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Yamabe problem

Suppose (M, g0) is an n-dimensional closed (i.e. compact without
boundary) Riemannian manifold, where n ≥ 3.

The Yamabe problem is to find a metric g conformal to g0 such
that its scalar curvature Rg is constant.

If we write g = u
4

n−2 g0, then

−4(n − 1)

n − 2
∆g0u + Rg0u = Rgu

n+2
n−2 . (YamabePDE)

The Yamabe problem is to find 0 < u ∈ C∞(M) with Rg ≡ c.
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Yamabe problem

The Yamabe constant of (M, g0) is

Y (M, g0) = inf{Eg0(u) : 0 < u ∈ C∞(M)}.

Here

Eg0(u) =

∫
M

4(n−1)
n−2 |∇g0u|2 + Rg0u

2dVg0(∫
M u

2n
n−2 dVg0

) n−2
n

=

∫
M RgdVg(∫
M dVg

) n−2
n

is the Yamabe energy, where g = u
4

n−2 g0.

Fact: If u is a positive minimizer, i.e. Eg0(u) = Y (M, g0), then u
solves (YamabePDE).

Proof:
d

dt
Eg0(u + tv) = 0 for all v ∈ C∞(M).

The Yamabe problem was solved by Aubin, Trudinger, and Schoen.
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Yamabe flow

Hamilton introduced the Yamabe flow:

∂

∂t
g(t) = −(Rg(t) − Rg(t))g(t), g(0) = g0, (YF)

where Rg(t) is the average of Rg(t):

Rg(t) =

∫
M Rg(t)dVg(t)∫

M dVg(t)
.

Hamilton proved the long time existence of (YF). Also, he proved
the convergence of (YF) when Y (M, g0) ≤ 0, i.e. g(t)→ g∞ as
t →∞ for some metric g∞ with Rg∞ ≡ c.

When Y (M, g0) > 0, the convergence of (YF) was studied by
Brendle, Chow, Schwetlick and Struwe, and Ye.
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Yamabe flow

Theorem (Carlotto-Chodosh-Rubinstein)

If g∞ is an integrable cirtical point of Yamabe energy, then (YF )
converges exponentially to g∞, i.e.

‖g(t)− g∞‖C2,α(M,g∞) ≤ Ce−δt

for some δ > 0.

Fact: g∞ is an integrable critical point of Yamabe energy if
kerL∞ = {0}, where

L∞v = (n − 1)∆g∞v + Rg∞v

is the linearized Yamabe operator of g∞.
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Yamabe flow

Theorem (Carlotto-Chodosh-Rubinstein)

There exists g∞ such that (YF ) does not converge exponentially
to g∞. More precisely,

C−1(1 + t)−
1

p−2 ≤ ‖g(t)− g∞‖C2,α(M,g∞) ≤ C (1 + t)−
1

p−2

for p = 3 and for some p ≥ 3.

More precisely, Carlotto-Chodosh-Rubinstein found metrics g∞
which satisfy the ASp.

Fact: g∞ satisfies AS3 if there exists v 6≡ 0 such that

L∞v = (n − 1)∆g∞v + Rg∞v = 0 and Rg∞

∫
M
v3dVg∞ 6= 0.

Goal: Find g∞ with Rg∞ ≡ c > 0 such that

∫
M
v3dVg∞ 6= 0.
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Yamabe problem with boundary

Suppose (M, g0) is an n-dimensional compact Riemannian
manifold with boundary ∂M, where n ≥ 3.

There are two types of Yamabe problem with boundary:
(I) Find g conformal to g0 such that

Rg = c in M and Hg = 0 on ∂M.

(II) Find g conformal to g0 such that

Rg = 0 in M and Hg = c on ∂M.

(Sn+, gSn+) is an example of (i), and (Dn, gflat) is an example of (ii).
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Yamabe problem with boundary

If g = u
4

n−2 g0, then

−4(n − 1)

n − 2
∆g0u + Rg0u = Rgu

n+2
n−2 in M,

2(n − 1)

n − 2

∂u

∂νg0
+ Hg0u = Hgu

n
n−2 on ∂M.

The Yamabe problem with boundary was first introduced and
studied by Escobar.

The Yamabe probelm with boundary was later studied by Almaraz,
S. Chen, Marques, Mayer and Ndiaye, etc.
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Yamabe flow with boundary

One wants to study the Yamabe problem with boundary by using
geometric flow.

To study (I), we consider the Yamabe flow with boundary:{ ∂

∂t
g(t) = −(Rg(t) − Rg(t))g(t) in M,

Hg(t) = 0 on ∂M, g(0) = g0.
(YFB)

To study (II), we consider the conformal mean curvature flow:{ ∂

∂t
g(t) = −(Hg(t) − Hg(t))g(t) on ∂M,

Rg(t) = 0 in M, g(0) = g0.
(CMCF)
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Yamabe flow with boundary

I (YFB) and (CMCF) are first introduced by Brendle, who
proved the short-time existence. He also proved the
convergence when the Yamabe constant is nonpositive.

