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The Keller-Segel system

The Keller-Segel equation

The Keller-Segel equation [Patlak ’53], [Keller-Segel ’70], [Nanjundiah ’73]:∂tu = ∆u −∇ · (u∇Φu),

0 = ∆Φu + u,
in Rd . (KS)

Modeling features:
- Describing the chemotaxis in biology, [Hillen-Painter ’09]; interacting stochastic
many-particles system, [Othmer-Stevens ’90], [Stevens ’00]), [Chavanis ’08],
[Hillen-Painter ’08]; as a diffusion limit of a kinetic model
[Chalub-Markowich-Perthame-Schmeiser ’04], model of stellar dynamics under
friction and fluctuations [Wolansky ’92];

- Competition between diffusion of cells and aggregation;
- Rich model from mathematical point of view, [Horstman ’03 & ’04]. A general
aggregation model is of the form

∂tu = ∆A(u)−∇ · (B(u)∇K ∗ u).
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The Keller-Segel system

The Keller-Segel equation:

∂tu = ∆u + u2 −∇u · ∇Φu = ∇ ·
(
u∇(ln u − Φu)

)
,

Φu = K ∗ u, K(x) =

{ − 1
2π log |x | for d = 2,

cd |x |2−d for d ≥ 3.

- mass conservation: M =
∫
R2

u0(x)dx =
∫
R2

u(x , t)dx ;

- scaling invariance: ∀γ > 0, uγ(x , t) = 1
γ2 u
( x
γ
, t
γ2

)
, ‖uγ‖

L
d
2

= ‖u‖
L

d
2

(L1-critical if d = 2, L1-supercritical if d ≥ 3)

- free energy functional: F(u) =
∫
Rd

u
(

ln u − 1
2Φu

)
,

d
dtF(u) ≤ 0;

- stationary solution for d = 2: Qγ,a(x) = 1
γ2Q

( x−a
γ

)
, where

Q(x) = 8
(1 + |x |2)2 ,

∫
R2

Q = 8π.
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The Keller-Segel system

Diffusion vs. Aggregation in 2D ∂tu = ∇ ·
(
∇u − u∇Φu

)
� If M < 8π: global existence + spreading, [Blanchet-Dolbeault-Perthame ’06]. The

proof mainly relies on the free energy functional F(u) and the Log HLS inequality.
� If M = 8π and

∫
R2 |x |2u < +∞: blowup in infinite time,

[Blanchet-Carrillo-Masmoudi ’08]. Constructive approaches by [Ghoul-Masmoudi
’18] (radial), [Davila-del Pino-Dolbeault-Musso-Wei ’20] (nonradial):

‖u(t)‖L∞ ∼ c0 log t as t → +∞.

� If M > 8π: blowup in finite time, [Childress-Percus ’81], [Jager-Luckhaus ’92],
[Nagai-Senba ’98], [Senba-Suzuki ’03]:

(virial identity) d
dt

∫
R2
|x |2u(x , t)dx = M

2π (8π −M).

Constructive approaches in the radial setting by [Herrero-Velázquez ’96],
[Raphaël-Schweyer ’14]:

‖u(t)‖L∞ ∼ C0
e
√

2| log(T−t)|

T − t as t → T .
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The Keller-Segel system

Diffusion vs. Aggregation in high dimensions d ≥ 3

� A critical threshold in L d
2 for global existence [Calvez-Corrias-Ebde ’12]

‖u(0)‖
L

d
2
<

8
d C
−2(1+2/d)
GN

(
d/2, d

)
=⇒ global existence.

� Existence of self-similar (type I) blowup solutions by [Herrero-Medina-Velázquez ’98]:

u(x , t) = 1
T − t ϕ

(
x√

T − t

)
, ‖u‖L1 =∞.

Asymptotic description of ϕ by [Giga-Mizoguchi-Senba ’11].
� A formal derivation of non self-similar (type II) blowup solutions in the radial setting by
[Herrero-Medina-Velázquez ’97], [Brenner-Constantin-Kadanoff-Schenkel-Venkataramani ’99]:

u(x , t) ∼
1

λ2(t)
w
( |x | − R(t)

λ(t)

)
, R(t) ∼ (T − t)

1
d , λ ∼ Rd−1, ‖u‖L1 <∞.

