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Cahn—Hilliard Equation

@ Dynamics of Mixtures

— Phase separation, Formation of microstructure ...

@ Cahn & Hilliard 1958: a basic building-block equation

¢,IV'(M(¢)VM)7 in Q % (0 T).
p=—0¢+ F(¢), 7

— Spinodal decomposition, Nucleation and growth, Coarsening

@ Extensions

— Image impainting, Ecology, Tumor growth, Fluid dynamics, Topology
optimization ...
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Mathematical Models

@ Description of morphology changes — dynamics of interfaces

(1) Sharp interface model
— Regard interface as a free boundary with zero thickness evolving in

time

(2) Diffuse interface model
— Consider an interfacial layer of small width € € (0, 1): using a smooth

order parameter ¢ (phase field) to distinguish two phases

Interface Interface
@ @ —
= =
= ©
s I :
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° ©
i [
Spatial coordinate Spatial coordinate
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Cahn—Hilliard Equation

{qb[_V(M((ZS)V/L), inQ x (0,7).

n= _62A¢ + F’(¢)7

@ Q C RY, T = 9Q, n outer unit normal vector on T

@ ¢: a conserved order parameter € [—1, 1]

@ u: chemical potential

@ F': potential function with double-well structure (singular/regular)

F(9) = 5 [(146)log(1 +6) + (1~ 9) log(1 ~ )] - %6, 6.>0>0
F(9) = 36— 17
@ M: mobility

M) =1, M(¢)=(1-¢")"
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Cahn—Hilliard Equation

@ Boundary conditions / Initial condition

MV p-n= 0w =0, onT x (0,7),
®li=0 = o, in Q.
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Cahn—Hilliard Equation

@ Boundary conditions / Initial condition

MV p-n= 0w =0, onT x (0,7),
@li=0 = o, in Q.

@ Mass conservation

dx = dx, Y1>0.
/quﬁ(t)x /Q(box t

@ Energy dissipation

Basic energy law %E(qﬁ(t)) +/M|Vu(t)\2dx: 0, V>0,
Q

with free energy  E(¢) = / (E—;IV¢|2 + F(¢)) dx.
Q
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Structure

(1) 1stand 2nd Fick’s law of diffusion

%—i—divJ:O7 J=-MVpu

(2) When M is a positive constant — Gradient flow in (H')":

<Zf’5>w - [ pede =M (@)l veeH (@)

* M be non-constant:

Gradient flow with respect to a Wasserstein-like transport metric
(Lisini, Matthes & Savaré, JDE 2012)
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Cahn—Hilliard Equation

@ Well-posedness

Elliott & Zheng SM 1986, Yin JX 1992, Caffarelli & Miler 1995,
Debussche & Dettori 1995, Elliott & Garcke 1996 ...

@ Long-time behavior t — +oco

Rybka & Hoffmann 1998, Miranville & Zelik 2004,
Abels & Wilke 2007 ...

@ Sharp-interface limit e — 07

Pego 1989, Cahn, Elliott & Novick-Cohen 1996,
Alikakos, Bates & Chen XF 1994, Chen XF 1996 ...
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Boundary effects

@ Phase separation

— Effective short-range interactions between the binary mixture and the
solid wall

Fischer et al 1997 PRL ...

@ Wetting phenomena
— Moving Contact Line problem of two phase flows

Jacgmin 2000 JFM, Qian, Wang & Sheng 2006 JFM,
W.-Q Ren & W.-N. E 2007 Phys. Fluids ...

@ Near the Boundary: Different Dynamics Driven by Surface Energy

= Different types of Boundary Conditions
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Dynamic Boundary Condition A

@ Fischer et al 1997

Total energy £(¢) = /Q <%|V¢|2 + F(¢)) abc+/F <g\Vr¢>|2 + G(qb)) ds

bulk energy surface energy

with e = 1, k > 0.

Ot =0,

Boundary conditions ,
¢ — kAT + G (¢) + Ongp = 0.

