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Talk plan

Photonics can lead to PDE problems rather different from the ones
we usually study.

I’ll discuss a couple of examples (very briefly), then tell you a story
about one such problem.

(1) Introduction: some examples

negative-epsilon inclusions with corners
ENZ-based waveguides

(2) Today’s story: geometry-invariant resonant cavities

Formulation as a PDE problem
Existence and robustness of resonances
An associated optimal design problem
Work with Raghav Venkatraman (now at Univ of Utah),
inspired by discussions with Nader Engheta (Penn).
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The transverse magnetic reduction of Maxwell

Electromagnetic waves are described by Maxwell’s equations. In the
time-harmonic TM setting, where H = (0,0,u(x1, x2)) and
E = 1

iωε (−∂2u, ∂1u,0), Maxwell reduces to a 2D scalar eqn

∇ ·
(

1
ε(x , ω)

∇u
)

+ ω2µ(x , ω)u = 0

where ω = frequency, and ε(x , ω), µ(x , ω) are the permittivity and
permeability (describing the response of the material at x).

This is not a linear eigenvalue problem when ε and µ depend on ω.

What if ε is negative? Then the operator loses ellipticity.

What if ε is nearly 0 in some region? Then the operator is singular,
but the expected behavior is very simple: u should be nearly constant
in such a region. My main story will have this character.
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Negative-epsilon inclusions
Let’s focus on the principal part, which has the form: ∇ · (a(x)∇u)
with a(x) = 1/ε(x). If ε(x) changes sign, it isn’t elliptic.

A basic question: can we solve bvp’s for negative-epsilon inclusions?
Up to normalization, this concerns

∇ · (a(x)∇u) = 0 in Ω

u = u0 at ∂Ω

where

a(x) =

{
−α in inclusion (α > 0 real)
1 outside

For C1 inclusions, a boundary integral method works except when
α = 1. It inverts an operator of the form c(α)I + K with c(α) = 1−α

1+α
and K compact. Fredholm alternative applies.

The case α = 1 is very different. It is the regime of anomalous
localized resonance, see e.g. Nguyen, SIAM J Math Anal 2017.
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Negative-epsilon inclusions

∇ · (a(x)∇u) = 0 in Ω

u = u0 at ∂Ω

a(x) =

{
−α in inclusion (α > 0 real)
1 outside

For inclusions with corners, the situation is very different.

Fundamental reason: to guess behavior near corner, look for solution
of form r ξφ(θ). One finds that ξ is purely imaginary when corner
angle β satisfies when β

2π−β < α < 2π−β
β .

Problem is ill-posed (since changing i to −i gives two solutions).

Ill-posedness is resolved by including loss (i.e. giving ε a nonzero
imaginary part).

Representative refs: Bonnet-Ben Dhia et al, J Comp Phys 2021; Bonnetier
& Zhang, Revista Matematica Iberoamericana 2019.
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Waveguide design using ENZ materials

∇ · (ε−1∇u) + ω2µu = 0

A flat waveguide is studied using sep of var: when ε is a
piecewise-constant function of x1, soln in each part is lin combn of
φj (x2)eikj x1 where φj is an eigenfn of −∂2

2φj = λjφ and ω2εµ− k2
j = λj .

But if ε ≈ 0 in a segment then ∇u ≈ 0 there. In this region we aren’t
really solving a PDE; rather, we are choosing a constant. So this
region shouldn’t have to be flat.

Reflection vs transmission depends on value of µ and area of ENZ
region. However, we can get more control by introducing a non-ENZ
inclusion in the ENZ region (“photonic doping”).

Some refs: Silveirinha & Engheta, PRL 2006 and Phys Rev B 2007;
Liberal et al, Science 2017; Kohn & Venkatraman, CPAM 2023.
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Why can permittivity be zero or negative?
The electric field E(x , t) and magnetic field H(x , t) satisfy

∇× E = −∂tB , ∇×H = ∂tD

where D (electric displacement) and B (magnetic induction) are
divergence-free.

In free space, D = ε0E and B = µ0H. However, in materials the
constitutive relations are nonlocal in time:

D(x , t) =

∫ t

−∞
f (x , t−t ′)E(x , t ′) dt ′ B(x , t) =

∫ t

−∞
g(x , t−t ′)H(x , t ′) dt ′

Light excites the electrons; it takes a while for them to settle down.

The fields E and H in time-harmonic Maxwell system are Fourier
transforms of E and H. Since FT turns convolution into multiplication,
the constitutive relation becomes local:

D(x , ω) = ε(x , ω)E(x , ω) B(x , ω) = µ(x , ω)H(x , ω)
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Why can permittivity be zero or negative?
Informally: light excites the electrons, and it takes a while for them to
settle down.

