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Cahn–Hilliard Equation

Dynamics of Mixtures

– Phase separation, Formation of microstructure ...

Cahn & Hilliard 1958: a basic building-block equation{
φt = ∇ · (M(φ)∇µ),

µ = −ε2∆φ+ F′(φ),
in Ω× (0, T).

– Spinodal decomposition, Nucleation and growth, Coarsening

Extensions

– Image impainting, Ecology, Tumor growth, Fluid dynamics, Topology
optimization ...
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Mathematical Models

Description of morphology changes −→ dynamics of interfaces

(1) Sharp interface model
– Regard interface as a free boundary with zero thickness evolving in
time

(2) Diffuse interface model
– Consider an interfacial layer of small width ε ∈ (0, 1): using a smooth
order parameter φ (phase field) to distinguish two phases

H. Wu Cahn–Hilliard Equation with DBC
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Cahn–Hilliard Equation

{
φt = ∇ · (M(φ)∇µ),

µ = −ε2∆φ+ F′(φ),
in Ω× (0, T).

Ω ⊂ Rd, Γ = ∂Ω, n outer unit normal vector on Γ

φ: a conserved order parameter ∈ [−1, 1]

µ: chemical potential

F: potential function with double-well structure (singular/regular)

F(φ) =
θ

2
[(1 + φ) log(1 + φ) + (1− φ) log(1− φ)]− θc

2
φ2, θc > θ > 0

F(φ) =
1
4

(φ2 − 1)2

M: mobility

M(φ) = 1, M(φ) = (1− φ2)m ...
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Cahn–Hilliard Equation

Boundary conditions / Initial condition{
M∇µ · n = ∂nφ = 0, on Γ× (0, T),

φ|t=0 = φ0, in Ω.

Mass conservation ∫
Ω

φ(t)dx =

∫
Ω

φ0dx, ∀ t ≥ 0.

Energy dissipation

Basic energy law
d
dt

E(φ(t)) +

∫
Ω

M|∇µ(t)|2dx = 0, ∀ t ≥ 0,

with free energy E(φ) =

∫
Ω

(
ε2

2
|∇φ|2 + F(φ)

)
dx.

H. Wu Cahn–Hilliard Equation with DBC



Introduction
Mathematical Analysis

Summary

Background and Literature
New Dynamic BC via an Energetic Variation Approach

Cahn–Hilliard Equation

Boundary conditions / Initial condition{
M∇µ · n = ∂nφ = 0, on Γ× (0, T),

φ|t=0 = φ0, in Ω.

Mass conservation ∫
Ω

φ(t)dx =

∫
Ω

φ0dx, ∀ t ≥ 0.

Energy dissipation

Basic energy law
d
dt

E(φ(t)) +

∫
Ω

M|∇µ(t)|2dx = 0, ∀ t ≥ 0,

with free energy E(φ) =

∫
Ω

(
ε2

2
|∇φ|2 + F(φ)

)
dx.

H. Wu Cahn–Hilliard Equation with DBC



Introduction
Mathematical Analysis

Summary

Background and Literature
New Dynamic BC via an Energetic Variation Approach

Structure

(1) 1st and 2nd Fick’s law of diffusion

∂φ

∂t
+ divJ = 0, J = −M∇µ

(2) When M is a positive constant → Gradient flow in (Ḣ1)′:〈
∂φ

∂t
, ξ

〉
(Ḣ1)′

= −M
∫

Ω

µξdx = −M
δE
δφ

(φ)[ξ], ∀ ξ ∈ Ḣ1(Ω)

? M be non-constant:

Gradient flow with respect to a Wasserstein-like transport metric
(Lisini, Matthes & Savaré, JDE 2012)

H. Wu Cahn–Hilliard Equation with DBC
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Cahn–Hilliard Equation

Well-posedness

Elliott & Zheng SM 1986, Yin JX 1992, Caffarelli & Müler 1995,
Debussche & Dettori 1995, Elliott & Garcke 1996 ...

Long-time behavior t→ +∞

Rybka & Hoffmann 1998, Miranville & Zelik 2004,
Abels & Wilke 2007 ...

Sharp-interface limit ε→ 0+

Pego 1989, Cahn, Elliott & Novick-Cohen 1996,

Alikakos, Bates & Chen XF 1994, Chen XF 1996 ...