Mass conservation o(t)dx = | ¢odx, Vit>0,
Q Q

Energy dissipation %E(cﬁ(t))—s—/ |V u(t)Pdx + /\q&,(r)\zds:o, Vi >0.
Q T
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Derivation

GE00) = [ Voo Vot Foybdrt [ v Veor+ 0 (0)os

:/ [— A+ F(9)] ¢,dx+/ [— kAL + G'(¢) + Oud] S
Q N— r

=p

@ In Q: CHE ¢, = Ap with no-flux BC O = 0
@ OnT: Choose an Allen—Cahn type relaxation
¢ = —[ — KArg + G'(¢) + Oad)
~ A variational BC that leads to non-increasing of £
~ Dynamic contact angle on T

~ A sulfficient condition for energy dissipation, not uniquely determined
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Analysis Results

@ Well-posedness and Long-time behavior

Racke & Zheng 2003,

Wu & Zheng 2004, Chill et al 2006,

Miranville & Zelik 2005, 2010,

Priss, Racke & Zheng 2006, Priss & Wilke 2006,
Gal & Grasselli 2007, 2008, 2013,

Gilardi, Miranville & Schimperna 2009, 2010,
Chen, Wang & Xu 2014,

Colli, Gilardi & Sprekels 2017, 2018 ...

@ Sharp interface limit

Chen, Wang & Xu 2014,
Wang & Wang 2007, Xu, Di & Yu 2018
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Dynamic Boundary Condition B

@ Goldstein, Miranville & Schimperna 2011 Phy. D

0i(¢|r) — aAr(p|r) + Oupr = 0,

I' is a non-permeable wall: ,
ple = =kArg|r + G'(P[r) + nd.

@ Total mass conservation in Q + on I

/ngﬁ(t)dx—o—/rmp(t)dS:/Q(f)odx—t-/rqﬁohd& Vi>0,

@ Energy dissipation

GECO)+ [ IVu0Pde+ o [ [VeGe@)Pas =0, Vezo,

Relaxation of CH type

'Bulk-surface measure space (Q,do) = (2, dx) & (T, dS)
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Related Case: Wentzell Boundary Condition

@ Gal 2006 MMAS

(Ap)lr + cplr + Gap =0,

' is a permeable wall: ,
plr = —RATPIr + G'([r) + Ond.

@ Total mass conservation (when ¢ = 0)

/Q(b(t)dx—&-/rdt)‘rdS:/ng&odx—&-/r¢o|rds7 Vi>0,

@ Energy dissipation

—5 /|Vu |dx+c/|,u\ NPdS =0, Vi>0.
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Summary

@ Dynamic BC-A, Dynamic BC-B, Wentzell BC:
All based on physical considerations (Mass + Energy),

Not uniquely determined.

@ Hidden physics? Other possible choice of BC ?
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1. Kinematics

Assume
@ Continuity equation in the bulk

&+ V-(pu) =0, (x,1)eQx(0,T),
no-fluxb.c. u-n=0, (x,¢) eI x(0,7).
@ Continuity equation on the boundary
&+ Vr-(¢v) =0, (x,0) e x(0,7),

u, v: microscopic effective velocity (due to diffusion) in Q and on T'.
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1. Kinematics

Assume
@ Continuity equation in the bulk

&+ V-(pu) =0, (x,1)eQx(0,T),
no-fluxb.c. u-n=0, (x,¢) eI x(0,7).
@ Continuity equation on the boundary
¢+ Vr-(¢v) =0, (x,1) €T x(0,7),
u, v: microscopic effective velocity (due to diffusion) in Q and on T'.

