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Dispersion: What is it?

Take a physical system made up of particles or waves.

Dispersion occurs when the building blocks of the system move away from
each other, i.e., they disperse.

Dispersion leads to:

Local and global decay, mass goes to infinity.
Strichartz estimates.
Gain of integrability.
Local smoothing estimates (Kato effect, averaging lemmas).
Hypoellipticity, mixing property.

In kinetic theory, the transport operator (∂t + v · ∇x) is responsible for
dispersion. The Castella–Perthame estimates capture well the effects of
dispersion in the whole space.
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Castella–Perthame Estimates
[Castella, Perthame; CRAS, 1996]

Consider the equation{
(∂t + v · ∇x)f (t, x , v) = g(t, x , v)

f (0, x , v) = f0(x , v)

where t ∈ R+, x ∈ Rd , v ∈ Rd .

f (t, x , v) = f0(x − tv , v) +

∫ t

0

g(s, x − (t − s)v , v)dv

Theorem: [Castella, Perthame] Take 1 ≤ r ≤ p ≤ ∞. Then,

‖f (x − tv , v)‖Lp
xLr

v
≤ |t|−d( 1

r −
1
p )‖f (x , v)‖Lr

xL
p
v
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Proof:

‖f (x − tv , v)‖Lp
xLr

v
= ‖f (y ,

x − y

t
)‖Lp

xLr
y
|t|− d

r

≤ ‖f (y ,
x − y

t
)‖Lr

yL
p
x
|t|− d

r = ‖f (y , x)‖Lr
yL

p
x
|t|−d( 1

r −
1
p )
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Remark: The free transport equation conserves all Lpx,v norms.
⇒ The endpoint case p = r is trivial (equality).
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Castella-Perthame Estimates (continued)

Theorem: [Castella, Perthame] Take 1 ≤ a, p, q, r ≤ ∞ such that a < q,

2

q
= d

(
1

r
− 1

p

)
and

2

a
=

1

p
+

1

r

Then,

‖f (x − tv , v)‖Lq
t L

p
xLr

v
≤ C‖f (x , v)‖La

x,v
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xLr

v
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Idea of proof:

1 Show a dual estimate employing a TT ∗ method and the classical
Hardy–Littlewood–Sobolev (HLS) inequality.

2 Apply the resulting estimate to |f |α,∀α > 0 to recover the full range of
parameters.
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Remarks

An explicit constant C can be obtained from optimal constants for the HLS
inequality [Lieb; Annals of Math., 1983].

The endpoint case q =∞ and a = p = r is trivial (equality).

Taking r = 1 gives

‖f (x − tv , v)‖
L

2p′
d

t Lp
xL1

v

≤ Cp‖f (x , v)‖
L

2p
p+1
x,v

with limp→1 Cp = 1.

One can show Cp ≤ K p−1 for some K > 0 and p close to 1.
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Castella-Perthame Estimates (continued)

Theorem: [Castella, Perthame] Take 1 ≤ k, l , p, q, r ≤ ∞ such that
1 < l < k <∞,

1

q
= d

(
1

r
− 1

p

)
and 1 +

1

k
=

1

q
+

1

l

Then, ∥∥∥∥∫ t

0

g(s, x − (t − s)v , v)ds

∥∥∥∥
Lk
t L

p
xLr

v

≤ C‖g(t, x , v)‖Ll
tL

r
xL

p
v
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Idea of proof: Use estimate for initial data and the HLS inequality.
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Remarks:

An explicit constant C can be obtained from optimal constants for the HLS
inequality [Lieb; Annals of Math., 1983].

The endpoint case q = k =∞, l = 1 and p = r is trivial (equality if g ≥ 0).
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Remarks:

Taking r = 1 and l = k ′ gives∥∥∥∥∫ t

0

g(s, x − (t − s)v , v)ds

∥∥∥∥
L

2p′
d

t Lp
xL1

v

≤ Cp‖g(t, x , v)‖
L

2p
d−(d−2)p
t L1

xL
p
v

with limp→1 Cp = 1.

One can show Cp ≤ K p−1 for some K > 0 and p close to 1.

D. Arsénio (NYUAD) Entropic Dispersion 9 May 2025 5 / 19



Castella-Perthame Estimates (continued)
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L

2pr
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1
2

L
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x,v

to perform a kind of TT ∗ estimate, and

use the HLS inequality.
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Remarks:

As before, an explicit constant can be obtained and the case p = r , q =∞
and l = 1 is trivial.

However, we cannot reach the case p = r = 1.

