q (given by wa);

(5b). split–core disclination: use the sign condition in (4) and the asymptotic
behavior of wa near its zeros to control the eigenvalues and director field of
Q.
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Formulation of the problem

Let x = (x1, x2, z) = rectangular coordinates, (ρ, θ, z) = cylindrical coordinates.

Let {Lj}5j=1 be the orthonormal basis spanning S0 and u(ρ, z) ∈ R3, we set

w(x) = L [u(ρ, z)] := (u1 cos 2θ, u1 sin 2θ, u2, u3 cos θ, u3 sin θ);

Q(x) =
a
√
2

{
u1

(
x
R

) (
cos 2θL5 + sin 2θL2

)
+ u2

(
x
R

)
L4 + u3

(
x
R

) (
cos θL1 + sin θL3

)}
=

a√
2

(
w1L5 + w2L2 + w3L4 + w4L1 + w5L3

)∣∣∣∣ x
R

.
(3)

Equation (1) : −∆Q = a2Q + 3
√
6

(
Q2 − 1

3
|Q|2I3

)
− 2|Q|2Q in BR

is transformed into

−∆w =
3µ√
2
∇wS [w ]− aµ

(
|w |2 − 1

)
w and w = L [u] in B1. (4)
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µ := aR2 > 0 is a fixed positive constant and S : R5 → R is a degree 3
homogeneous polynomial.

Equation (4) is the Euler–Lagrange equation of

Ea [w ] :=

∫
B1

fa,µ (w) =

∫
B1

∣∣∇w
∣∣2 + µ

[
Da − 3

√
2S [w ] +

a

2

(
|w |2 − 1

)2]
. (5)

Under the ansatz in (3), the boundary condition (2) is equivalent to

w = L [U∗
a ] on ∂B1. (6)

Here U∗
a is the corresponding map depending only on the polar angle ϕ.
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(1). transform the Q–tensor equation to a 5–vector equation (E–L equation of
some energy Ea) with unknown w ∈ R5 (with some symmetries in w);

(2). impose the Signorini problems to the energy Ea (minimization problems with
thin obstacle) with obstacle on T := B1 ∩ {z = 0}. Denote the solutions to
these problems by wa;

(3). study the uniform convergence of wa on T (as a tends to ∞ along some
sequence), by using energy decay estimate;

(4). determine the sign of wa,3(0) by using (3) and the properties of the limiting
map of wa (up to a subsequence);

(5a). half–degree ring disclination: use the sign condition in (4) to control the
eigenvalues and director field of Q (given by wa);

(5b). split–core disclination: use the sign condition in (4) and the asymptotic
behavior of wa near its zeros to control the eigenvalues and director field of
Q.
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Configuration space for the minimization problems

Definition 2.1
A 5–vector w is R–axially symmetric on some ball Br if

(1). w = L [u(ρ, z)] on Br for some u ∈ R3;

(2). u1 and u2 are even w.r.t. z–variable;

(3). u3 is odd w.r.t. z–variable.

Let the space

F s
a :=

{
w ∈ H1(B1;R5) : w is R–axially symmetric and w satisfies (6)

}
.
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Vectorial Signorini problem

To construct the solutions with the two desired disclinations, we hope that the
third component of the solutions to the 5–vector equation (4) satisfying some sign
conditions at the origin.

For any b ∈ (−1,−1/2] and c ∈ [−1/2, 1), we let

F+
a,b :=

{
w ∈ F s

a : w3 ≥ Hab on T

}
, F−

a,c :=

{
w ∈ F s

a : w3 ≤ Hac on T

}
.

There are minimizers w+
a,b and w−

a,c solving the problems

Min
{
Ea[w ] : w ∈ F+

a,b

}
and Min

{
Ea[w ] : w ∈ F−

a,c

}
respectively.
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w+
a,b is R–axially symmetric.
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Limiting map of the minimizers

Let an −→ ∞, it can be proved that

w+
an,b

−→ w+
b and w−

an,c −→ w−
c strongly in H1(B1), up to a subsequence.

The limiting maps w+
b , w−

c ∈ H1(B1;S4) satisfy the obstacle conditions w+
b,3 ≥ b

and w−
c,3 ≤ c on T respectively.

Their properties (by Yu 2020):

(1). Let b ∈ (−1,−1/2] and c ∈ [−1/2, 1) \
{
0
}
. Except at finitely many points

on z–axis (excluding the origin, north and south poles), w+
b and w−

c are smooth
in B1.
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(2). Item (1) & R–symmetry =⇒

w+
b,j and w−

c,j are zero on z–axis except at their respective singularities,

for j = 1, 2, 4, 5 (w = L [u(ρ, z)] = (u1 cos 2θ, u1 sin 2θ, u2, u3 cos θ, u3 sin θ));

(3). |w+
b | = |w−

c | = 1 & item (3) & the obstacle conditions on T =⇒

w+
b,3(0) = 1 and w−

c,3(0) = −1.
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Uniform convergence of w+
an,b

to w+
b on T =⇒ the sign of

[
w+
a,b(0)

]
3
.