H. Wu Cahn–Hilliard Equation with DBC
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Boundary effects

Phase separation

– Effective short-range interactions between the binary mixture and the
solid wall

Fischer et al 1997 PRL ...

Wetting phenomena

– Moving Contact Line problem of two phase flows

Jacqmin 2000 JFM, Qian, Wang & Sheng 2006 JFM,
W.-Q Ren & W.-N. E 2007 Phys. Fluids ...

Near the Boundary: Different Dynamics Driven by Surface Energy

=⇒ Different types of Boundary Conditions

H. Wu Cahn–Hilliard Equation with DBC
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Dynamic Boundary Condition A

Fischer et al 1997

Total energy E(φ) =

∫
Ω

(
1
2
|∇φ|2 + F(φ)

)
dx︸ ︷︷ ︸

bulk energy

+

∫
Γ

(κ
2
|∇Γφ|2 + G(φ)

)
dS︸ ︷︷ ︸

surface energy

with ε = 1, κ ≥ 0.

Boundary conditions

{
∂nµ = 0,
φt − κ∆Γφ+ G′(φ) + ∂nφ = 0.

=⇒

Mass conservation
∫

Ω

φ(t)dx =

∫
Ω

φ0dx, ∀ t ≥ 0,

Energy dissipation
d
dt
E(φ(t)) +

∫
Ω

|∇µ(t)|2dx +

∫
Γ

|φt(t)|2dS = 0, ∀ t ≥ 0.

H. Wu Cahn–Hilliard Equation with DBC
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Derivation

d
dt
E(φ(t)) =

∫
Ω

∇φ · ∇φt + F′(φ)φtdx +

∫
Γ

κ∇Γφ · ∇Γφt + G′(φ)φtdS

=

∫
Ω

[
−∆φ+ F′(φ)

]︸ ︷︷ ︸
=µ

φtdx +

∫
Γ

[
− κ∆Γφ+ G′(φ) + ∂nφ

]
φtdS

In Ω: CHE φt = ∆µ with no-flux BC ∂nµ = 0

On Γ: Choose an Allen–Cahn type relaxation

φt = −
[
− κ∆Γφ+ G′(φ) + ∂nφ

]
∼ A variational BC that leads to non-increasing of E

∼ Dynamic contact angle on Γ

∼ A sufficient condition for energy dissipation, not uniquely determined

H. Wu Cahn–Hilliard Equation with DBC
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Analysis Results

Well-posedness and Long-time behavior

Racke & Zheng 2003,

Wu & Zheng 2004, Chill et al 2006,

Miranville & Zelik 2005, 2010,

Prüss, Racke & Zheng 2006, Prüss & Wilke 2006,

Gal & Grasselli 2007, 2008, 2013,

Gilardi, Miranville & Schimperna 2009, 2010,

Chen, Wang & Xu 2014,

Colli, Gilardi & Sprekels 2017, 2018 ...

Sharp interface limit

Chen, Wang & Xu 2014,

Wang & Wang 2007, Xu, Di & Yu 2018

H. Wu Cahn–Hilliard Equation with DBC
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Dynamic Boundary Condition B

Goldstein, Miranville & Schimperna 2011 Phy. D

Γ is a non-permeable wall:

{
∂t(φ|Γ)− α∆Γ(µ|Γ) + ∂nµ = 0,
µ|Γ = −κ∆Γφ|Γ + G′(φ|Γ) + ∂nφ.

Total mass conservation in Ω + on Γ1∫
Ω

φ(t)dx +

∫
Γ

φ|Γ(t)dS =

∫
Ω

φ0dx +

∫
Γ

φ0|ΓdS, ∀ t ≥ 0,

Energy dissipation

d
dt
E(φ(t)) +

∫
Ω

|∇µ(t)|2dx + α

∫
Γ

|∇Γ(µ|Γ(t))|2dS︸ ︷︷ ︸
Relaxation of CH type

= 0, ∀ t ≥ 0.

1Bulk-surface measure space (Ω, dσ) = (Ω, dx)⊕ (Γ, dS)

H. Wu Cahn–Hilliard Equation with DBC
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Related Case: Wentzell Boundary Condition

Gal 2006 MMAS

Γ is a permeable wall:

{
(∆µ)|Γ + cµ|Γ + ∂nµ = 0,
µ|Γ = −κ∆Γφ|Γ + G′(φ|Γ) + ∂nφ.