I When the Yamabe constant is positive, the convergence of
(YFB) is proved by Almaraz-Sun, and the convergence of
(CMCF) is proved by Almaraz.
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Yamabe flow with boundary

Theorem (H.-Shin)

If g∞ is an integrable cirtical point of Yamabe energy, then (YFB)
(respectively (CMCF )) converges exponentially to g∞, i.e.

‖g(t)− g∞‖C2,α(M,g∞) ≤ Ce−δt

for some δ > 0.

Theorem (H.-Shin)

There exists g∞ such that (YFB) (respectively (CMCF )) does not
converge exponentially to g∞. More precisely,

C−1(1 + t)−
1

p−2 ≤ ‖g(t)− g∞‖C2,α(M,g∞) ≤ C (1 + t)−
1

p−2

for p = 3.
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Sketlov eigenvalue

For a Riemannian manifold (M, g) with boundary ∂M, the
Dirichlet-to-Neumann map DN : C∞(∂M)→ C∞(∂M) is given
by

DN(f ) =
∂ f̂

∂νg
,

where f̂ is the harmonic extension of f ,

i.e.

∆g f̂ = 0 in M and f̂ = f on ∂M.

The eigenvalue of DN is called Steklov eigenvalue of M, i.e. σ is
Steklov eigenvalue if

∆g f = 0 in M and
∂f

∂νg
= σf on ∂M.
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Sketlov eigenvalue

Consider the first eigenvalue of Bg : C∞(∂M)→ C∞(∂M), where

Bg (f ) = DN(f ) + aHg f

where a is constant.

Theorem (H.-Shin)

Along the unnormalized CMCF

∂

∂t
g(t) = −Hg(t)g(t) on ∂M and Rg(t) = 0 in M,

the first eigenvalue of Bg(t) is non-decreasing.

Using CMCF, we also obtained some estimates of the first nonzero
Steklov eigenvalue of (M, g).
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Yamabe soliton–the flow point of view

Suppose that M is without boundary, possibly noncompact.

The Yamabe soliton is self-similar solution to Yamabe flow.

More precisely, the Yamabe soliton is the solution g(t) of the
(unnormalized) Yamabe flow:

∂

∂t
g(t) = −Rg(t)g(t)

and
g(t) = σ(t)ψ∗t (g0)

where σ : [0,∞)→ (0,∞) with σ(0) = 1,
and ψt : M → M is a family of diffeomorphisms with ψ0 = idM .

This is Yamabe soliton from flow point of view.
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Yamabe soliton–the equation point of view

We can define the Yamabe soliton from equation point of view.

Differentiating g(t) = σ(t)ψ∗t (g0) with respect to t gives

−Rg(t)g(t) =
∂

∂t
g(t) = σ̇(t)ψ∗t (g0) + σ(t)

∂

∂t
ψ∗t (g0).

Evaluating it at t = 0, using ψ0 = idM and σ(0) = 1, we get

−Rg0g0 = σ̇(0)g0 + LXg0,

where LX is the Lie derivative with respect to X , and X is the
vector field generated by ψt .
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Yamabe soliton–the equation point of view

If we write λ = −σ̇(0), then

(λ− Rg0)g0 = LXg0.

This is the Yamabe soliton from the equation point of view.

If the vector field is gradient, i.e. X = 1
2∇g0f for some function f ,

then
(λ− Rg0)g0 = ∇2

g0f ,

where ∇2
g0f is the Hessian of f . This is called gradient Yamabe

soliton.

Fact: The Yamabe soliton from the flow point of view is equivalent
to the Yamabe soliton from the equation point of view.
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Yamabe soliton

Theorem (di Cerbo-Disconzi)

Any compact Yamabe soliton (from flow point of view) must have
constant scalar curvature.

Theorem (Daskalopoulos-Sesum, Hsu)

Any compact, gradient Yamabe soliton (from equation point of
view) must have constant scalar curvature.

Theorem (Daskalopoulos-Sesum)

Suppose that (M, g0) is a gradient Yamabe soliton (from equation
point of view) which is locally conformally flat and has positive
sectional curvature. Then (M, g0) has a warped-product structure.

Pak Tung Ho, Tamkang University Yamabe flow and its soliton on manifolds with boundary



Yamabe soliton

Theorem (di Cerbo-Disconzi)

Any compact Yamabe soliton (from flow point of view) must have
constant scalar curvature.

Theorem (Daskalopoulos-Sesum, Hsu)

Any compact, gradient Yamabe soliton (from equation point of
view) must have constant scalar curvature.

