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The Keller-Segel equation
The Keller-Segel equation [Patlak '53], [Keller-Segel '70], [Nanjundiah '73]:

Oru = Au—V - (uVD,),
0=A%, + u,

n R% (KS)

Modeling features:

- Describing the chemotaxis in biology, [Hillen-Painter '09]; interacting stochastic
many-particles system, [Othmer-Stevens '90], [Stevens '00]), [Chavanis '08],
[Hillen-Painter '08]; as a diffusion limit of a kinetic model
[Chalub-Markowich-Perthame-Schmeiser '04], model of stellar dynamics under
friction and fluctuations [Wolansky '92];

- Competition between diffusion of cells and aggregation;
- Rich model from mathematical point of view, [Horstman '03 & '04]. A general
aggregation model is of the form

Oru = AA(u) — V - (B(u)VK * u).
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The Keller-Segel system

The Keller-Segel equation:
O =Au+ v —Vu-Vo, =V (uV(nu—b,)),

—5log|x| for d=2,
O, =Kxu, K(x)=

calx*? for d > 3.

- mass conservation: M:/ uo(x)dx=/ u(x, t)dx;
R2 R2

- scaling invariance: Vy > 0, u,(x,t) = 71;u(§, Tt;) HUWHL% = ||u||L%

(L*-critical if d = 2, L'-supercritical if d > 3)

1 d
- free energy functional: F(u) = / u(ln u— —¢u), —F(u) <0;
Rd 2 dt
- stationary solution for d = 2: Q. ,(x) = #Q(X;a), where

8
Q(X):m, /RZQZSW.

V. T. Nguyen (NTU) Singularities in the Keller-Segel system



The Keller-Segel system

Diffusion vs. Aggregation in 2D du=V-(Vu—uVed,)

m If M < 8m: global existence + spreading, [Blanchet-Dolbeault-Perthame '06]. The
proof mainly relies on the free energy functional F(u) and the Log HLS inequality.

m If M =8r and f]RZ |x|?u < +oc: blowup in infinite time,
[Blanchet-Carrillo-Masmoudi '08]. Constructive approaches by [Ghoul-Masmoudi
'18] (radial), [Davila-del Pino-Dolbeault-Musso-Wei '20] (nonradial):

Ju(t)|lee ~ cologt as t — +oo.
m If M > 8n: blowup in finite time, [Childress-Percus '81], [Jager-Luckhaus '92],
[Nagai-Senba '98], [Senba-Suzuki '03]:

e d 2 _ M
(virial identity) s /]Rz |x|“u(x, t)dx = g(Sﬂ' M).

Constructive approaches in the radial setting by [Herrero-Velazquez '96],
[Raphaél-Schweyer '14]:

e 2| log(T—t)|

||U(t)||[_<x> ~ COT——t as t— T.

V. T. Nguyen (NTU)
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(d/2,d)

Diffusion vs. Aggregation in high dimensions d > 3
m A critical threshold in L? for global existence [Calvez-Corrias-Ebde '12]
8 —2(1+2/d
lu(O)]l, ¢ < < Can™ ™

—> global existence.

X
T ¢t7
Asymptotic description of ¢ by [Giga-Mizoguchi-Senba '11].

, u =0
Tt t) [ ull 2
u(x, t) ~

m A formal derivation of non self-similar (type Il) blowup solutions in the radial setting by
[Herrero-Medina-Velazquez '97], [Brenner-Constantin-Kadanoff-Schenkel-Venkataramani '99]:
MEELC
A%(t)

m Existence of self-similar (type I) blowup solutions by [Herrero-Medina-Velazquez '98]:
u(x,t) =

A(t)

V. T. Nguyen (NTU)

), R(t) ~ (T = )%, A~ ROL, Jluflp < 0.

m Blowup solution can be exhibited with any arbitrary mass by the scaling invariance.
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Finite time blowup in the 2D Keller-Segel system