— Mass ConservationinQandon T,

% /Q $(1)dx = % /F (1)dS = 0.
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2. Energy Dissipation

Assume
@ Basic Energy Law

d

aEroml(I) _ 7'Dt0ml(l‘) S 0
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2. Energy Dissipation

Assume
@ Basic Energy Law

d

aEroml(I) _ 7'Dt0ml(l‘) S 0

* Free Energy (neglecting macroscopic kinetic energy)

Em[al([) — bulk( ) + Emrf( )
lm/k l / Wb ¢7 V(b)dx, Emrf / Ws ¢7 VF¢)

* Energy Dissipation

Dtotal( ) — Dbulk( ) + Dsurf( )
D" (1) / & lu|’dx, D" (t) / & v[*ds

Cahn-Hilliard Equation with DBC
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3. Force Balance

Aim: Uniquely determine the velocities u, v and form a closed PDE system
Method: An Energetic Variational Approach
@ Bulk flow map x(X, ) : Qf —

@ Similarly, define a surface flow map x,(X;, ) 2
@ Bulk/surface action functionals

Ahulk( _ r
X(X, [)) - Wh(¢7 VX¢)dth7
0 QF

A (xy(Xs, 1)) / Wi(¢, Vi¢)dS.dt.
r

2Koba, Giga & Liu 2017 QAM
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Least Action Principle

@ Total action Amtal Ahulk Axurf

T
By A = — / / (V) - y dxdt
0o Joy

’ X 8Wb
_A /f |:¢VF (Ms + avx(ﬁ n>:| - ys dSydt.

oW, Wy g OWs +am
Vi 99’ T T avie | 9¢

with p=—-V,-

@ 0. A = (Fineriiat + Feon) - 6x => Conservative forces®

; 8Wb
Fb‘ulk _ . F;L;rlf _ Lis X )
con d)v K, cor (;ZSVF 3V\¢ n

8 Fuerial = 0 since kinetic energy is neglected

H. Wu Cahn-Hilliard Equation with DBC
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Onsager’s Maximum Dissipation Principle

@ The Rayleigh dissipation function

1
R=-D>0
2 -

@ Variation with respective to u (the velocity)

SR = =

e R(u + {—;V) — weak form of — Fliss

e=0

@ For present case

5 1Dmtal — / izu . udx + / ﬂzv -vdS
(u,v) 2 o Mh v MS )

—> Dissipative forces

bulk ¢’ f ¢’

i surj

Fuiss = —ﬁu, Fuo = —ﬁv.
b s
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Force Balance

@ Netwon’s force balance law
Finertial + Fcanv + Fdiss =0

@ Phrasing the evolution equations for a dissipative system within a
Hamiltonian principle formalism (in “strong” form): *

0xA—60R =0

~ extended Euler-Lagrange equations

/
oVip + ;/)[ u=0, in Q,
Feon + Fdisx =0 = b A 2
PV + OWs n|+ ¢—v =0, onl
PV AT 5v.6 M

“Sonnet & Virga, Springer 2012
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Resulting PDE System

C. Liu and H. Wu 2019 ARMA

G =V (Mbv,u)7 in €2 x (07 T)7
Lyl W, oW, -
uw=-V 8V¢1+8¢’ inQ x (0,7),
Ot =0, onI x (0,7),
¢ =Vr- MV + W onT x (0,7)
t — I sal" /Joa BVQZS ) ) )
W Wi
u‘_fvr.avrdﬁ 9" onT x (0,7),
Bli=o = ¢o(x), in Q.

@ Mass Conservation + Energy Dissipation + Force Balance

@ Different physical considerations can be easily included by choosing
free energies W,, W, and mobilities M, M;

@ Consistent with the surface-layer scaling process (Qian, Qiu & Sheng
2008)

H. Wu Cahn-Hilliard Equation with DBC
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IBVP of the Cahn—Hilliard Equation with NEW DBC

For simplicity, choose M, = M, = 1,
1 1
Wi(6,V6) = 5[V + F(6), Wi(é, Vre) = 5IVref + 56" +G(9).