Trouble : w+
a,b does not solve the equation across T (a consequence of the

presence of the obstacle condition on T ).
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(1). transform the Q–tensor equation to a 5–vector equation (E–L equation of
some energy Ea) with unknown w ∈ R5 (with some symmetries in w);

(2). impose the Signorini problems to the energy Ea (minimization problems with
thin obstacle) with obstacle on T := B1 ∩ {z = 0}. Denote the solutions to
these problems by wa;

(3). study the uniform convergence of wa on T (as a tends to ∞ along some
sequence), by using energy decay estimate;

(4). determine the sign of wa,3(0) by using (3) and the properties of the limiting
map of wa (up to a subsequence);

(5a). half–degree ring disclination: use the sign condition in (4) to control the
eigenvalues and director field of Q (given by wa);

(5b). split–core disclination: use the sign condition in (4) and the asymptotic
behavior of wa near its zeros to control the eigenvalues and director field of
Q.
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We obtain the uniform Hölder norm of w+
a,b by energy decay estimate.

Proposition 3.1 (Energy decay estimate, Tai-Yu 2021)

Fix b ∈ (−1,−1/2]. There exist three positive constants a0, ϵ0 and ν0 with
ν0 ∈ (0, 1/2), such that for any a > a0, if it satisfies

Ea;r
[
w+
a,b

]
:=

1

r

∫
Br

fa
(
w+
a,b

)
< ϵ0, (7)

then either one of the followings holds:

(1). Ea;ν0r
[
w+
a,b

]
≤ r3/2; (2). Ea;ν0r

[
w+
a,b

]
≤ 1

2
Ea;r

[
w+
a,b

]
.

The constants a0, ϵ0 and ν0 depend on the parameter b.

Similar decay estimate holds for balls away from the origin.
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By standard iteration and covering arguments, the energy decay estimates show
that for any r0 ∈ (0, 1) and any x , y ∈ Br0 ∩ T , we have∣∣w+

a,b(x)− w+
a,b(y)

∣∣ ≲r0,b |x − y |α.

Remark 1 : The proof of the decay estimates is done by blow-up arguments
and the construction of energy comparison maps.

Remark 2 : In the proof, we let sequences an → ∞ and rn → 0. The
comparison maps are different when anr

2
n tends to zero, positive

constant and infinity. The constructions are tricky in these three
cases.
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(1). transform the Q–tensor equation to a 5–vector equation (E–L equation of
some energy Ea) with unknown w ∈ R5 (with some symmetries in w);

(2). impose the Signorini problems to the energy Ea (minimization problems with
thin obstacle) with obstacle on T := B1 ∩ {z = 0}. Denote the solutions to
these problems by wa;

(3). study the uniform convergence of wa on T (as a tends to ∞ along some
sequence), by using energy decay estimate;

(4). determine the sign of wa,3(0) by using (3) and the properties of the limiting
map of wa (up to a subsequence);

(5a). half–degree ring disclination: use the sign condition in (4) to control the
eigenvalues and director field of Q (given by wa);

(5b). split–core disclination: use the sign condition in (4) and the asymptotic
behavior of wa near its zeros to control the eigenvalues and director field of
Q.
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w+
b,3(0) = 1 and w−

c,3(0) = −1 & uniform convergence on T =⇒

w+
a,b,3(0) > 0 and w−

a,c,3(0) < 0
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(1). transform the Q–tensor equation to a 5–vector equation (E–L equation of
some energy Ea) with unknown w ∈ R5 (with some symmetries in w);

(2). impose the Signorini problems to the energy Ea (minimization problems with
thin obstacle) with obstacle on T := B1 ∩ {z = 0}. Denote the solutions to
these problems by wa;

(3). study the uniform convergence of wa on T (as a tends to ∞ along some
sequence), by using energy decay estimate;

(4). determine the sign of wa,3(0) by using (3) and the properties of the limiting
map of wa (up to a subsequence);

(5a). half–degree ring disclination: use the sign condition in (4) to control the
eigenvalues and director field of Q (given by wa);

(5b). split–core disclination: use the sign condition in (4) and the asymptotic
behavior of wa near its zeros to control the eigenvalues and director field of
Q.
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Half–degree ring disclination is axially–symmetric, we discuss on (ρ, z)–plane.