A numerical simulation of blowup for the 2D Keller-Segel system

Oru = Au—V.(uVd,), —-Ad,=u.
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The Keller-Segel system

The spacial structure of blowup and self-similarity solution

Consider an evolution equation
uy = Flu],

and assume that the blowup occurs at a single point (a, T). A similarity solution is of
the form .
Xx—a
t) = P
u(x. ) (T —t) ((T— t)ﬂ>
with appropriately chosen values of «, 3. Here, P is the similarity profile that solves

—aP — 3¢ - VP(§) + FIP] = 0,

where F[P] is exactly the same expression as for F[u].

m Self-similarity of the 1st kind: a solution P only exists for a particular pair of («, 3).

m Self-similarity of the 2nd kind: a solution P exists for a family of exponents (a, )
determined by extra conditions such as regularity.

V. T. Nguyen (NTU)
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The Keller-Segel system

An example of a self-similarity of the 2nd kind

Consider the 1D problem
gu _ v’ (x, t)
at ) )
and look for a similarity blowup solution

e t) = PO €= T

where P satisfies 1

T 14 s

We impose a regularity condition that P is regular for all £ € R. This requires that 1/8
must be a positive even integer and ¢ > 0, otherwise, P develops a pole and becomes
infinite,

—P =8P+ PP =0, P(¢)

1
i = 57 4\ j = 717"'
p (i+1) O

There are a discretely infinite series of similarity solutions of the 2nd kind

1
Pi(¢) = T €20
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The Keller-Segel system

Constructive approach

m Aim: Construction and stability of blowup solutions.

- The constructed solution is asymptotically self-similarity of the 2nd kind. This is
mostly the consequence of the existence of a scaling invariance, parabolic
regularization and energy dissipation.

- The stability is stated for a well-prepared class of initial data leading to blowup
solutions that satisfies a prescribed asymptotic behavior.

m Constructive approach:

- Part 1: Constructing a good approximate solution which formally yields the blowup
rate and the blowup profile.

- Part 2: Reduction of the linearized problem to a finite dimensional one, meaning
that we perform certain type of estimates to control the remainder and show that it
doesn’t affect the leading blowup dynamics.

- Part 3: Solving the finite dimensional problem (if necessary). This specifies the
choice of initial data.

. Nguyen (NTU) Singularities in the Keller-Segel system



2.1. Single blowup in R? (L!-critical)

Ou=Au+u*—Vu-Vo,,

0=A%, + u,

RZ

in (2DKS)
m Previous literature: Most of the results had been obtained at the formal level
to remove the nonlocal structure difficulty, i.e.

m“(r7 t) = /r U(Ca t)CdCa 8l.‘mu - afmu -
0

(numerical observation, formal matching asymptotic expansions) or in the radial setting
Ormy

my0rmy
+ .
r
T. Nguyen (NTU)

r

m Objective: Developing a new framework to construct blowup solutions that is feasible
to archive a classification of blowup dynamics, extension to dispersive equations.
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. BowpnR ___ Sigebbwn
Blowup for the 2DKS Oeu=V-(Vu—uVd,)
(Theorem 1 ([Collot-Ghoul-Masmoudi-Ng., ’22).)

initial data up (not necessary radially symmetric) such that

1

x — a(t)
A%ﬂ[Q< NG

)+etmn].
where a(t) — 3 € R? and Zi:o [(x) V¥ e(t)||,2 — 0 as t — T, and X is given

by either

m There exists a set O C L' N &, where £ = {u: Zi:o l(x) V¥ ul| 2 < +00}, of
u(x,t) =
or

1

A(t) ~2e” 5 VT —texp (—

V2

V. T. Nguyen (NTU)

V| log(T — t)l) : (C1)
A(t) ~ c(u)(T — t)§| log(T — t)|7ﬁ, £ > 2 integer.

m Case (C1) is stable and Case (C2) is (£ — 1)-codimension stable.