Introduce boundary variable

P =¢|r ~ a bulk-to-boundary transmission condition

Consider a coupled system for (¢, 1)

&= Ap, with p=—A¢+ F'(¢), in (0,7) x Q,

Oupe =0, on (0,T) x T,
P olr =, on (0,T) x I,

Y= Arpr, With pur = —kAr + 9 + G () + e,  0on (0,T) x T,

Pli=0 = do(x), in €,

Yli=o = Yo(x) = ¢o(x)]r, onl.

H. Wu Cahn-Hilliard Equation with DBC
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Mathematical Difficulties

@ Higher-order, multi-scale coupling between bulk and boundary
* K > 0: a surface Cahn-Hilliard equation

= Ar(—kArY + 9 + G (¥)) +  Ar(6ag)
coupling from bulk

* k=0 (e.g., the MCL problem): may be ill-posed

G = [1+G"(@)]ArY + G ()| Vry* + Ar(9ag)
—_— ~——

backwards diffusion ?? higher order
@ Key issue: A parabolic Dirichlet-to-Neumann operator via CHE

dlr =1 = o

H. Wu Cahn-Hilliard Equation with DBC
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Notations

@ Q CRY, d=2,3: abounded domain with smooth boundary T.
@ Function spaces
H=L(Q) x L*(T),
V= {(6,0) €HQ) X H(D) - v =i}, Vs> 3,
V= {(69) e B@ x BHD): w=ol}, Vs> 5.
Set
V5 =V ifk >0, V5=V ifk =0.

Vf{,,m = {(d)a 1/]) € Vig : <¢>Q =my, <'¢)>F = mz}’ m= (mhIHZ) < Rz‘
In particular, V3 o=V} o0

H. Wu Cahn-Hilliard Equation with DBC
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Assumptions

(A1)

(A2)

(A3)

Regular potentials:

F,G € C'(R).
Dissipative conditions:
3 nonnegative constants independent of y € R
F(y) > —=Cr, F'(y) > =Cr, G(y)>—-Cs, G'(y)>—-Cs, VyeR
Growth conditions:
3 positive constants independent of y € R
F'O < Ce(1+ "), [G" ()] < Co(1+y"), VyeR,
k> 0: p,q € [0,+00) arbitrary if d = 2; p = 2 and q arbitrary if d = 3;
k=0:parbitraryifd=2andp=2ifd =3;9g=0ford = 2,3.

H. Wu Cahn-Hilliard Equation with DBC
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Weak Solutions

Let x > 0. For T € (0, +00) and (¢o,0) € V', a pair (¢, ) is called a weak
solution to problem (P) on [0, 7], if

(¢,%) € C([0,T]; V') N L*(0,T; V?),
pe€L}0,T;H (), pr€Ll’0,T;H'(T)),
¢ € L*(0,T; (H'(Q)"), € L*(0,T; (H'(I))*),

(:(2); O it )= 11 () +/QVM(I) - V¢dx = 0,
(Wi (8), M) (1 (0yy = 1 (o) + / Vrur - VrndS =0,
T

for every ¢ € H'(2) and n € H'(T') and a.e. ¢ € (0, T), with

p=—A¢p+F (), a.e.in (0,7) x €,
pur = —kArYp + 9 + G () + Owgp, a.e.on (0,T) x I

H. Wu Cahn-Hilliard Equation with DBC



Problem Setting
Well-posedness

Mathematical Analysis

Main Result |

Theorem (Liu & Wu 2019 ARMA)

Suppose that k > 0 and (A1)—(A3) are satisfied.

(1) Forany (¢, o) € V', problem (P) admits a unique global weak
solution.

(2) Fort > 0, the weak solution becomes a strong one and

t

16O + 1190 sy < € (ﬂ) ,

where C depends on E(¢o, v0), , T, k and other coefficients.

H. Wu Cahn-Hilliard Equation with DBC
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|ldea of proof

@ Galerkin scheme ??