� Blowup solution can be exhibited with any arbitrary mass by the scaling invariance.
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The Keller-Segel system

Finite time blowup in the 2D Keller-Segel system

A numerical simulation of blowup for the 2D Keller-Segel system

∂tu = ∆u −∇.(u∇Φu), −∆Φu = u.
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The Keller-Segel system

The spacial structure of blowup and self-similarity solution

Consider an evolution equation
ut = F [u],

and assume that the blowup occurs at a single point (a,T ). A similarity solution is of
the form

u(x , t) = 1
(T − t)αP

( x − a
(T − t)β

)
with appropriately chosen values of α, β. Here, P is the similarity profile that solves

−αP − βξ · ∇P(ξ) + F [P] = 0,

where F [P] is exactly the same expression as for F [u].
� Self-similarity of the 1st kind : a solution P only exists for a particular pair of (α, β).
� Self-similarity of the 2nd kind : a solution P exists for a family of exponents (α, β)
determined by extra conditions such as regularity.
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The Keller-Segel system

An example of a self-similarity of the 2nd kind

Consider the 1D problem
∂u
∂t = u2(x , t),

and look for a similarity blowup solution

u(x , t) = 1
T − t P(ξ), ξ = x − a

(T − t)β

where P satisfies
−P − βξPξ + P2 = 0, P(ξ) = 1

1 + cξ1/β .

We impose a regularity condition that P is regular for all ξ ∈ R. This requires that 1/β
must be a positive even integer and c > 0, otherwise, P develops a pole and becomes
infinite,

βi = 1
2(i + 1) , i = 0, 1, · · ·

There are a discretely infinite series of similarity solutions of the 2nd kind

Pi (ξ) = 1
1 + cξ2(i+1) , c > 0.
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The Keller-Segel system

Constructive approach

� Aim: Construction and stability of blowup solutions.
- The constructed solution is asymptotically self-similarity of the 2nd kind. This is
mostly the consequence of the existence of a scaling invariance, parabolic
regularization and energy dissipation.

- The stability is stated for a well-prepared class of initial data leading to blowup
solutions that satisfies a prescribed asymptotic behavior.

� Constructive approach:
- Part 1: Constructing a good approximate solution which formally yields the blowup
rate and the blowup profile.

- Part 2: Reduction of the linearized problem to a finite dimensional one, meaning
that we perform certain type of estimates to control the remainder and show that it
doesn’t affect the leading blowup dynamics.

- Part 3: Solving the finite dimensional problem (if necessary). This specifies the
choice of initial data.
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Blowup in R2 Single blowup

2.1. Single blowup in R2 (L1-critical)

∂tu = ∆u + u2 −∇u · ∇Φu,

0 = ∆Φu + u,
in R2. (2DKS)

� Previous literature: Most of the results had been obtained at the formal level
(numerical observation, formal matching asymptotic expansions) or in the radial setting
to remove the nonlocal structure difficulty, i.e.

mu(r , t) =
∫ r

0
u(ζ, t)ζdζ, ∂tmu = ∂2r mu −

∂rmu

r + mu∂rmu

r .

� Objective: Developing a new framework to construct blowup solutions that is feasible
to archive a classification of blowup dynamics, extension to dispersive equations.
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Blowup in R2 Single blowup

Blowup for the 2DKS ∂tu = ∇ ·
(
∇u − u∇Φu

)

� There exists a set O ⊂ L1 ∩ E , where E = {u :
∑2

k=0 ‖〈x〉
k∇ku‖L2 < +∞}, of

initial data u0 (not necessary radially symmetric) such that

u(x , t) = 1
λ2(t)

[
Q
(
x − a(t)
λ(t)

)
+ ε (x , t)

]
,

where a(t)→ ā ∈ R2 and
∑2

k=0 ‖〈x〉
k∇kε(t)‖L2 → 0 as t → T , and λ is given

by either

λ(t) ∼ 2e−
γ+2
2
√
T − t exp

(
− 1√

2

√
| log(T − t)|

)
, (C1)

or
λ(t) ∼ c(u0)(T − t)

`
2 | log(T − t)|−

`
2(`−1) , ` ≥ 2 integer. (C2)

� Case (C1) is stable and Case (C2) is (`− 1)-codimension stable.