(C2)
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Comments Oeu=V-(Vu—uVd,)

m Existing results: formal level (numerical observation, formal matching asymptotic
expansions) and in the radial setting to remove the nonlocal structure difficulty, i.e.

u(x,t) = u(r, t),

8,m  O,m>

r 2r

m(r) = / WO)cde, = |Bum = oPm -
0

Refs: [Herrero-Velazquez '96 & '97], [Veldzquez '02], [Schweyer-Raphael '14],
[Dyachenko-Lushnikov-Vladimirova '13],

® The new framework: nonradial setting, refined description of the stable blowup
mechanism, new (unstable) blowup dynamics, a nature approach via spectral analysis/
energy-type method.

m Perspectives: extension to dispersive equations, classification of the flow near the
stationary state, ...
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Renormalization and blowup profile
m Self-similar variables:
u(x,t) = ;W(z, T), z=
T-—t
Orw

X dr 1
T—t dt T-t
_ V. (Vw—wVb,) — %v (zw).
m Blowup variables: ||w(7)||ic — o0 as 7 — oo,

1 z —
W(Z,T): ;V(.y77-)7 y = ;7 A(t):l/(t) T-t
where v(7) — 0 as 7 — oo is an unknown parameter function,

0,v=V-(Vv—vVd,) +a(r)V - (2v),
0
0

= The leading term in the expansion of v ~ @ since v — 0 as 7 — oo,

= A¢Q + Qy
V. T. Nguyen (NTU)

=AQ+Q*-VQ- Vby,

o(1) = 0(*)
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Blowup in R2 Single blowup

The linearized problem

m Linearized problem: w(z,7) = Q.(z) 4+ n(z,7), where Q.(z) = 5 Q (f) and 7 solves

1

0-n=2L"n+ <— - 5) V- (zQ,)) -V - <n¢n), v — 0 unknown,

y 1
L'n=V- (Vn —nVoq, — Q. V) _EV “(zn)

EEOVW

- Structure of .%4y":
— o,

= fR2 u(ln u—31o,)

L=V (QVMn), M=o

" comes from the linearization of the energy functional F(u)

around Q, .

/ 0" ndz ~ / Pz, for (1) = (0, V.(2@))iz = (1, 8,Qu) 12 = O.
R ]R2 I/
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A key proposition of the linear analysis in 2DKS

(Proposition 2 ([Collot-Ghoul-Masmoudi-Ng., '22).)

m In the radial setting and in terms of the partial mass, £ becomes a local
operator,

1 1
v rad — nv:]-— - 5 .
spec(L")|rad {a, n 2||ny|—|—(’)<||ny|2) nGN}

The analysis of eigenproblem has been done through a matched asymptotic ex-
pansions technique, where the eigenfunction ¢, . is built from iterative kernels of
the linearized operator (think of Neumann series).

~+ spectral analysis to control the radial part in L2 .

m For the nonradial part ~» energy methods: dissipation + coercivity

2 ‘Z|2
[Vl p, with p(z) =e %,
v

/R LA ) < o |

R2

up to the orthogonality condition (1, 91 Q. )2

\/7)_

<77a 82QV>L2\/7) =0.
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Spectrum of £” in the radial setting
m A singular eigenproblem: the limiting operator as v — 0 is
— 4
=N+ =
|22
with the spectrum (Hermite operator in R®)

V—%Z~V—1:A(,6_%C8C_17 ¢=|lz|

Z7¢(Q) :%

spec(.Z) = {—1—n,ne N}.
m £ acting on radially symmetric functions is transformed to
%r/ _ ag _ Ca( + 8C(mQu')
The eigenproblem £" 5., (¢) = anvn,(C) is equivalent to

O (" m(Q)), " = A~ S0,
1
3

4¢?
<2 + V2 .