Theorem (Daskalopoulos-Sesum)

Suppose that (M, g0) is a gradient Yamabe soliton (from equation
point of view) which is locally conformally flat and has positive
sectional curvature. Then (M, g0) has a warped-product structure.

Pak Tung Ho, Tamkang University Yamabe flow and its soliton on manifolds with boundary



Yamabe soliton

Theorem (di Cerbo-Disconzi)

Any compact Yamabe soliton (from flow point of view) must have
constant scalar curvature.

Theorem (Daskalopoulos-Sesum, Hsu)

Any compact, gradient Yamabe soliton (from equation point of
view) must have constant scalar curvature.

Theorem (Daskalopoulos-Sesum)

Suppose that (M, g0) is a gradient Yamabe soliton (from equation
point of view) which is locally conformally flat and has positive
sectional curvature. Then (M, g0) has a warped-product structure.

Pak Tung Ho, Tamkang University Yamabe flow and its soliton on manifolds with boundary



Yamabe soliton with boundary–the flow point of view

Suppose that M has boundary ∂M, possibly noncompact.

The Yamabe soliton with boundary is the solution g(t) of the
(unnormalized) Yamabe flow with boundary:

∂

∂t
g(t) = −Rg(t)g(t) in M and Hg(t) = 0 on ∂M

and
g(t) = σ(t)ψ∗t (g0)

where σ : [0,∞)→ (0,∞) with σ(0) = 1,
and ψt : M → M is a family of diffeomorphisms with ψ0 = idM .
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Conformal mean curvature soliton–the flow point of view

The conformal mean curvature soliton is the solution g(t) of
the (unnormalized) conformal mean curvature flow:

∂

∂t
g(t) = −Hg(t)g(t) on ∂M and Rg(t) = 0 in M

and
g(t) = σ(t)ψ∗t (g0)

where σ : [0,∞)→ (0,∞) with σ(0) = 1,
and ψt : M → M is a family of diffeomorphisms with ψ0 = idM .

These are the Yamabe soliton with boundary and the conformal
mean curvature soliton from flow point of view.
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Results

From the flow point of view, we have

Theorem (Chen-H.)

Any compact Yamabe soliton with boundary must have constant
scalar curvature in M (and vanishing mean curvature on ∂M).

Theorem (Chen-H.)

Any compact conformal mean curvature soliton must have constant
mean curvature on ∂M (and vanishing scalar curvature in M).
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Proof

Proof: Since the (unnormalized) Yamabe flow with boundary

preserves conformal structure, g(t) = u(t)
4

n−2 g0.

Then

∂

∂t
u(t) = −n − 2

4
Rg(t)u(t) in M and

∂u(t)

∂νg0
= 0 on ∂M.

Therefore,

d

dt

(∫
M Rg(t)dVg(t)

(
∫
M dVg(t))

n−2
n

)
=

d

dt
Eg0(u(t))

= −n − 2

2
·

(
∫
M R2

g(t)dVg(t))(
∫
M dVg(t))− (

∫
M Rg(t)dVg(t))

2

(
∫
M dVg(t))

n−2
n

+1
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Proof

Cauchy-Schwarz inequality ⇒ d

dt

(∫
M Rg(t)dVg(t)

(
∫
M dVg(t))

n−2
n

)
≤ 0, and

equality holds if and only if Rg(t) is constant.

On the other hand, if g(t) = σ(t)ψ∗t (g0), we have∫
M Rg(t)dVg(t)

(
∫
M dVg(t))

n−2
n

=

∫
M Rψ∗t (g0)dVψ∗t (g0)

(
∫
M dVψ∗t (g0))

n−2
n

=

∫
M Rg0dVg0

(
∫
M dVg0)

n−2
n

. �
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The equation point of view

Goal: Define the Yamabe soliton with boundary and the conformal
mean curvature soliton from equation point of view.

The Yamabe soliton with boundary from equation point of
view is defined as

(λ− Rg0)g0 = LXg0 in M and Hg0 = 0, 〈X , νg0〉 = 0 on ∂M.

The conformal mean curvature soliton from equation point of
view is defined as

Rg0 = 0 in M and (λ− Hg0)g0 = LXg0, 〈X , νg0〉 = 0 on ∂M.
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The equation point of view

Theorem (H.-Shin)

The Yamabe soliton with boundary from flow point of view is
equivalent to the Yamabe soliton with boundary from equation
point of view.

Theorem (H.-Shin)

The conformal mean curvature soliton from flow point of view is
equivalent to the conformal mean curvature soliton from equation
point of view.
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The equation point of view

Example: Consider (Rn
+, ge).