Theorem 1 ([Collot-Ghoul-Masmoudi-Ng., ’22).
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Blowup in R2 Single blowup

Comments ∂tu = ∇ ·
(
∇u − u∇Φu

)

� Existing results: formal level (numerical observation, formal matching asymptotic
expansions) and in the radial setting to remove the nonlocal structure difficulty, i.e.
u(x , t) = u(r , t),

m(r) =
∫ r

0
u(ζ)ζdζ, =⇒ ∂tm = ∂2r m −

∂rm
r + ∂rm2

2r

Refs: [Herrero-Velázquez ’96 & ’97], [Velázquez ’02], [Schweyer-Raphael ’14],
[Dyachenko-Lushnikov-Vladimirova ’13], ...

� The new framework: nonradial setting, refined description of the stable blowup
mechanism, new (unstable) blowup dynamics, a nature approach via spectral analysis/
energy-type method.

� Perspectives: extension to dispersive equations, classification of the flow near the
stationary state, ...
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Blowup in R2 Single blowup

Renormalization and blowup profile

� Self-similar variables:

u(x , t) = 1
T − t w(z, τ), z = x√

T − t
,

dτ
dt = 1

T − t ,

∂τw = ∇ · (∇w − w∇Φw )− 1
2∇ · (zw).

� Blowup variables: ‖w(τ)‖L∞ →∞ as τ →∞,

w(z, τ) = 1
ν2

v(y , τ), y = z
ν
, λ(t) = ν(t)

√
T − t

where ν(τ)→ 0 as τ →∞ is an unknown parameter function,

ν2∂τv = ∇ · (∇v − v∇Φv ) + σ(τ)∇ · (zv), σ(τ) = O(ν2).

=⇒ The leading term in the expansion of v ∼ Q since ν → 0 as τ →∞,{
0 = ∆Q + Q2 −∇Q · ∇ΦQ ,
0 = ∆ΦQ + Q, Q(x) = 8

(1 + |x |2)2 ,
∫
R2

Q(x)dx = 8π.
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Blowup in R2 Single blowup

The linearized problem

� Linearized problem: w(z, τ) = Qν(z) + η(z, τ), where Qν(z) = 1
ν2Q
( z
ν

)
and η solves

∂τη = L νη +
(
ντ
ν
− 1

2

)
∇ · (zQν)−∇ ·

(
ηΦη

)
, ν → 0 unknown,

L νη = ∇ ·
(
∇η − η∇ΦQν − Qν∇Φη)︸ ︷︷ ︸

≡L ν
0 η

−1
2∇ · (zη)

- Structure of L ν
0 :

L ν
0 η = ∇ ·

(
Qν∇M νη

)
, M νη = η

Qν
− Φη.

M ν comes from the linearization of the energy functional F(u) =
∫
R2 u
(

ln u − 1
2Φu)

around Qν .∫
R2
ηM νηdz ∼

∫
R2

η2

Qν
dz, for 〈η, 1〉L2 = 〈η,∇.(zQν)〉L2 = 〈η, ∂jQν〉L2 = 0.
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Blowup in R2 Single blowup

A key proposition of the linear analysis in 2DKS

� In the radial setting and in terms of the partial mass, L ν becomes a local
operator,

spec(L ν)|rad =
{
αn,ν = 1− n − 1

2| ln ν| +O
(

1
| ln ν|2

)
, n ∈ N

}
.

The analysis of eigenproblem has been done through a matched asymptotic ex-
pansions technique, where the eigenfunction ϕn,ν is built from iterative kernels of
the linearized operator (think of Neumann series).
 spectral analysis to control the radial part in L2ω.