Precisely: as freq ω varies over positive reals, ε(ω) has (damped)
resonances. Near a resonance, it can be fit to a Lorentz model:

ε(ω) = ε0(ε∞ + χ(ω))

χ(ω) =
ω2

p

ω2
0 − ω2 − iωγ

where ε∞, ωp, ω0, γ are real

γ > 0 represents loss; γ = 0⇒ singular at ω = ω0

solid blue curve is Re(ε); dotted green curve is Im(ε)

Near a resonance, Re(ε) can take virtually any value;
moreover, Im(ε) can be small near ENZ freq.
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Talk plan

(1) Introduction: some examples

negative-epsilon inclusions with corners
ENZ-based waveguides

(2) Today’s story: geometry-invariant resonant cavities

Formulation as a PDE problem
Existence and robustness of resonances
An associated optimal design problem

R.V. Kohn and R. Venkatraman, Transverse magnetic ENZ resonators:
Robustness and optimal shape design, Arch. Rational Mech. Anal. 248,
2024 (also available as arXiv:2403.11242).
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Geometry-invariant resonant cavities

Liberal, Mahmoud, Engheta, Nature Comm 2016

Can one design a resonator by placing
a non-ENZ inclusion in an ENZ shell,
isolated by a perfectly conducting
boundary?

Roughly speaking, this means finding
Ω, D, ω, and u such that

∇ ·
(

1
ε(x)
∇u

)
+ ω2µu = 0

(with ∂νu = 0 at ∂Ω), when ε(x) = 0
in ENZ region.

In ENZ limit, only area of ENZ
shell will matter (not shape) for
existence of desired resonance.

PDE on left is sloppy. Actually,
the dielectric permittivity of a
material depends on frequency:
ε = ε(ω).

Moreover, materials have losses;
therefore ε should be a small
complex number in the ENZ
region. The resonant frequency
is then also complex, with neg
imag part (so e−iωtu(x) decays
as t →∞).
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Mathematical issues

The ENZ limit is an idealization. How robust are its predictions?

Liberal et al understood conditions for existence of a resonance
in ENZ limit, but relied on simulations to assess impact of loss.

We use perturbation theory and implicit function theorem to
achieve a different type of understanding.

Sensitivity of resonance to loss is geometry-dependent.
How can shape of ENZ shell be chosen to minimize it?

Simulations showed this shape dependence.

We also analyze the optimal design problem.
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The PDE problem

Following Liberal et al, we take µ = µ0, and we ignore loss in D:

ε(x) =

{
ε0εD(ω) in D
ε0εENZ(ω; γ) in Ω \ D

where εD(ω) is real when ω is real, and εENZ is a Lorentz model.

We want to solve

∇ ·
(

1
εD(ω)

∇u
)

+ ω2c−2u = 0 in D,

∇ ·
(

1
εENZ(ω; γ)

∇u
)

+ ω2c−2u = 0 in Ω \ D

with u and 1
ε∂u/∂ν continuous at ∂D, and ∂u/∂ν = 0 at ∂Ω.

(Here c = 1/
√
ε0µ0 is the speed of light in vacuum.)

Not a linear eigenvalue problem!
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Strategy for analysis

(1) Ignore dispersion and loss. Multiplying eqns by εD, PDE
becomes

∇ ·
(
ε−1
δ ∇uδ

)
+ λδuδ = 0

with

εδ =

{
1 in D
δ in Ω \ D

δ = εENZ/εD

λδ = ω2c−2εD

We show that uδ and λδ are analytic functions of δ near δ = 0.

(2) Allow for dispersion and loss using implicit function theorem: find
ω(γ) for γ near zero, with ω(0) = lossless ENZ frequency, so that

λεENZ(ω(γ);γ)/εD(ω(γ)) = ω2(γ)c−2εD(ω(γ))
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Understanding uδ and λδ

Obvious starting point – expand in powers of δ:

uδ =

{
1 + δφ1 + δ2φ2 + · · · in ENZ
ψ∗ + δψ1 + δ2ψ2 + · · · in D

λδ = λ∗ + δλ1 + δ2λ2 + · · ·

Leading-order PDE in D:

∆ψ∗ + λ∗ψ∗ = 0 in D, with ψ∗ = 1 at ∂D.

(Note that ψ∗ depends nonlinearly on λ∗).

Leading-order PDE in ENZ region:

−∆φ1 = λ∗ in ENZ region

∂νφ1 = 0 at outer bdry

∂νφ1 = ∂νψ∗ at ∂D.

Consistency fixes (only) ENZ area,
if λ∗ and D are held fixed.
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Understanding uδ and λδ

More detail on the consistency condition: since

−∆φ1 = λ∗ in ENZ region
∂νφ1 = 0 at outer bdry
∂νφ1 = ∂νψ∗ at ∂D

we need

−
∫
∂D
∂νψ∗ = λ∗ (Area of ENZ region).

Note that shape of ENZ region doesn’t matter – only its area matters.

If ENZ material is fixed, then lossless ENZ frequency ω∗ is fixed. So
λ∗ = ω2

∗c−2εD(ω∗) is fixed. The function ψ∗ is then determined by D
alone. An acceptable ENZ area exists iff

∫
∂D ∂νψ∗ < 0.