Total mass conservation (when c = 0)∫
Ω

φ(t)dx +

∫
Γ

φ(t)|ΓdS =

∫
Ω

φ0dx +

∫
Γ

φ0|ΓdS, ∀ t ≥ 0,

Energy dissipation

d
dt
E(φ(t)) +

∫
Ω

|∇µ(t)|2dx + c
∫

Γ

|µ|Γ(t)|2dS = 0, ∀ t ≥ 0.

H. Wu Cahn–Hilliard Equation with DBC
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Summary

Dynamic BC-A, Dynamic BC-B, Wentzell BC:

All based on physical considerations (Mass + Energy),

Not uniquely determined.

Hidden physics? Other possible choice of BC ?

H. Wu Cahn–Hilliard Equation with DBC
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1. Kinematics

Assume

Continuity equation in the bulk

φt +∇ · (φu) = 0, (x, t) ∈ Ω× (0, T),

no-flux b.c. u · n = 0, (x, t) ∈ Γ× (0, T).

Continuity equation on the boundary

φt +∇Γ · (φv) = 0, (x, t) ∈ Γ× (0, T),

u, v: microscopic effective velocity (due to diffusion) in Ω and on Γ.

=⇒ Mass Conservation in Ω and on Γ,

d
dt

∫
Ω

φ(t)dx =
d
dt

∫
Γ

φ(t)dS = 0.

H. Wu Cahn–Hilliard Equation with DBC
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2. Energy Dissipation
Assume

Basic Energy Law

d
dt

Etotal(t) = −Dtotal(t) ≤ 0

* Free Energy (neglecting macroscopic kinetic energy)

Etotal(t) = Ebulk(t) + Esurf (t),

Ebulk(t) =

∫
Ω

Wb(φ,∇φ)dx, Esurf (t) =

∫
Γ

Ws(φ,∇Γφ)dS

* Energy Dissipation

Dtotal(t) = Dbulk(t) +Dsurf (t),

Dbulk(t) =

∫
Ω

φ2

Mb
|u|2dx, Dsurf (t) =

∫
Γ

φ2

Ms
|v|2dS

H. Wu Cahn–Hilliard Equation with DBC
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3. Force Balance

Aim: Uniquely determine the velocities u, v and form a closed PDE system

Method: An Energetic Variational Approach

Bulk flow map x(X, t) : ΩX
0 → Ωx

t
d
dt

x(X, t) = w(x(X, t), t), t > 0,

x(X, 0) = X.

Similarly, define a surface flow map xs(Xs, t) 2

Bulk/surface action functionals

Abulk(x(X, t)) = −
∫ T

0

∫
Ωx

t

Wb(φ,∇xφ)dxdt,

Asurf (xs(Xs, t)) = −
∫ T

0

∫
Γx

t

Ws(φ,∇x
Γφ)dSxdt.

2Koba, Giga & Liu 2017 QAM
H. Wu Cahn–Hilliard Equation with DBC
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Least Action Principle

Total action Atotal = Abulk +Asurf

δ(x,xs)A
total = −

∫ T

0

∫
Ωx

t

(φ∇xµ) · y dxdt

−
∫ T

0

∫
Γx

t

[
φ∇x

Γ

(
µs +

∂Wb

∂∇xφ
· n
)]
· ys dSxdt.

with µ = −∇x ·
∂Wb

∂∇xφ
+
∂Wb

∂φ
, µs = −∇x

Γ ·
∂Ws

∂∇x
Γφ

+
∂Ws

∂φ
.

δxA = (Finertial + Fcon) · δx =⇒ Conservative forces3

Fbulk
con = −φ∇xµ, Fsurf

con = −φ∇x
Γ

(
µs +

∂Wb

∂∇xφ
· n
)
.

3Finertial = 0 since kinetic energy is neglected
H. Wu Cahn–Hilliard Equation with DBC
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Onsager’s Maximum Dissipation Principle

The Rayleigh dissipation function

R =
1
2
D ≥ 0

Variation with respective to u (the velocity)

δuR =
d
dε

∣∣∣∣
ε=0

R(u + εv) =⇒ weak form of − Fdiss

For present case

δ(u,v)

(
1
2
Dtotal

)
=

∫
Ωx

t

φ2

Mb
u · ũdx +

∫
Γx

t

φ2

Ms
v · ṽdS,

=⇒ Dissipative forces

Fbulk
diss = − φ

2

Mb
u, Fsurf

diss = − φ
2

Ms
v.