Then Rge = 0 in Rn
+ and Hge = 0 on

∂Rn
+. Also, νge = (0, 0, ..., 0,−1).

Thus, if we choose f = f (x1, ..., xn) = a1x1 + · · ·+ an−1xn−1, then
X = 1

2∇ge f = (a12 , ...,
an−1

2 , 0)

⇒ LXge = ∇2
ge f = 0 and 〈X , νge 〉 = 0.

Therefore, we have

−Rgege = LXge in Rn
+ and Hge = 0, 〈X , νge 〉 = 0 on ∂Rn

+

i.e. (Rn
+, ge) is a (steady, nontrivial) gradient Yamabe soliton with

boundary (from equation point of view).

Similarly, (Rn
+, ge) is a (steady, nonotrivial) gradient conformal

mean curvature soliton (from equation point of view).
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+ and Hge = 0, 〈X , νge 〉 = 0 on ∂Rn

+

i.e. (Rn
+, ge) is a (steady, nontrivial) gradient Yamabe soliton with

boundary (from equation point of view).

Similarly, (Rn
+, ge) is a (steady, nonotrivial) gradient conformal

mean curvature soliton (from equation point of view).

Pak Tung Ho, Tamkang University Yamabe flow and its soliton on manifolds with boundary



The equation point of view

Theorem (H.-Shin)

Any compact gradient Yamabe soliton with boundary from
equation point of view must have constant scalar curvature in M
(and vanishing mean curvature on ∂M).

Theorem (H.-Shin)

Any compact gradient conformal mean curvature soliton from
equation point of view must have constant mean curvature on ∂M
(and vanishing scalar curvature in M).
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The equation point of view

Proof: If (M, g0, f ) is a gradient Yamabe soliton with boundary,
then

∇2
g0f = (λ− Rg0)g0 in M and

∂f

∂νg0
= 0 on ∂M.

Taking trace ⇒ ∆g0f = n(λ− Rg0) in M. Also, one has

(n−1)∆g0Rg0 =
1

2
〈∇g0Rg0 ,∇g0f 〉+Rg0(λ−Rg0) in M,

∂Rg0

∂νg0
= 0 on ∂M.

Integrating the first equation over M, we get

(n − 1)

∫
M

∆g0Rg0 =
1

2

∫
M
〈∇g0Rg0 ,∇g0f 〉+

∫
M
Rg0(λ− Rg0),
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The equation point of view

Proof: We get

0 =
(

1− n

2

)∫
M
Rg0(λ− Rg0). (1)

Finally, integrating ∆g0f = n(λ− Rg0) over M and using
∂f

∂νg0
= 0

on ∂M, we obtain

0 =

∫
M

(λ− Rg0) (2)

Combining (1) and (2), we get∫
M

(λ− Rg0)2 =

∫
M
Rg0(λ− Rg0)− λ

∫
M

(λ− Rg0) = 0,

which gives Rg0 ≡ λ.
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The equation point of view

Theorem (H.-Shin)

Suppose that (M, g0) is a Yamabe soliton with boundary from
equation point of view. If (M, g0) is locally conformal flat and has
positive sectional curvature,

then

(M, g0) = (R, dr2)×w(r) (Sn−1+ , gSn−1
+

).
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dimM = 2

Suppose M is a 2-dimensional manifold with boundary ∂M.

The (unnormalized) Gauss curvature flow with boundary is

∂

∂t
g(t) = −Kg(t)g(t) in M and kg(t) = 0 on M.

Here, Kg(t) is the Gauss curvature, and kg(t) is the geodesic
curvature.

The Gauss curvature flow with boundary is a two-dimensional
version of the Yamabe flow with boundary.
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dimM = 2

Suppose M is a 2-dimensional manifold with boundary ∂M.

The (unnormalized) geodesic curvarure flow is

∂

∂t
g(t) = −kg(t)g(t) on ∂M and Kg(t) = 0 in M.

The geodesic curvarure flow is a two-dimensional version of the
conformal mean curvature flow.
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dimM = 2

Suppose M is a 2-dimensional manifold with boundary ∂M.

The (unnormalized) geodesic curvarure flow is

∂

∂t
g(t) = −kg(t)g(t) on ∂M and Kg(t) = 0 in M.

The geodesic curvarure flow is a two-dimensional version of the
conformal mean curvature flow.
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dimM = 2

We have defined the Gauss curvature soliton with boundary,
which is the self-similar solution of the Gauss curvature flow with
boundary.

Also, we have defined the geodesic curvaure soliton, which is
the self-similar solution of the geodesic curvature flow.

Theorem (H.-Shin)

(i) Any compact Gauss curvature soliton with boundary must have
constant Gauss curvature in M.
(ii) Any compact geodesic curvature soliton must have constant
geodesic curvature in M.
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Thank you very much for your attention!
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