— three Laplace operators (Neumann Laplace operator,
Laplace-Beltrami operator, Wentzell Laplace operator)

@ Abstract framework ?? (e.g., L’ maximal regularity theory ®)

— Lopatinskii—Shapiro condition not fulfilled for the linear problem

@ Idea
Solve a regularized system (via the fixed point argument)
+ derive uniform estimates

+ pass to the limit

5Denk, Priiss & Zacher 2008
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Regularization: The Viscous CHE

For any given a € (0, 1], consider

O = Ap®, With p® = —Ad®+ ag®™ + F'(¢%), in (0,7) x Q,

O™ =0, on (0,7T) x T,

% =%, on (0,T) x T,

P = Arpg, on (0,T) x T,
With p@ = —RAP® + 6o+ ay® + G (¥°) + 8ag™, on (0,T) x T,

¢ li=0 = po(x), inQ,

Y=o = o (x) 1= do(x)|r, onTI.

@ First Advantage: better regularity for time derivatives (¢;*, ¥;)

d « « «@ « (% «@
EEM) ) + IV Hiz(n) + ||VFMFH22(F) + all(or, ¥ )Hi%mxy(r) =0.

H. Wu Cahn-Hilliard Equation with DBC
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Local Well-posedness of VCHE

Lemma

Leta € (0,1] and k > 0. Suppose that (A1) is satisfied.
For any (¢o,10) € V?, there exists T., > 0 such that the regularized problem
admits a unique local strong solution (¢<,*) on [0, T.] satisfying

(6%, 9%) € C([0, Tal; V*) NL*(0, Ta; V)

(68, %) € L(0, Ta; L(Q) x L2(T) N L*(0, Ta; V1),

p® € L*(0,To; H*(Q)), u € L*(0, Ta; H(T)).

@ Proof: Contraction mapping theorem
@ Key issue: Solve the linearized problem

H. Wu Cahn-Hilliard Equation with DBC
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The Linear Problem

b — AJi =0, in (0,T) x Q,
with 7i = —A¢ + gy +h, in (0,7) x ©,

Onpt = 0, on (0,7) x I,

olr =1, on (0,7) x T,

Y — Arpur =0, on (0,7) x T,
with fir = — kApY + ¥ + @)y + Oad + ha, on (0,7) x T,

Bli=0 = do(x), in Q,

Yli=o = Yo (x) := go(x)|r, onr

Idea:

(1) Decoupling between bulk and boundary evolution
(2) Second Advantage of « > 0 and k > 0:
— solve 2nd order parabolic equations instead of 4th order equations.

H. Wu Cahn-Hilliard Equation with DBC
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Solvability |

Let Zl =h; — <h1>Q and ’hvz =hy, — </’l2>1".

o+ (A%) 160 = A¢ — [5H(Oa)r — in (0,7) x ,
olr =1, on (0,T) x T,
Pli=0 = ¢o(x), inQ,
[+ (AL) b = KAPY — 9 + (V)1 — Ondd + (Ondd)r 771'2, on (0,T) x T,
Yli=0 = tho(x) == do(x)]r, onT.

Step 1. Set

p(t) = e "By, 1> 0.
Given 1, solve the auxiliary system and denote the solution by

¢ =%(Y—p)
_ r .
[ + (A(S))) 1]90: =Ap — H(antph", inQ x (0,7),
elr =v —p, onT x (0,7),
go\,:o = 0, in Q.

H. Wu Cahn-Hilliard Equation with DBC
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Solvability I

Step 2. Set
¢=u+ZT(Y—p).
For new unknown variables (u, v):

[+ (AD) u = Au—%( wr — h, in Q2 x (0,7),
ulr = p, onT x (0,T),
uli=o = ¢o(x), in Q,

[o + (AR) T = KALY — ¥ + () — Ea(T(Y — p))
+(Oa(T(W — p))r — Ta, onT x (0,7),
With /1y = Baut — (Dati)r + ha, onT x (0,7),
Pli=o = tho(x) := po(x)|r, onT.

A decoupled system for (u, ) ! !