V. T. Nguyen (NTU)

and mg,(¢) =
(8 = 260)801(0) = GnsnalQ), onnlC) =
Let 61.,(C) = v~2,(r) with r = &, the eigenproblem becomes

¢

a(¢n,u
l/2 2
(6 — 219 60(r) = V2 nun(r)
where & is the operator % in the renormalized variable r.
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Eigenfunction expansion of £
m Iterative profiles: Let Tj11(r) = —/, ' T;(r), where To(r) = ’Zr
Ti(r) ~ dir¥2Inr for r > 1,
oo =07 — %a, ;- 9lma)

r )
(Proposntlon 3 (Spectral properties of &7”) J
The operator &7/”

wu(€) =

m Wlth JZ{()TO —0

. H?

2 442
S Qy

— L2
i) (eigenvalues)

apy, =1

i) (eigenfunctions)

1

2Inv
b (C) =

2In2—~—n

n!

is self-adjoint with compact resolvent, where

0 (n—j)!

+0 (k)

e 2T17 (C/V) +¢nu

V. T. Nguyen (NTU)

4| In u|2_
>
{¢nv }nen forms a complete orthogonal basis in L2
iii) (spectral gap) For any g € qu with (g, ¢n,v)

=0forn=0,N,
(g, "8z < aniillgli
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Coercivity of £¥

m for |z| < 1, the scaling term V.(zn) is considered as a small perturbation, i.e.
LY =~ £y that is symmetric under the scalar product

<U, V)//l = <U, %VV>L2
(L u,v)u = /V.(QVV%”U)%”V = —/QVV//ZVMV//{”v.
m for |z| > 1, we can ignore the term involving ®,, i.e. £ ~ 5", where

y 1 1
A=V (Vn—nVq,) = 5V (zn) = = V(@) +(Q — 1),

2
which is symmetric in L2 with &, = Qiue_|Z| /4,
m A global scalar product:

(u,v)s = /U\/ﬁ.ﬂu(v\/ﬁ)7 p= e*|2|2/4.
The coercivity of £* with (-,-). is obtained from the coercivity of .Z",

2 2
(LY u,u)s ~ —/Q,,IV///”(U\/E)IZ < —50/ 'vQ‘:' p+CY (U, 0,Qu/p)ia-
i=1
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Approximate solution and the law of blowup
m The self-similar equation:
Orw=V- (VW — WVCDW) — %V (zw), w=Q, +n.
m The approximate solution: for £ > 1 integer,

w(2,7) = Qu(2) + au(7) [pe.n(2]) — wo.u(l2])].

A projection onto ., and compatibility condition a; ~ —4v?:
(¢ =1, stable)

modification driving the law of blowup

)

1 _ /T
V_T = _|_ € — V= Coe \/?
v 4lnv  |Iny)?
Vs 1-— {+1
L>2 stable) — = —— —
(€2, un ) v 2 * 4Inv
m The linearized equation: ¢ = w — w?,
V. T. Nguyen (NTU)

I/:Cee

(1—0)r

2

m]

£
210
O-e = L"e + Error + SmallLinear + Nonlinear.
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Blowup in R2 Single blowup

Nonlinear analysis

m The main issue: The perturbation € can be large near the origin, and the only control
in L2 does not allow for a use of dissipation. In particular the direction V.(z @.), which
is the kernel of £ = V.(Q,,V//{” ) becomes the leading part of € in the zone |z| ~ v.

m The treatment: Recall that 0 = AQx — V.(Q\V®g, ) for any A > 0,

d

O:ﬁ

{AQA - v.(QAwQX)] — Z[V.(zQ.)] =0.
A=v

We introduce i ~ v and impose a local orthogonality condition to eliminate V.(z Q.).

It's crucial that the key proposition still holds true for the linearized operator .Z* up to

an admissible error, from which we are able to close the nonlinear analysis.

m An expectation: Such an idea can be successfully applied to other problems in some
critical regimes (NLS, nonlinear wave, ...)

u}
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Blowup in R2 Multiple collapsing blowup

2.2. Multiple collapsing blowup in R?
(L*-critical)

V. T. Nguyen (NTU) Singularities in the Keller-Segel system



Blowup in R2 Multiple collapsing blowup

Simulation of a multiple collapsing blowup in R?