The adjoint operator
∫ T

t
h(s, x − (t − s)v , v)ds satisfies similar estimates. A

duality argument gives that∥∥∥∥∫ t

0

g(s, x − (t − s)v , v)ds

∥∥∥∥
L

2p′
d

t Lp
xL1

v

≤ C‖g(t, x , v)‖
L1
t L

2p
p+1
x,v

∀1 ≤ p <
d

d − 1
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Application to the Boltzmann Equation

Theorem [A.; 2009; CMP, 2011]
Let d = 2, 3 and f0(x , v) ∈ Ldx,v (Rd × Rd). Consider the Boltzmann equation{

(∂t + v · ∇x)f = Q(f , f )

f (t = 0) = f0

for a suitable cross-section b(v − v∗, σ).
If ‖f0‖Ld

x,v
is small enough, there exists a global solution

f ∈ L∞t Ldx,v ∩ Lλt L
d λ
λ−1

x L
d λ
λ+1

v

for some d < λ <∞.
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f ∈ L∞t Ldx,v ∩ Lλt L
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x L
d λ
λ+1

v

for some d < λ <∞.

Idea of proof: Use the Castella–Perthame dispersive estimates in combination
with convolution inequalities for Q+.
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Remarks:

The convolutions inequalities are related to the regularizing properties of Q+.
They do not hold for Q−.

Other results on the Boltzmann equation based on dispersion:

Solutions near global Maxwellians [Bardos, Gamba, Golse, Levermore; CMP,
2016].
Solutions with Gaussian weights near vacuum [Illner, Shinbrot; CMP, 1984]
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Question

How can we measure the dispersion of solutions to the Boltzmann
equation which satisfy natural conservation laws only?

More generally, the same question applies to any kinetic system
f (t, x , v) such that the mass is conserved, and the energy and the
entropy decay.

Difficulty: Dispersion is not captured by the L1
x,v norm.

How can we measure dispersion in the L1
x,v setting?

Local decay?
∫
B(0,R)×Rd f (t, x , v)dxdv → 0 as t →∞? (∀0 < R <∞)

Mass escaping to infinity?
∫
Rd×Rd f (t, x , v)|x |αdxdv →∞ as t →∞?

(∀α > 0)

Is there any other appropriate measure of dispersion? Yes! (the entropy)
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Important Remark

Solutions to collisional kinetic equations satisfy formally that

d

dt

∫
Rd×Rd

f (t, x , v)|x − tv |2dxdv = 0

d

dt

∫
Rd×Rd

f (t, x , v)(x − tv) · vdxdv = 0

d

dt

∫
Rd×Rd

f (t, x , v)|v |2dxdv = 0

⇒
∫

f (t, x , v)|x |2dxdv =

∫
f (t, x , v)

(
|x − tv |2 + 2t(x − tv) · v + t2|v |2

)
dxdv

=

∫
f0|x |2dxdv + 2t

∫
f0x · vdxdv + t2

∫
f0|v |2dxdv

⇒ Formally, one can expect
∫
f (t, x , v)|x |2dxdv to grow quadratically as t →∞.

However, rigorously, one only has weak sequential lower semi-continuity of convex
functionals and, therefore, we only know that∫

Rd×Rd

f (t, x , v)|x |2dxdv . t2
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Achieving Nontrivial Endpoint Estimates

Basic idea (classical):
Suppose h1, h2 ∈ C 1([0,∞),R) are such that

h1(λ) ≤ h2(λ) (∀λ > 0) and h1(0) = h2(0)

Then,

h′1(0) ≤ h′2(0)

Examples:

The logarithmic HLS inequality

The entropic uncertainty principle
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Example: The Logarithmic HLS Inequality
[Carlen, Loss; Geom. and Funct. An., 1992] [Beckner; Annals of Math., 1993]

The HLS inequality:∫
Rd×Rd

h(x)|x − y |−λh(y)dxdy ≤ C (d , λ)‖h‖2
Lp

with p = 2d
2d−λ , 0 ≤ λ < d , and C (d , λ) the optimal constant from [Lieb; Ann. of

Math., 1983].
For λ = 0, one has an equality. ⇒ Take derivative d

dλ and then set λ = 0 to
deduce

−
∫
Rd×Rd

h(x) log |x − y |h(y)dxdy ≤
(

d

dλ
C (d , λ)|λ=0

)
‖h‖2

L1

+
‖h‖L1

d

∫
Rd

h(x) log

(
h(x)

‖h‖L1

)
dx

for all suitable h ≥ 0.
(See also logarithmic Sobolev inequalities [Gross; Am. J. Math., 1975])
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Example: The Entropic Uncertainty Principle
[Beckner; Annals of Math., 1975]
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Example: The Entropic Uncertainty Principle
[Beckner; Annals of Math., 1975]

Hausdorff–Young inequality:

‖f̂ ‖Lp′ (R) ≤ ‖f ‖Lp(R) (∀1 ≤ p ≤ 2) with f̂ (ξ) =

∫
R
e−2πiξ·x f (x)dx

With a sharp constant:

‖f̂ ‖Lp′ ≤
(
p

1
p /p′

1
p′
) 1

2 ‖f ‖Lp
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Example: The Entropic Uncertainty Principle
[Beckner; Annals of Math., 1975]

Hausdorff–Young inequality:

‖f̂ ‖Lp′ (R) ≤ ‖f ‖Lp(R) (∀1 ≤ p ≤ 2) with f̂ (ξ) =

∫
R
e−2πiξ·x f (x)dx

With a sharp constant:

‖f̂ ‖Lp′ ≤
(
p

1
p /p′

1
p′
) 1

2 ‖f ‖Lp

For p = 2, one has an equality. ⇒ Normalize ‖f ‖L2 = ‖f̂ ‖L2 = 1, take derivative
d
dp and set p = 2 to deduce the entropic uncertainty principle:

∫
R
f 2 log(f 2)dx +

∫
R
f̂ 2 log(f̂ 2)dx ≤ log

2

e
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Example: The Entropic Uncertainty Principle
[Beckner; Annals of Math., 1975]

Recall that the entropy is minimized by Maxwellians (i.e., Gaussian distributions):

⇒
∫
R
f 2 log(f 2)dx ≥ −1

2
log

(
2πe

∫
R
f (x)2(x − x0)2dx

)
∫
R
f̂ 2 log(f̂ 2)dξ ≥ −1

2
log

(
2πe

∫
R
f̂ (ξ)2(ξ − ξ0)2dξ

)
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2
log

(
2πe

∫
R
f̂ (ξ)2(ξ − ξ0)2dξ

)
Combining this with the entropic uncertainty principle recovers the
Heisenberg–Weyl uncertainty principle:

1

4π
≤
(∫

R
f (x)2(x − x0)2dx

) 1
2
(∫

R
f̂ (ξ)2(ξ − ξ0)2dξ

) 1
2
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Entropic Dispersion
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Entropic Dispersion

We apply the previous logarithmic endpoint method to the Castella–Perthame
estimates, for suitable densities f0(x , v) ≥ 0, which gives∫ (∫

f0(x − tv , v)dv

)
log

(∫
f0(x − tv , v)dv∫∫
f0(y ,w)dydw

)
dx + d log |t|

∫∫
f0(x , v)dxdv

≤
∫∫

f0(x , v) log

(
f0(x , v)∫
f0(x ,w)dw

)
dxdv
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f0(y ,w)dydw

)
dx + d log |t|

∫∫
f0(x , v)dxdv

≤
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f0(x , v) log

(
f0(x , v)∫
f0(x ,w)dw

)
dxdv

and, if
∫∫

f0(x , v)dxdv = 1,∫
exp

(
2

d

∫ (∫
f0(x − tv , v)dv

)
log

(∫
f0(x − tv , v)dv

)
dx

)
dt

≤ C∗ exp

(
1

d

∫∫
f0(x , v) log f0(x , v)dxdv

)
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Entropic Dispersion
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Entropic Dispersion

Remarks:

C∗ can be computed but likely not optimal.

Similar estimates can be obtained for the source
∫ t

0
g(s, x − (t − s)v , v)ds.

Major obstacle: These estimates require nonnegative densities and they are
not monotonic (because 0 ≤ f ≤ h ��⇒ f log f ≤ h log h).

It is possible to incorporate loss terms of collision operators into dispersive
estimates as a damping, which makes all densities nonnegative. (This idea
can be applied to the BGK equation, for instance.)
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Kinetic Uncertainty Principle

Take f (x , y) ≥ 0 and write Φ(z) = z log z . Applying Jensen’s inequality with the

probability measure
∫
f (x,y)dx∫∫
f (x,y)dxdy

dy gives∫∫
f (x , y)dxdyΦ

( ∫
f (x , y)dy∫∫
f (x , y)dxdy

)
≤
∫ (∫

f (x , y)dx

)
Φ

(
f (x , y)∫
f (x , y)dx

)
dy

which, supposing
∫∫

f (x , y)dxdy = 1, for simplicity, can be rewritten into the
kinetic uncertainty principle:∫ (∫

f (x , y)dy

)
log

(∫
f (x , y)dy

)
dx

+

∫ (∫
f (x , y)dx

)
log

(∫
f (x , y)dx

)
dy

≤
∫∫

f (x , y) log f (x , y)dxdy

D. Arsénio (NYUAD) Entropic Dispersion 9 May 2025 14 / 19



Kinetic Uncertainty Principle

Take f (x , y) ≥ 0 and write Φ(z) = z log z . Applying Jensen’s inequality with the