H. Wu Cahn–Hilliard Equation with DBC
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Force Balance

Netwon’s force balance law

Finertial + Fconv + Fdiss = 0

Phrasing the evolution equations for a dissipative system within a
Hamiltonian principle formalism (in “strong” form): 4

δxA− δuR = 0

∼ extended Euler–Lagrange equations

Fcon + Fdiss = 0 =⇒


φ∇xµ+

φ2

Mb
u = 0, in Ω,

φ∇x
Γ

(
µs +

∂Wb

∂∇xφ
· n
)

+
φ2

Ms
v = 0, on Γ.

4Sonnet & Virga, Springer 2012
H. Wu Cahn–Hilliard Equation with DBC
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Resulting PDE System
C. Liu and H. Wu 2019 ARMA

φt = ∇ · (Mb∇µ), in Ω× (0, T),

µ = −∇ · ∂Wb

∂∇φ +
∂Wb

∂φ
, in Ω× (0, T),

∂nµ = 0, on Γ× (0, T),

φt = ∇Γ ·
[

Ms∇Γ

(
µs +

∂Wb

∂∇φ · n
)]
, on Γ× (0, T),

µs = −∇Γ ·
∂Ws

∂∇Γφ
+
∂Ws

∂φ
, on Γ× (0, T),

φ|t=0 = φ0(x), in Ω.

Mass Conservation + Energy Dissipation + Force Balance

Different physical considerations can be easily included by choosing
free energies Wb, Ws and mobilities Mb, Ms

Consistent with the surface-layer scaling process (Qian, Qiu & Sheng
2008)

H. Wu Cahn–Hilliard Equation with DBC
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IBVP of the Cahn–Hilliard Equation with NEW DBC

For simplicity, choose Mb = Ms = 1,

Wb(φ,∇φ) =
1
2
|∇φ|2 + F(φ), Ws(φ,∇Γφ) =

κ

2
|∇Γφ|2 +

1
2
φ2 + G(φ).

Introduce boundary variable

ψ = φ|Γ ∼ a bulk-to-boundary transmission condition

Consider a coupled system for (φ, ψ)

(P)



φt = ∆µ, with µ = −∆φ+ F′(φ), in (0, T)× Ω,

∂nµ = 0, on (0, T)× Γ,

φ|Γ = ψ, on (0, T)× Γ,

ψt = ∆ΓµΓ, with µΓ = −κ∆Γψ + ψ + G′(ψ) + ∂nφ, on (0, T)× Γ,

φ|t=0 = φ0(x), in Ω,

ψ|t=0 = ψ0(x) := φ0(x)|Γ, on Γ.

H. Wu Cahn–Hilliard Equation with DBC
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Mathematical Difficulties

Higher-order, multi-scale coupling between bulk and boundary

? κ > 0: a surface Cahn-Hilliard equation

ψt = ∆Γ(−κ∆Γψ + ψ + G′(ψ)) + ∆Γ(∂nφ)︸ ︷︷ ︸
coupling from bulk

? κ = 0 (e.g., the MCL problem): may be ill-posed

ψt = [1 + G′′(ψ)]∆Γψ︸ ︷︷ ︸
backwards diffusion ??

+ G′′′(ψ)|∇Γψ|2 + ∆Γ(∂nφ)︸ ︷︷ ︸
higher order

Key issue: A parabolic Dirichlet-to-Neumann operator via CHE

φ|Γ = ψ =⇒ ∂nφ

H. Wu Cahn–Hilliard Equation with DBC
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Notations

Ω ⊂ Rd, d = 2, 3: a bounded domain with smooth boundary Γ.

Function spaces

H = L2(Ω)× L2(Γ),

V s =
{

(φ, ψ) ∈ Hs(Ω)× Hs(Γ) : ψ = φ|Γ
}
, ∀ s >

1
2
,

Vs =
{

(φ, ψ) ∈ Hs(Ω)× Hs− 1
2 (Γ) : ψ = φ|Γ

}
, ∀ s >

1
2
.