� For the nonradial part  energy methods: dissipation + coercivity∫
R2

L ν(u√ρ)M ν(u√ρ) ≤ −c0
∫
R2

|∇u|2

Qν
ρ, with ρ(z) = e−

|z|2
4 ,

up to the orthogonality condition 〈η, ∂1Qν〉L2√
ρ

= 〈η, ∂2Qν〉L2√
ρ

= 0.

Proposition 2 ([Collot-Ghoul-Masmoudi-Ng., ’22).
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Blowup in R2 Single blowup

Spectrum of L ν in the radial setting

� A singular eigenproblem: the limiting operator as ν → 0 is

L̄ = ∆ + 4z
|z|2 · ∇ −

1
2z · ∇ − 1 = ∆ζ,6 −

1
2ζ∂ζ − 1, ζ = |z|

with the spectrum (Hermite operator in R6)
spec(L̄ ) = {−1− n, n ∈ N}.

� L ν acting on radially symmetric functions is transformed to

L νϕ(ζ) = 1
ζ
∂ζ
(
A νmϕ(ζ)

)
, A ν = A ν

0 −
1
2ζ∂ζ ,

A ν
0 = ∂2ζ −

1
ζ
∂ζ + ∂ζ(mQν ·)

ζ
and mQν (ζ) = 4ζ2

ζ2 + ν2
.

The eigenproblem L νϕn,ν(ζ) = αn,νϕn,ν(ζ) is equivalent to(
A ν

0 −
1
2ζ∂ζ

)
φn,ν(ζ) = αn,νφn,ν(ζ), ϕn,ν(ζ) = ∂ζφn,ν

ζ
.

Let φn,ν(ζ) = ν−2φn(r) with r = ζ
ν
, the eigenproblem becomes(

A0 −
ν2

2 r∂r
)
φn(r) = ν2αn,νφn(r),

where A0 is the operator A ν
0 in the renormalized variable r .
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Blowup in R2 Single blowup

Eigenfunction expansion of L ν

� Iterative profiles: Let Tj+1(r) = −A −10 Tj (r), where T0(r) = r2
1+r2 with A0T0 = 0,

Tj (r) ∼ dj r 2j−2 ln r for r � 1,

A0 = ∂2r −
1
r ∂r + ∂r (mQ ·)

r , mQ(r) = 4r 2

1 + r 2 .

The operator A ν : H2
ων → L2ων is self-adjoint with compact resolvent, where

ων(ζ) = ν2

ζQν e
− ζ

2
4 .

i) (eigenvalues) αn,ν = 1− n − 1
2 ln ν −

2 ln 2−γ−n
4| ln ν|2 +O

(
1

| ln ν|3

)
.

ii) (eigenfunctions) φn,ν(ζ) =
∑n

j=0
n!

(n−j)!ν
2j−2Tj,ν

(
ζ/ν
)

+ φ̃n,ν .
{φn,ν}n∈N forms a complete orthogonal basis in L2ων .

iii) (spectral gap) For any g ∈ L2ων with 〈g , φn,ν〉L2ων = 0 for n = 0,N,

〈g ,A νg〉L2ων ≤ αN+1,ν‖g‖2L2ων .

Proposition 3 (Spectral properties of A ν).
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Blowup in R2 Single blowup

Coercivity of L ν

� for |z| � 1, the scaling term ∇.(zη) is considered as a small perturbation, i.e.
L ν ≈ L ν

0 that is symmetric under the scalar product

〈u, v〉M = 〈u,M νv〉L2

〈L ν
0 u, v〉M =

∫
∇.(Qν∇M νu)M νv = −

∫
Qν∇M νu · ∇M νv .

� for |z| � 1, we can ignore the term involving Φη, i.e. L ν ≈H ν , where

H νη = ∇ ·
(
∇η − η∇ΦQν )− 1

2∇ · (zη) = 1
ω̄ν
∇(ω̄ν∇η) + (Qν − 1)η,

which is symmetric in L2ω̄ν with ω̄ν = 1
Qν e

−|z|2/4.
� A global scalar product:

〈u, v〉∗ =
∫

u√ρM ν(v√ρ), ρ = e−|z|
2/4.