Also denote T :=
{
(ρ, z) ∈ R2 : ρ ∈ [0, 1] and z = 0

}
.

(1). find xa = (ρa, 0) ∈ T such that Q is uniaxial (2 equal eigenvalues) at x = xa;

(2). show Q is biaxial (3 distinct eigenvalues) around x = xa;

(3). establish the π–angle change of the director field around x = xa.

Consider Q = Q+
a,b with w = w+

a,b = L [ua] (see (3)) and let Q∗ = a−1Q+
a,b(Rx).

Q+
a,b(x) =

a
√
2

{
ua,1

(
x
R

) (
cos 2θL5 + sin 2θL2

)
+ ua,2

(
x
R

)
L4 + ua,3

(
x
R

) (
cos θL1 + sin θL3

)}
=

a√
2

(
w+
a,b,1L5 + w+

a,b,2L2 + w+
a,b,3L4 + w+

a,b,4L1 + w+
a,b,5L3

)∣∣∣∣ x
R

.
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Let w+
a,b(x) = L [ua](ρ, z), we compute the eigenvalues of Q∗ :

λ1 =
−1

2

(
ua,1 +

1√
3
ua,2

)
;

λ2 =
1

4

(
ua,1 +

1√
3
ua,2

)
− 1

4

√(
ua,1 −

√
3ua,2

)2
+ 4

(
ua,3

)2
;

λ3 =
1

4

(
ua,1 +

1√
3
ua,2

)
+

1

4

√(
ua,1 −

√
3ua,2

)2
+ 4

(
ua,3

)2
.

Q∗ is uniaxial on T (recall ua,3 = 0 on T ) if ua,1 −
√
3ua,2 = 0 (λ2 = λ3).
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(1). Two equal eigenvalues (uniaxial)

Fix b close enough to −1, we consider large enough a.

At (ρ, z) = (1, 0), ua,1 −
√
3ua,2 > 0 (by boundary value of w+

a,b = L [U∗
a ]).

At (ρ, z) = (0, 0), ua,1 −
√
3ua,2 = −

√
3ua,2 < 0 (by uni. conv. of ua and the sign

condition of its limiting map).

By continuity of ua, there is xa := (ρa, 0) ∈ T \ {0, ∂T} such that
ua,1(xa)−

√
3ua,2(xa) = 0 (uniaxial, λ3 = λ2).
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(2). 3 distinct e-values (biaxial) and (3). π-change of the director field

The biaxial property follows similarly.

Near xa, the director field = the normalized eigenvector corresponding to λ3 (the
largest one)

κ̂3 =

√
2

2

1 +
ua,1 −

√
3ua,2√(

ua,1 −
√
3ua,2

)2
+ 4

(
ua,3

)2
1/2

eρ

+

√
2ua,3√(

ua,1 −
√
3ua,2

)2
+ 4

(
ua,3

)2
1 +

ua,1 −
√
3ua,2√(

ua,1 −
√
3ua,2

)2
+ 4

(
ua,3

)2
−1/2

ez

(8)

The director field κ̂3 is undefined at x = xa.
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Red shaded region : biaxial Arrow : director field
Blue cross : uniaxial (the ring) Red line : director field not defined
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(1). transform the Q–tensor equation to a 5–vector equation (E–L equation of
some energy Ea) with unknown w ∈ R5 (with some symmetries in w);

(2). impose the Signorini problems to the energy Ea (minimization problems with
thin obstacle) with obstacle on T := B1 ∩ {z = 0}. Denote the solutions to
these problems by wa;

(3). study the uniform convergence of wa on T (as a tends to ∞ along some
sequence), by using energy decay estimate;

(4). determine the sign of wa,3(0) by using (3) and the properties of the limiting
map of wa (up to a subsequence);

(5a). half–degree ring disclination: use the sign condition in (4) to control the
eigenvalues and director field of Q (given by wa);

(5b). split–core disclination: use the sign condition in (4) and the asymptotic
behavior of wa near its zeros to control the eigenvalues and director field of
Q.
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Split–core disclination

Split–core disclination is also axially–symmetric about z–axis, we discuss on
(x1, z)–plane instead of R3.

Fix c close to 1. For large enough a, we let Q = Q−
a,c with w = w−

a,c = L [u−a,c ].

Set Q∗ = a−1Q−
a,c(Rx).

(1). find 2 points (zero points of w−
a,c) on z–axis such that Q∗ is isotropic;[

u−a,c
]
j
= 0 on z–axis for j = 1, 3;[

u−a,c
]
2
> 0 at the north pole (by boundary value of u−a,c);[

u−a,c
]
2
< 0 at the origin (by uni. conv. of u−a,c and the sign condition of its

limiting map).