Set

Vs
κ := V s if κ > 0, Vs

κ := Vs if κ = 0.

Vs
κ,m =

{
(φ, ψ) ∈ Vs

κ : 〈φ〉Ω = m1, 〈ψ〉Γ = m2
}
, m = (m1,m2) ∈ R2.

In particular, Vs
κ,0 = Vs

κ,(0,0)

H. Wu Cahn–Hilliard Equation with DBC
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Assumptions

(A1) Regular potentials:
F,G ∈ C4(R).

(A2) Dissipative conditions:

∃ nonnegative constants independent of y ∈ R

F(y) ≥ −CF, F′′(y) ≥ −C̃F, G(y) ≥ −CG, G′′(y) ≥ −C̃G, ∀ y ∈ R.

(A3) Growth conditions:

∃ positive constants independent of y ∈ R

|F′′(y)| ≤ ĈF(1 + |y|p), |G′′(y)| ≤ ĈG(1 + |y|q), ∀ y ∈ R,

κ > 0: p, q ∈ [0,+∞) arbitrary if d = 2; p = 2 and q arbitrary if d = 3;

κ = 0: p arbitrary if d = 2 and p = 2 if d = 3; q = 0 for d = 2, 3.

H. Wu Cahn–Hilliard Equation with DBC
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Weak Solutions

Definition

Let κ > 0. For T ∈ (0,+∞) and (φ0, ψ0) ∈ V1, a pair (φ, ψ) is called a weak
solution to problem (P) on [0, T], if

(φ, ψ) ∈ C([0, T];V1) ∩ L2(0, T;V3),

µ ∈ L2(0, T; H1(Ω)), µΓ ∈ L2(0, T; H1(Γ)),

φt ∈ L2(0, T; (H1(Ω))∗), ψt ∈ L2(0, T; (H1(Γ))∗),

〈φt(t), ζ〉(H1(Ω))∗,H1(Ω) +

∫
Ω

∇µ(t) · ∇ζdx = 0,

〈ψt(t), η〉(H1(Γ))∗,H1(Γ) +

∫
Γ

∇ΓµΓ · ∇ΓηdS = 0,

for every ζ ∈ H1(Ω) and η ∈ H1(Γ) and a.e. t ∈ (0, T), with

µ = −∆φ+ F′(φ), a.e. in (0, T)× Ω,

µΓ = −κ∆Γψ + ψ + G′(ψ) + ∂nφ, a.e. on (0, T)× Γ.

H. Wu Cahn–Hilliard Equation with DBC
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Main Result I

Theorem (Liu & Wu 2019 ARMA)

Suppose that κ > 0 and (A1)–(A3) are satisfied.

(1) For any (φ0, ψ0) ∈ V1, problem (P) admits a unique global weak
solution.

(2) For t > 0, the weak solution becomes a strong one and

‖φ(t)‖H3(Ω) + ‖ψ(t)‖H3(Γ) ≤ C
(

1 + t
t

) 1
2

,

where C depends on E(φ0, ψ0), Ω, Γ, κ and other coefficients.

H. Wu Cahn–Hilliard Equation with DBC
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Idea of proof

Galerkin scheme ??

– three Laplace operators (Neumann Laplace operator,
Laplace-Beltrami operator, Wentzell Laplace operator)

Abstract framework ?? (e.g., Lp maximal regularity theory 5)

– Lopatinskii–Shapiro condition not fulfilled for the linear problem

Idea

Solve a regularized system (via the fixed point argument)

+ derive uniform estimates

+ pass to the limit

5Denk, Prüss & Zacher 2008
H. Wu Cahn–Hilliard Equation with DBC
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Regularization: The Viscous CHE

For any given α ∈ (0, 1], consider

φαt = ∆µα, with µα = −∆φα+αφαt + F′(φα), in (0, T)× Ω,

∂nµ
α = 0, on (0, T)× Γ,

φα|Γ = ψα, on (0, T)× Γ,

ψαt = ∆Γµ
α
Γ , on (0, T)× Γ,

with µαΓ = −κ∆Γψ
α + ψα+αψαt + G′(ψα) + ∂nφ

α, on (0, T)× Γ,

φα|t=0 = φ0(x), in Ω,

ψα|t=0 = ψ0(x) := φ0(x)|Γ, on Γ.