probability measure
∫
f (x,y)dx∫∫
f (x,y)dxdy

dy gives∫∫
f (x , y)dxdyΦ

( ∫
f (x , y)dy∫∫
f (x , y)dxdy

)
≤
∫ (∫

f (x , y)dx

)
Φ

(
f (x , y)∫
f (x , y)dx

)
dy

which, supposing
∫∫

f (x , y)dxdy = 1, for simplicity, can be rewritten into the
kinetic uncertainty principle:∫ (∫

f (x , y)dy

)
log

(∫
f (x , y)dy

)
dx

+

∫ (∫
f (x , y)dx

)
log

(∫
f (x , y)dx

)
dy

≤
∫∫

f (x , y) log f (x , y)dxdy

D. Arsénio (NYUAD) Entropic Dispersion 9 May 2025 14 / 19



Kinetic Uncertainty Principle (continued)

⇒ Take f (x , v) ≥ 0 and write

m0 =

∫
fdxdv m2,x =

∫
f (x , v)|x − x0|2dxdv

m2,v =

∫
f (x , v)|v − v0|2dxdv H =

∫
f (x , v) log f (x , v)dxdv

⇒ Recall that entropies are minimized by Maxwellians. The kinetic uncertainty
principle gives

(m2,xm2,v )
1
2 ≥ d

2πe
m

1+ 1
d

0 exp

(
− H

dm0

)
Remarks:

This kinetic uncertainty principle is purely statistical!

No quantum particle/wave interpretation.

However, if f (x , v) is not allowed to concentrate on very small scales (smaller
than Planck’s constant), then the entropy will be bounded by a constant.

If f (x , v) is the Husimi transform of some wave function, then H is Wehrl’s
entropy and is bounded by a constant [Lieb; CMP, 1978].
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Kinetic Uncertainty Principle (continued)

Next, suppose that f (t, x , v) ≥ 0 satisfies that

1 f (0, x , v) = f0(x , v)

2 m0 =
∫
f (t, x , v)dxdv =

∫
f0(x , v)dxdv

3
∫
f (t, x , v)|v |2dxdv ≤

∫
f0(x , v)|v |2dxdv

4
∫
f (t, x , v)|x − tv |2dxdv ≤

∫
f0(x , v)|x |2dxdv

5 H(t) =
∫
f log f (t, x , v)dxdv ≤

∫
f0 log f0(x , v)dxdv = H0

Writing ρ(t, x) =
∫
f (t, x , v)dv , applying the kinetic uncertainty principle to

f (t, y , y−xt ), and employing that entropies are optimized by Maxwellians, one can
show that ∫

ρ log ρ(t, x)dx + dm0 log |t|+ d

2
m0 log

(
d

2πe
m0

)
≤ H0 +

d

2
m0 log

(∫∫
f0(x , v)|x |2dxdv
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Kinetic Uncertainty Principle (continued)
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Remarks:

This estimate is stable with respect to weak convergence.

It shows the decay of
∫
ρ log ρ(t, x)dx as t →∞. It’s a measure of

dispersion.

It works for renormalized solutions of the Boltzmann equation.

It is uniform in the Knudsen number.

It applies to solutions of the compressible Euler system. (Apply it to the
Maxwellian f = Mf .)
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Kinetic Uncertainty Principle (continued)

Using, again, that the entropy
∫
ρ log ρ(t, x)dx is minimized by a Maxwellian gives

log(t2) +

(
2 +

2

d

)
logm0 + 2 log

(
d

2πe

)
≤ H0 + log

(∫∫
f0(x , v)|x |2dxdv

)
+ log

(∫∫
f (t, x , v)|x |2dxdv

)
Theorem: Renormalized solutions of the Boltzmann equation satisfy that∫

f (t, x , v)|x |2dxdv ∼ t2 as t →∞.

Theorem: (The preceding estimates can be localized.) ∀R > 0, ∃C0 > 0 such
that ∫

B(0,R)

ρ(t, x)dx ≤ C0

log t
, ∀t > 0.
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The Heat Death of the Universe

Theorem: Consider ρ̃(t, x) = tdρ(t, tx) and f̃ (t, x , v) = td f (t, tx , v). Up to a
Galilean transformation, the family {ρ̃(t, x)}t>0 is relatively compact in the weak

topology of L1(dx), whereas {f̃ (t, x , v)}t>0 forms a tight family of bounded
measures. Let χ ∈ L1(dx) be a weak limit point ρ̃(t) ⇀ χ in L1, as t →∞ (for a
subsequence). Up to extraction, it holds that

f̃ ⇀∗ χ(x)⊗ δv=x

in M(Rd × Rd), as t →∞.

Interpretation: As t →∞, the gas reaches a state with no internal energy left to
sustain thermodynamic process. The energy has been fully converted into kinetic
energy and all particles move away from each other.
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