(2). show that Q∗ is uniaxial on the open line segment joining that two points;[
u−a,c

]
j
= 0 on z–axis for j = 1, 3.

(3). show that Q∗ is biaxial away from and near the line.
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Suppose z+a is the lowest zero of u−a,c on the positive z–axis and (r , ψ, θ) are the
spherical coordinates with respect to center z+a .

(3) (biaxiality) requires the asymptotic behavior:

lim
(a−1,r)→(0,0)

2∑
j=0

∥∥∥∂ j
ψ

(
ΠS2 [u

−
a,c(r , ψ)]

)
− ∂ j

ψ(0, cosψ, sinψ)
⊤
∥∥∥
∞;[0,π]

= 0.

Using the limit, Q is biaxial near and away from the line segment. (λ3 > λ1 > λ2)
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Red shaded region : biaxial (the core) Arrow : director field
Blue line : uniaxial Red line : director field not defined
Green cross : isotropic
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Some results about the minimizers
of Ginzburg–Landau type functional
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Goal: establish the limit :

lim
(a−1,r)→(0,0)

2∑
j=0

r j
∥∥∥∇j

(
ΠS4 [w

−
a,c ]

)
−∇jΛ(· − za)

∥∥∥
∞;∂Br (za)

= 0.

Here za is a zero of w−
a,c and Λ is the tangent map of w−

c at its singularity. It
equals either

Λ+(ζ) =
1
|ζ| (0, 0, ζ3, ζ1, ζ2) or Λ−(ζ) =

1
|ζ| (0, 0,−ζ3, ζ1, ζ2) .

Tangent map of w−
c at singularity x = sk := lim

rn→0
w−
c (sk + rnξ) = Λ(ζ)

By Yu 2020, it shows that lim
r→0

2∑
j=0

r j
∥∥∇jw−

c −∇jΛ(· − sk)
∥∥
∞;∂Br (sk )

= 0.

It seems that there is no literature discussing the convergence of the
Ginzburg–Landau minimizers to its limiting harmonic map near the singularity.

Ho Man TAI Pattern Formation in Nematic Liquid Crystals 8 Dec, 2022 45 / 51



lim
(a−1,r)→(0,0)

2∑
j=0

r j
∥∥∥∇j

(
ΠS4 [w

−
a,c ]

)
−∇jΛ(· − za)

∥∥∥
∞;∂Br (za)

= 0.

Remark 1 : The limit exists and equals 0 as (a−1, r) approaching (0, 0) along
any path.

Remark 2 : The convergence result in the limit is up to the singularity of w−
c .

(za converges to the singularity of w−
c up to a subsequence)

Compare with [Bethuel, Brezis and Orlandi 2001] and [Rivière
1999].

They only provide the convergence results of the Ginzburg-Landau
minimizer away from the singularities of its limiting map (the
limiting map is obtained up to a subsequence).
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Exterior core anr
2
n −→ ∞ and interior core anr

2
n −→ L

The limit is proved by contradiction.

Let an → ∞, rn → 0 and zn be a zero of w−
an,c and consider the rescaled map

w (n)(ζ) := w−
an,c(zn + rnζ).

Exterior core (anr
2
n → ∞) : w (n) −→ w∞ = Λ strongly in H1

loc(R3).

Interior core (anr
2
n → L for some L ≥ 0) : w (n) −→ w∞ in C 2

loc(R3).

w∞ = f (
√
Lµ|ζ|)Λ. Here f (r) : [0,∞) −→ [0, 1) is smooth with f (0) = 0,

f (∞) = 1 and f ′(r) > 0 for all r ∈ [0,∞).
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Let ζ = (ζ1, ζ2, 0) ∈ S2 ∩ T , we can think that Λ = (0, 0, 0, ζ1, ζ2) is also on
S2 ∩ T .

The limiting map w∞ can be concluded by: (vertical axis representing the limiting
of anr

2
n )
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Main result

Proposition 6.1 (Tai-Yu 2021)

Let the zeros of w−
a,c on the positive z–axis be za,1, ..., za,ka , where ka is the total

number of zeros.

It satisfies

lim
(a−1,r)→(0,0)

max
k=1,...,ka

2∑
j=0

r j
∥∥∥∇jΠS4

[
w−
a,c

]
−∇j

[
Λk

(
· −za,k

)] ∥∥∥
∞;∂Br (za,k )

= 0.

Moreover, if these zeros are ordered so that the third coordinate of za,k is
increasing as j runs from 1 to ka, then Λk = Λ+ if k is odd, Λk = Λ− if k is even.
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Thanks for Your Attention !
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