First Advantage: better regularity for time derivatives (φαt , ψ
α
t )

d
dt

E(φα, ψα) + ‖∇µα‖2
L2(Ω) + ‖∇Γµ

α
Γ‖2

L2(Γ) + α‖(φαt , ψαt )‖2
L2(Ω)×L2(Γ) = 0.
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Local Well-posedness of VCHE

Lemma

Let α ∈ (0, 1] and κ > 0. Suppose that (A1) is satisfied.
For any (φ0, ψ0) ∈ V2, there exists Tα > 0 such that the regularized problem
admits a unique local strong solution (φα, ψα) on [0, Tα] satisfying

(φα, ψα) ∈ C([0, Tα];V2) ∩ L2(0, Tα;V3)

(φαt , ψ
α
t ) ∈ L∞(0, Tα; L2(Ω)× L2(Γ)) ∩ L2(0, Tα;V1),

µα ∈ L2(0, Tα; H2(Ω)), µαΓ ∈ L2(0, Tα; H2(Γ)).

Proof: Contraction mapping theorem

Key issue: Solve the linearized problem
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The Linear Problem



φt −∆µ̃ = 0, in (0, T)× Ω,

with µ̃ = −∆φ +αφt + h1, in (0, T)× Ω,

∂nµ̃ = 0, on (0, T)× Γ,

φ|Γ = ψ, on (0, T)× Γ,

ψt −∆Γµ̃Γ = 0, on (0, T)× Γ,

with µ̃Γ = −κ∆Γψ + ψ +αψt + ∂nφ + h2, on (0, T)× Γ,

φ|t=0 = φ0(x), in Ω,

ψ|t=0 = ψ0(x) := φ0(x)|Γ, on Γ.

Idea:

(1) Decoupling between bulk and boundary evolution

(2) Second Advantage of α > 0 and κ > 0:
=⇒ solve 2nd order parabolic equations instead of 4th order equations.
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Solvability I
Let h̃1 = h1 − 〈h1〉Ω and h̃2 = h2 − 〈h2〉Γ.

[α+ (A0
Ω)−1]φt = ∆φ− |Γ||Ω| 〈∂nφ〉Γ − h̃1, in (0, T)× Ω,

φ|Γ = ψ, on (0, T)× Γ,

φ|t=0 = φ0(x), in Ω,

[α+ (A0
Γ)−1]ψt = κ∆Γψ − ψ + 〈ψ〉Γ − ∂nφ+ 〈∂nφ〉Γ −h̃2, on (0, T)× Γ,

ψ|t=0 = ψ0(x) := φ0(x)|Γ, on Γ.

Step 1. Set

ρ(t) = e−κ∆Γψ0, t ≥ 0.

Given ψ, solve the auxiliary system and denote the solution by
ϕ = T(ψ − ρ)

[α+ (A0
Ω)−1]ϕt = ∆ϕ− |Γ||Ω| 〈∂nϕ〉Γ, in Ω× (0, T),

ϕ|Γ = ψ − ρ, on Γ× (0, T),

ϕ|t=0 = 0, in Ω.
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Solvability II

Step 2. Set
φ = u + T(ψ − ρ).

For new unknown variables (u, ψ):

[α+ (A0
Ω)−1]ut = ∆u− |Γ||Ω| 〈∂nu〉Γ − h̃1, in Ω× (0, T),

u|Γ = ρ, on Γ× (0, T),

u|t=0 = φ0(x), in Ω,

[α+ (A0
Γ)−1]ψt = κ∆Γψ − ψ + 〈ψ〉Γ − ∂n(T(ψ − ρ))

+〈∂n(T(ψ − ρ))〉Γ − ĥ2, on Γ× (0, T),

with ĥ2 = ∂nu− 〈∂nu〉Γ + h̃2, on Γ× (0, T),

ψ|t=0 = ψ0(x) := φ0(x)|Γ, on Γ.

A decoupled system for (u, ψ) ! !
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Solvability III

Step 3. Solve u first, and then solve ψ that satisfies

αψt − κ∆Γψ + ψ = Kψ − α[α+ (A0
Γ)−1]−1ĥ2, on Γ× (0, T),

Kψ = −[α+ (A0
Γ)−1]−1(A0

Γ)−1(κ∆Γψ − ψ + 〈ψ〉Γ − ∂n(T(ψ − ρ)) + 〈∂n(T(ψ − ρ))〉Γ
)

+ 〈ψ〉Γ − ∂n(T(ψ − ρ)) + 〈∂n(T(ψ − ρ))〉Γ.