Multiple collapsing blowup for the KS system in R?.
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Blowup in R2 Multiple collapsing blowup

Known results

- [Céte-Zaag, '13]: Type | backward multisoliton solutions for the subcritical semilinear
wave equation, ug = Au+ |ulP"tu, 1< p< 42

- [Martel-Raphaél, '18]: infinite-time blowup solutions for the [-critical NLS in R?,
we + Au+ |uffu =0,

e(t)

u(x,t)—WZQ<X;\(—X:)(t)> — 0, A(t)w@ as t — oo,

k=1 H
where @ is the ground state solution

AQ—-Q+@ =0 QecH' (R, Q>0 radially symmetric, exponentially decay.

1x1
Applying the pseudo-conformal symmetry v(x,t) = +u (IXTI’ |_1I) e ' yields

[t]
finite-time blowup solutions.

- [Martel-Merle, '18]: soliton collision for the critical semilinear wave equation in R®.

V. T. Nguyen (NTU) Singularities in the Keller-Segel system



Type Il-multiple collapsing blowup in R?

[Collot-Ghoul-Masmoudi-Ng., '23]: For the case of 2 bubbles, we construct a particular
example leading to a blowup solution of the form

_ 1 x —a(t) x + a(t) ,
u(x,t) = () [Q < NG) > +Q <W> +correct|on] ,

Mt) = VT — te VIRET=0IROW 504y — a0V/T — ¢, |ao| ~ 2.

In the self-similar setting, the solution becomes

= L Z— 2 Z+ & correction
e =7 |2 (35 + @ (557 ) + comein]

v(T) = e_cﬁ+o(1), |ao| ~ 2.

where

where
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Blowup in RI23 Collapsing-ring blowup

3.1. Collapsing-ring blowup in R9=3

(L'-supercritical)
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Blowup in ]P;d23 Collapsing-ring blowup

Collapsing-ring blowup solutions

Introduce the profile

w(e) = %cosh72 (%)

(Theorem 4 ([Collot-Ghoul-Masmoudi-Ng., arXiv]).)

m There exists an open set V € L°%(R?) of initial data up such that

M(t) x| = R(®)Y | -
D7 1A() [W( NG) )+ it t)} :

u(x,t) = R(

where ||T(t)||cc — 0 as t — T, and

YORLE L

M(t) = Mo, R(t) = [(d/2)M(T —1)] .

m The constructed solution is stable under small perturbation in V.

V. T. Nguyen (NTU)
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Blowup in RI23 Collapsing-ring blowup

Traveling blowup solutions in the radial setting

R(t) ~ er(T — £)1 and A(t) ~ es(T — )T

At) = R1(t) < R(t) ford > 3

. Nguyen (NTU) Singularities in the Keller-Segel system



Traveling blowup solution in the partial mass setting
The partial mass setting m,(r,t) = for u(¢, t)¢tdC,
d—1
8tmu = 8,?'77,_, —

8rmu + muarmu
;
(Theorem 5 ([Collot-Ghoul-Masmoudi-Ng., arXiv]).J

rd—1

r— R(t)
A(t)

)+ mac, t)] Q=
3Q +QQ =0, [m(t)llwre +0ast— T,
)\(t) _ R(t)d—l

m There exists an open set O C WV*°(R,) of initial data m,(0) such that
mu(r, t) = M(t) {Q(
where Q"

£
e?