For any shape of D, this can be assured by suitably scaling the size.
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Understanding uδ and λδ

As usual in perturbation of eigenvalue problems, correction to
eigenvalue is given in terms of correction to eigenfunction:

uδ =

{
1 + δφ1 + δ2φ2 + · · · in ENZ
ψ∗ + δψ1 + δ2ψ2 + · · · in D

λδ = λ∗ + δλ1 + δ2λ2 + · · ·
λ1 =

−
∫

ENZ |∇φ1|2

AENZ +
∫

D ψ
2
∗

where AENZ is area of ENZ region. So λ1 is a negative real number,
and it DOES depend on shape of ENZ region.

When we introduce loss, leading-order effect is proportional to λ1.
Hence the optimal design problem: what shape ENZ region
minimizes |λ1|?
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Understanding uδ and λδ

Leading-order terms were found by (i) solving a Helmholtz eqn in D
for ψ∗, then (ii) solving a Poisson-type PDE in ENZ region for φ1. With
good organization, entire expansion can be found similarly.

But there’s a more elegant way: knowing the leading-order
corrections lets us desingularize the problem:

uδ =

{
1 + δφ1 + δ2φ2 + · · · = 1 + δfδ in ENZ
ψ∗ + δψ1 + δ2ψ2 + · · · = ψ∗ + δgδ in D

λδ = λ∗ + δλ1 + δ2λ2 + · · · = λ∗ + δµδ

Substitution into
∇ ·
(
ε−1
δ ∇uδ

)
+ λδuδ = 0

gives nonsingular PDE’s and bdry conds for fδ, gδ, and µδ.

We apply implicit function theorem to get existence and analyticity of
solutions with f0 = φ1, g0 = ψ1, and µ0 = λ1.
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The optimal design problem

Recall: fixing D, λ∗, and AENZ (since these are
coupled), optimal design problem seeks
shape of ENZ region that minimimizes |λ1|
(where λδ = λ∗ + δλ1 + · · · ).

This is a compliance optimization problem, since

λ1 = −c
∫

ENZ
|∇φ1|2

−∆φ1 = λ∗ in ENZ region

∂νφ1 = 0 at outer bdry

∂νφ1 = ∂νψ∗ at ∂D.
where c is a positive constant.

Some such problems have only “homogenized” solutions. In this setting, that
would mean ENZ region might have many “holes” (each with a homogeneous
Neumann bc).

Compliance problems are well-understood (i) when mixing 2 materials (rather
than a region with holes), and (ii) even for holes, if design doesn’t affect
“source terms” of PDE (alas, not our situation).
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The optimal design problem

Using lessons from the past, we proceed variationally:

max
ENZ shapes

−
∫

ENZ

∫
1
2
|∇φ1|2

= max
ENZ shapes

min
w

∫
ENZ

[
1
2 |∇w |2 − λ∗w

]
+

∫
∂D

(∂νψ∗)w

No need to impose area constraint: min over w is −∞ if a candidate
ENZ shell has the wrong area.
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∫
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No need to impose area constraint: min over w is −∞ if a candidate
ENZ shell has the wrong area. Rewriting: our goal is

max
a(x)=0 or 1

min
w

∫
R2\D

a(x)
[

1
2 |∇w |2 − λ∗w

]
+

∫
∂D

(∂νψ∗)w

≤ max
0≤θ(x)≤1

min
w

∫
R2\D

θ(x)
[

1
2 |∇w |2 − λ∗w

]
+

∫
∂D

(∂νψ∗)w

Conjecture: equality holds in last line,
since for homogenization limits,
〈aeff∇u,∇u〉 ≤ (arithmetic mean)|∇u|2.
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The optimal design problem
Convex duality gives this problem a simple, attractive form:

max
0≤θ(x)≤1

min
w

∫
R2\D

θ(x)
[ 1

2 |∇w |2 − λ∗w
]

+

∫
∂D

(∂νψ∗)w

= min
w

max
0≤θ(x)≤1

SAME

= min
w

∫
R2\D

( 1
2 |∇w |2 − λ∗w

)
+

+

∫
∂D

(∂νψ∗)w

This problem has at least one saddle point: a pair (w , θ) such that w
achieves minw when θ = θ, and θ achieves maxθ when w = w .

When D is a ball, optimal ENZ shell is a
concentric annulus. Associated w and θ are
a saddle point of relaxed pbm, so they solve
it. Since relaxation wasn’t used, they also
solve unrelaxed pbm.

Is homogenization ever needed? If so, then 0 < θ < 1 and
1
2 |∇w |2 − λ∗w = 0 on a set of pos measure.
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Stepping back

The time-harmonic Maxwell system reduces, in the TM setting,
to a scalar PDE of the form ∇ · (ε−1∇u) + ω2µu = 0.

Frequency dependence of the permittivity ε can lead to PDE
problems where 2nd-order term is singular or non-elliptic.

The associated phenomena are interesting and can be useful.

One application: resonator made by
surrounding an ordinary dielectric with an
ENZ shell.

Usually, eigenvalues of a PDE depend upon shape of domain.
Here, only area of ENZ region matters in the lossless limit.

Loss in ENZ material makes the resonance decay. Shape of the
ENZ shell affects decay rate.

This led us to an interesting optimal design problem.
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