The coercivity of L ν with 〈·, ·〉∗ is obtained from the coercivity of M ν ,

〈L νu, u〉∗ ≈ −
∫

Qν |∇M ν(u√ρ)|2 ≤ −δ0
∫
|∇u|2

Qν
ρ+ C

2∑
i=1

〈u, ∂iQν
√
ρ〉2L2 .
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Blowup in R2 Single blowup

Approximate solution and the law of blowup

� The self-similar equation:

∂τw = ∇ ·
(
∇w − w∇Φw

)
− 1

2∇ · (zw), w = Qν + η.

� The approximate solution: for ` ≥ 1 integer,

w app(z, τ) = Qν(z) + a`(τ)
[
ϕ`,ν(|z|)− ϕ0,ν(|z|)

]
.︸ ︷︷ ︸

modification driving the law of blowup

A projection onto ϕ`,ν and compatibility condition a` ∼ −4ν2:

(` = 1, stable) ντ
ν

= 1
4 ln ν + e2

| ln ν|2 =⇒ ν = C0e−
√
τ
2 ,

(` ≥ 2, unstable) ντ
ν

= 1− `
2 + `+ 1

4 ln ν =⇒ ν = C`e
(1−`)τ

2 τ
`

2(1−`)

� The linearized equation: ε = w − w app,

∂τε = L νε+ Error + SmallLinear + Nonlinear .

V. T. Nguyen (NTU) Singularities in the Keller-Segel system 21



Blowup in R2 Single blowup

Nonlinear analysis

� The main issue: The perturbation ε can be large near the origin, and the only control
in L2ω does not allow for a use of dissipation. In particular the direction ∇.(z Qν), which
is the kernel of L ν

0 = ∇.
(
Qν∇M ν ·

)
, becomes the leading part of ε in the zone |z| ∼ ν.

� The treatment: Recall that 0 = ∆Qλ −∇.(Qλ∇ΦQλ) for any λ > 0,

0 = d
dλ

[
∆Qλ −∇.(Qλ∇ΦQλ)

]
λ=ν

=⇒ L ν
0
[
∇.(z Qν)

]
= 0.

We introduce ν̃ ∼ ν and impose a local orthogonality condition to eliminate ∇.(z Qν).
It’s crucial that the key proposition still holds true for the linearized operator L ν̃ up to
an admissible error, from which we are able to close the nonlinear analysis.

� An expectation: Such an idea can be successfully applied to other problems in some
critical regimes (NLS, nonlinear wave, ...)
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Blowup in R2 Multiple collapsing blowup

2.2. Multiple collapsing blowup in R2

(L1-critical)
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Blowup in R2 Multiple collapsing blowup

Simulation of a multiple collapsing blowup in R2

Multiple collapsing blowup for the KS system in R2.
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Blowup in R2 Multiple collapsing blowup

Known results

- [Côte-Zaag, ’13]: Type I backward multisoliton solutions for the subcritical semilinear
wave equation, utt = ∆u + |u|p−1u, 1 < p < d+2

d−2 .

- [Martel-Raphaël, ’18]: infinite-time blowup solutions for the L2-critical NLS in R2,
ıut + ∆u + |u|2u = 0,∥∥∥∥∥u(x , t)− eıγ(t)

λ(t)

K∑
k=1

Q
(
x − xk (t)
λ(t)

)∥∥∥∥∥
H1

→ 0, λ(t) ∼ 1
log t as t →∞,

where Q is the ground state solution

∆Q − Q + Q3 = 0, Q ∈ H1(R2), Q > 0 radially symmetric, exponentially decay.

Applying the pseudo-conformal symmetry v(x , t) = 1
|t|u
(

x
|t| ,

1
|t|

)
e−ı

|x|2
4t yields

finite-time blowup solutions.