1+

M(t) '

€
2

1
M(t) = Mo, R(t) = [(d/2)M(T —t)]?.
m The constructed solution is stable under small perturbation in O.
V. T. Nguyen (NTU)
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Blowup in RI23
Traveling blowup solutions in the partial mass setting
The partial mass equation:

2
8tnn,::éhlnu-—

Collapsing-ring blowup

m,0,my
Ormy +
M,

rd—1

M)

V. T. Nguyen (NTU)
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Blowup in RI23 Collapsing-ring blowup

A numerical simulation for d = 3

1
— M3
Fig 5: (horizontally zoomed solution) The initial data m,(r,0) = MQ <ﬁ)
LM 3€e
where M = 27 and ¢ = 0.7. With e = 0.7, the theoretical blowup time is T = €3~ 0.343,
Maple solver gives an approximation of the blowup time by saying "could not compute
solution for t > 0.32: Newton iteration is not converging".
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Blowup in ]P;d23 Sketch of the proof

Renormalization and profile Ormy, = 0?m, — d_:?la
m Inviscid variables (fix the shock location):

M) = MOmCT), <= s T = R i

to fix the location of the shock at ( =1,

my 1 R 1 M.
Ormy, = <F - §C> (9ng + VA(,2—d my, + (? + 5) Cagmw — Vmw.

m Blowup variables (zoom at the shock):

mW(CaT) = mV(£75)7 5 = ) o=

where m, solves the new equation

1 R 1 M
Osm, = 8§mv + myOgm, — §8gmv + (F + 5) Ogm, — o + lo.t

m The blowup profile is connected to the traveling solution to Burgers equation:

Q- 5Q+QQ =0, _lm_Q()=o0.
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Blowup in RI23 Sketch of the proof

The linearized problem Ormy = 0?m, — —8 my + —m

m Introducing mq(&,s) = my(€,s) — Q(&) yields
Osmg = %omg + L(mq) + NL(mg) + V,

where % = 97 — (1/2 — Q)0: + Q' is the linearied operator appearing in the study of
stability of traveling wave solutions to Burgers equation.

2 —1 £

(Zg.8), < —50||g||$%0 +C(g, @), , wo=Q ‘el
«wo «wo

m Introducing m-(¢, 7) = mw (¢, 7) — Qu(C) yields

me1 = acmsy 87'775,1 = Mmsg + Pms,l + E7 C >1,

d-1 1 1 1 2
m:_<7+§>+<w—ic)&+u8§.

An observation (constructive approach): 0 < k < 1,

where

3 (l¢=1—4v|nv|
= T 0> D6 cep2d),

V. T. Nguyen (NTU) Singularities in the Keller-Segel system



A design of the bootstrap regime
m Inner-outer estimates: A > 1, 0 < Kk K 1,
X ama ()i, S €7
m The coercivity of % to control the inner norm.

—KT
10 me(T)[ o= (1c-11zavimup) S €
m A delay estimate for a transport-type equation helps to construct ¢1(¢, 7).
1-4v|lnv| - Av 1+ 4v|Inv| + Av
| Inner part | ¢
Il 1 1
T
0 ‘ 1 |
Outer part Outer part
1—4v|inv| 1+ 4v|lny|
—4|Iny| - A 4/Inv| + A
Inner part | =<t
| |
1 )
Outer part Outer part
—4ny| 4/lnv|
Nguyen (NTU)
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Blowup in RI23 Type I-Log blowup

3.2. Type I-Log blowup in R3
(L'-supercritical)

V. T. Nguyen (NTU)
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Type I-Log blowup

[Ng.-Nouaili-Zaag, '23]: We found for d = 3, there are finite-time blowup solutions
admitting the dynamics (infinite mass) either

_ 1 [x[°
ulxt) = 37— [W'ad <(T — )3 log(T — t)|> O (1)]’

6 6 6
U(X> t) = % |:Wnonrad ( XXt % > + 00 (1):|7

or

(T —t)*[log(T — t)

where Wi,q(€) and Wionrag solve a first order nonlocal ODE,

Wrad(o) = Wnonrad(o) = 17 0< Wfad(€)7 Wnonrad(f) 5 57% for £ > 1

- Such a blowup dynamic only appears for the cases d =3 and d = 4.
- Require computer-assistance to derive and solve a nonlinear system of ODEs.
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Blowup in RI23 Type I-Log blowup

Thank you for your attention!

V. T. Nguyen (NTU)
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