Cahn-Hilliard Equation with DBC
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Solvability 11l

Step 3. Solve u first, and then solve 1 that satisfies

athr — KAPY + 1 = By — afa + (A2) 7' hy, onT x (0,7),

fp = —a+ (AR) '] TAR) T (RArY — ¢ + (V) — Oa(T(Y — p)) + (Ba(T($ = p)))r)
+ W)r = (Y = p)) + (Oa(T(¥ — p)))r.

Lemma

Leta € (0,1], k > 0. Suppose that (¢o,100) € V* and

(h1,h2) € L*(0,T; H'(Q) x H'(T)) N H' (0, T; L*(Q) x L*(T")) for some

T € (0,4+00). The linear problem admits a unique strong solution (¢, ) on
[0, T] such that

(¢,9) € C([0,T]; V*) N L*(0, T; V),
(¢,10) € L0, T; LA () x LA(T)) N L*(0,T; V).

H. Wu Cahn-Hilliard Equation with DBC
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Main Result I’

Theorem (Liu & Wu 2019 ARMA)

Suppose that s = 0, T > 0 and (A1)—(A3) are satisfied.
IfQ Cc R? (d = 2,3) satisfies
crlTI2QI™" <1,

where cr > 0 is a constant related to the inverse trace theorem.

Then for any (¢, 0) € V', problem (P) admits a unique global weak solution
(¢,%) on [0,T] with

(6,%) € C([0,T]; V') N L*(0, T; V3).

@ Proof: Derive uniform estimates w.r.t. x and take limit k — 07

H. Wu Cahn-Hilliard Equation with DBC
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Remark A

@ Drawbacks
— vanishing boundary diffusion = loss of regularity

— unnatural geometric constraint
1 _
cr|T)ZIQI" < 1.

@ Technical difficulty

— uniform estimate on dn¢ w.r.t  (the parabolic DtN operator) to recover
the strong form

p=—A¢+F'(¢), a.e.in (0,T) x Q,
ur = —kArp + 1 + G () + Ougp, a.e.on (0,T) x T

H. Wu Cahn-Hilliard Equation with DBC
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v Well-posedness

Remark A

An alternative choice ¢
@ Consider a weaker notion of weak solutions

T T
/ /undxdl—!—/ /,urnrdet
0 Q 0 r
T T
= / / V¢ - Vndxdt + / / F'(¢)ndxdt
0 Q 0 Q

+ /OT/FHVFZ/) - VrnrdSdr + /OT/FW) + G'())nrdsSd

for (1, nr) € L*(0, T; VL) N (L=((0,T) x Q) x L¥((0,T) x I)).

:-) No da¢p = Drop the assumption cR|F|% Q7' < 1fork =0.

8Garcke & Knopf 2020 SIMA
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Remark A

@ Key observation:

Gradient flow structure
O0E
(e,

for all (n, nr) € V%o N (L°(Q) x L=(T)).

(G, ) o e = = 557 (@D 0]

— Existence of a global weak solution (x > 0):
An implicit time discretization

+ Convergence of the time-discrete solution

Cahn-Hilliard Equation with DBC
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Remark B

@ Well-posedness for the case with singular potentials?

@ x > 0: Colli, Fukao & Wu 2020 Math. Nachr.

Existence and Uniqueness of Weak/Strong Solutions for a general
setting of singular potentials including the logarithmic potential

@ Proof:
Regularization: the Moreau—Yosida approximation for singular
potentials + adding viscous terms in chemical potentials

+ solve a time-discretization scheme (by using general theory of the
maximal monotone operator)

+ derive uniform estimates and pass to the limit
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Summary

Extensions and Future Work

@ General bulk-boundary interactions
— Knopf and Lam, 2020 Nonlinearity
— Knopf, Lam, Liu and Metzger, 2021 ESAIM Math. Model. Numer Anal.
— Knopf and Signori, 2021 JDE.

@ Role of the boundary diffusion
— Asymptotics as k — 07

@ Physically relevant case
— Thermal effects

@ Coupling with fluids
— The MCL problem / Electrowetting
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The End

Thank You !
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