- [Martel-Merle, ’18]: soliton collision for the critical semilinear wave equation in R5.
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Blowup in R2 Multiple collapsing blowup

Type II-multiple collapsing blowup in R2

[Collot-Ghoul-Masmoudi-Ng., ’23]: For the case of 2 bubbles, we construct a particular
example leading to a blowup solution of the form

u(x , t) = 1
λ2(t)

[
Q
(
x − a(t)
λ(t)

)
+ Q

(
x + a(t)
λ(t)

)
+ correction

]
,

where
λ(t) =

√
T − te−c

√
| log(T−t)|+O(1), a(t) = a0

√
T − t, |a0| ∼ 2.

In the self-similar setting, the solution becomes

w(z, τ) = 1
ν2(τ)

[
Q
(
z − a0
ν(τ)

)
+ Q

(
z + a0
ν(τ)

)
+ correction

]
,

where
ν(τ) = e−c

√
τ+O(1), |a0| ∼ 2.
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Blowup in Rd≥3 Collapsing-ring blowup

3.1. Collapsing-ring blowup in Rd≥3

(L1-supercritical)
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Blowup in Rd≥3 Collapsing-ring blowup

Collapsing-ring blowup solutions

Introduce the profile
W (ξ) = 1

8 cosh−2
(
ξ

4

)
.

� There exists an open set V ∈ L∞rad (Rd ) of initial data u0 such that

u(x , t) = M(t)
R(t)d−1λ(t)

[
W
( |x | − R(t)

λ(t)

)
+ ũ(x , t)

]
,

where ‖ũ(t)‖L∞ → 0 as t → T , and

λ(t) = R(t)d−1

M(t) , M(t)→ M0, R(t) =
[
(d/2)M(T − t)

] 1
d .

� The constructed solution is stable under small perturbation in V.

Theorem 4 ([Collot-Ghoul-Masmoudi-Ng., arXiv]).
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Blowup in Rd≥3 Collapsing-ring blowup

Traveling blowup solutions in the radial setting

0

Illustration of a traveling blowup solution in the radially symmetric setting.
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Blowup in Rd≥3 Collapsing-ring blowup

Traveling blowup solution in the partial mass setting

The partial mass setting mu(r , t) =
∫ r
0 u(ζ, t)ζd−1dζ,

∂tmu = ∂2r mu −
d − 1
r ∂rmu + mu∂rmu

r d−1 .

� There exists an open set O ⊂W 1,∞(R+) of initial data mu(0) such that

mu(r , t) = M(t)
[
Q
( r − R(t)

λ(t)

)
+ mε(r , t)

]
, Q(ξ) = e

ξ
2

1 + e
ξ
2
,

where Q′′ − 1
2Q
′ + QQ′ = 0, ‖mε(t)‖W 1,∞ → 0 as t → T ,

λ(t) = R(t)d−1

M(t) , M(t)→ M0, R(t) =
[
(d/2)M(T − t)

] 1
d .

� The constructed solution is stable under small perturbation in O.

Theorem 5 ([Collot-Ghoul-Masmoudi-Ng., arXiv]).
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Blowup in Rd≥3 Collapsing-ring blowup

Traveling blowup solutions in the partial mass setting

The partial mass equation:

∂tmu = ∂2r mu −
d − 1
r ∂rmu + mu∂rmu

r d−1 .

Illustration of a traveling blowup solution in the partial mass setting.
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Blowup in Rd≥3 Collapsing-ring blowup

A numerical simulation for d = 3

Fig 5: (horizontally zoomed solution) The initial data mu(r , 0) = MQ
(

r −M 1
3 ε

1.5M− 1
3 ε2

)
,

where M = 27 and ε = 0.7. With ε = 0.7, the theoretical blowup time is T = ε3 ≈ 0.343.
Maple solver gives an approximation of the blowup time by saying "could not compute
solution for t > 0.32: Newton iteration is not converging".
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Blowup in Rd≥3 Sketch of the proof

Renormalization and profile ∂tmu = ∂2
r mu − d−1

r ∂r mu + mu∂r mu
rd−1

� Inviscid variables (fix the shock location):

mu(r , t) = M(t)mw (ζ, τ), ζ = r
R(t) ,

dτ
dt = M(t)

R(t)d , and ν = Rd−1

M ,

to fix the location of the shock at ζ = 1,

∂τmw =
(

mw

ζd−1 −
1
2ζ
)
∂ζmw + ν∆ζ,2−d mw +

(Rτ
R + 1

2

)
ζ∂ζmw −

Mτ

M mw .