Lemma

Let α ∈ (0, 1], κ > 0. Suppose that (φ0, ψ0) ∈ V2 and
(h1, h2) ∈ L2(0, T; H1(Ω)× H1(Γ)) ∩ H1(0, T; L2(Ω)× L2(Γ)) for some
T ∈ (0,+∞). The linear problem admits a unique strong solution (φ, ψ) on
[0, T] such that

(φ, ψ) ∈ C([0, T];V2) ∩ L2(0, T;V3),

(φt, ψt) ∈ L∞(0, T; L2(Ω)× L2(Γ)) ∩ L2(0, T;V1).
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Main Result I’

Theorem (Liu & Wu 2019 ARMA)

Suppose that κ = 0, T > 0 and (A1)–(A3) are satisfied.
If Ω ⊂ Rd (d = 2, 3) satisfies

cR|Γ|
1
2 |Ω|−1 < 1,

where cR > 0 is a constant related to the inverse trace theorem.
Then for any (φ0, ψ0) ∈ V1, problem (P) admits a unique global weak solution
(φ, ψ) on [0, T] with

(φ, ψ) ∈ C([0, T]; V1) ∩ L2(0, T; V
5
2 ).

Proof: Derive uniform estimates w.r.t. κ and take limit κ→ 0+
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Remark A

Drawbacks

– vanishing boundary diffusion =⇒ loss of regularity

– unnatural geometric constraint

cR|Γ|
1
2 |Ω|−1 < 1.

Technical difficulty

– uniform estimate on ∂nφ w.r.t κ (the parabolic DtN operator) to recover
the strong form

µ = −∆φ+ F′(φ), a.e. in (0, T)× Ω,

µΓ = −κ∆Γψ + ψ + G′(ψ) + ∂nφ, a.e. on (0, T)× Γ.
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Remark A

An alternative choice 6

Consider a weaker notion of weak solutions∫ T

0

∫
Ω

µηdxdt +

∫ T

0

∫
Γ

µΓηΓdSdt

=

∫ T

0

∫
Ω

∇φ · ∇ηdxdt +

∫ T

0

∫
Ω

F′(φ)ηdxdt

+

∫ T

0

∫
Γ

κ∇Γψ · ∇ΓηΓdSdt +

∫ T

0

∫
Γ

(ψ + G′(ψ))ηΓdSdt

for (η, ηΓ) ∈ L2(0, T;V1
κ) ∩ (L∞((0, T)× Ω)× L∞((0, T)× Γ)).

:-) No ∂nφ =⇒ Drop the assumption cR|Γ|
1
2 |Ω|−1 < 1 for κ = 0.

6Garcke & Knopf 2020 SIMA
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Remark A

Key observation:

Gradient flow structure

〈(φt, ψt), (η, ηΓ)〉(V1
κ,0)′ = − δE

δ(φ, ψ)
((φ, ψ))[(η, ηΓ)],

for all (η, ηΓ) ∈ V1
κ,0 ∩ (L∞(Ω)× L∞(Γ)).

=⇒ Existence of a global weak solution (κ ≥ 0):

An implicit time discretization

+ Convergence of the time-discrete solution
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Remark B

Well-posedness for the case with singular potentials?

κ > 0: Colli, Fukao & Wu 2020 Math. Nachr.

Existence and Uniqueness of Weak/Strong Solutions for a general
setting of singular potentials including the logarithmic potential

Proof:

Regularization: the Moreau–Yosida approximation for singular
potentials + adding viscous terms in chemical potentials

+ solve a time-discretization scheme (by using general theory of the
maximal monotone operator)

+ derive uniform estimates and pass to the limit
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Extensions and Future Work

General bulk-boundary interactions
– Knopf and Lam, 2020 Nonlinearity

– Knopf, Lam, Liu and Metzger, 2021 ESAIM Math. Model. Numer Anal.

– Knopf and Signori, 2021 JDE.

Role of the boundary diffusion
– Asymptotics as κ→ 0+

Physically relevant case
– Thermal effects

Coupling with fluids
– The MCL problem / Electrowetting
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The End

Thank You !
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