� Blowup variables (zoom at the shock):

mw (ζ, τ) = mv (ξ, s), ξ = ζ − 1
ν

,
ds
dτ = 1

ν
,

where mv solves the new equation

∂smv = ∂2ξmv + mv∂ξmv −
1
2∂ξmv +

(Rτ
R + 1

2

)
∂ξmv −

Ms

M mv + l .o.t

� The blowup profile is connected to the traveling solution to Burgers equation:

Q′′ − 1
2Q
′ + QQ′ = 0, lim

ξ→−∞
Q(ξ) = 0.
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Blowup in Rd≥3 Sketch of the proof

The linearized problem ∂tmu = ∂2
r mu − d−1

r ∂r mu + mu∂r mu
rd−1

� Introducing mq(ξ, s) = mv (ξ, s)− Q(ξ) yields

∂smq = L0mq + L(mq) + NL(mq) + Ψ,

where L0 = ∂2ξ − (1/2− Q)∂ξ + Q′ is the linearied operator appearing in the study of
stability of traveling wave solutions to Burgers equation.〈

L0g , g
〉

L2ω0
≤ −δ0‖g‖2H1

ω0
+ C

〈
g ,Q′

〉2
L2ω0
, ω0 = Q−1e

ξ
2 .

� Introducing mε(ζ, τ) = mw (ζ, τ)− Qν(ζ) yields

mε,1 = ∂ζmε, ∂τmε,1 = A1mε,1 + Pmε,1 + E , ζ ≥ 1,

where
A1 = −

(
d − 1
ζd + 1

2

)
+
(

1
ζd−1 −

1
2ζ
)
∂ζ + ν∂2ζ .

An observation (constructive approach): 0 < κ� 1,

φ1 = e−κτe−
3
8

(
|ζ−1|−4ν| ln ν|

ν

)
, ∂τφ1 −A1φ1 ≥

c0
ν
φ1, ζ ∈ [1, 2

1
d ).
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Blowup in Rd≥3 Sketch of the proof

A design of the bootstrap regime

� Inner-outer estimates: A� 1, 0 < κ� 1,

‖χ4| ln ν|+Amq(τ)‖L2ω0
. e−κτ , ‖∂ζmε(τ)‖L∞(|ζ−1|≥4ν| ln ν|) . e−κτ

� The coercivity of L0 to control the inner norm.

� A delay estimate for a transport-type equation helps to construct φ1(ζ, τ).
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Blowup in Rd≥3 Type I-Log blowup

3.2. Type I-Log blowup in R3

(L1-supercritical)
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Blowup in Rd≥3 Type I-Log blowup

Type I-Log blowup

[Ng.-Nouaili-Zaag, ’23]: We found for d = 3, there are finite-time blowup solutions
admitting the dynamics (infinite mass) either

u(x , t) = 1
T − t

[
Wrad

(
|x |6

(T − t)3| log(T − t)|

)
+ oL∞ (1)

]
,

or
u(x , t) = 1

T − t

[
Wnonrad

(
x6
1 + x6

2 + x6
3

(T − t)3| log(T − t)|

)
+ oL∞ (1)

]
,

where Wrad (ξ) and Wnonrad solve a first order nonlocal ODE,

Wrad (0) = Wnonrad (0) = 1, 0 <Wrad (ξ),Wnonrad (ξ) . ξ−
1
3 for ξ � 1.

- Such a blowup dynamic only appears for the cases d = 3 and d = 4.
- Require computer-assistance to derive and solve a nonlinear system of ODEs.
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Blowup in Rd≥3 Type I-Log blowup

Thank you for your attention!
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