# Weak solutions to the isentropic system of gas dynamics 

Cheng Yu<br>in collaboration with<br>Ming Chen and Alexis Vasseur

Hong kong Symposium on PDE 2022

## Outline

1. Introduction

- The governing equations
- weak solutions to the Incompressible flows


## Outline

1. Introduction

- The governing equations
- weak solutions to the Incompressible flows

2. Construction of $\infty$ many global admissible weak solutions

- Main result
- Key idea and steps


## The governing equations

- Conservation Laws.
- Navier-Stokes: 1827-1845.

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{u})=0, \\
& (\rho \mathbf{u})_{t}+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})=\underbrace{-\nabla P}_{\text {preasure }}+\underbrace{\operatorname{div}(\mu \mathbb{D}(\mathbf{u}))+\nabla(\lambda \operatorname{div} \mathbf{u})}_{\text {diffusion. }}
\end{aligned}
$$

## The governing equations

- Conservation Laws.
- Navier-Stokes: 1827-1845.

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{u})=0, \\
& (\rho \mathbf{u})_{t}+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})=\underbrace{-\nabla P}_{\text {preasure }}+\underbrace{\operatorname{div}(\mu \mathbb{D}(\mathbf{u}))+\nabla(\lambda \operatorname{div} \mathbf{u})}_{\text {diffusion. }}
\end{aligned}
$$

- $\mathbb{D}(\mathbf{u})=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla^{T} \mathbf{u}\right), P=a \rho^{\gamma}$.
- $\mu$ is the bulk viscosity and $\lambda$ is the shear viscosity.


## The governing equations

- Conservation Laws.
- Navier-Stokes: 1827-1845.

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{u})=0 \\
& (\rho \mathbf{u})_{t}+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})=\underbrace{-\nabla P}_{\text {preasure }}+\underbrace{\operatorname{div}(\mu \mathbb{D}(\mathbf{u}))+\nabla(\lambda \operatorname{div} \mathbf{u})}_{\text {diffusion. }}
\end{aligned}
$$

- $\mathbb{D}(\mathbf{u})=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla^{T} \mathbf{u}\right), P=a \rho^{\gamma}$.
- $\mu$ is the bulk viscosity and $\lambda$ is the shear viscosity.
- If $\mu=\lambda=0$, the Euler equations (1757).
- For some fluids and gases, experiments indicate that the viscous influence is very small. This is why it is often set to $\mu=\lambda=0$ for some fluids, which is called the inviscid case.


## Incompressibility condition

- Incompressible flow: The volume does not change in time.



Incompressible


From Mark Drela's lecture note on Fluid Mechanics. $\operatorname{div} \mathbf{u}=0$ iff $\operatorname{det} J=1$ iff incompressible flow.

- If $\rho=$ constant, then

$$
\begin{aligned}
& \mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla P-\mu \Delta \mathbf{u}=0 \\
& \operatorname{div} \mathbf{u}=0
\end{aligned}
$$

## Question??

- A longstanding open question has been to determine what degree(s) of regularity must assumed to guarantee:
- uniqueness (still opening)
- conservation of energy for weak solutions (Onsager's conjecture, proved).
- Uniqueness or conservation of energy fails when the degree below a critical value.
- Question: Can we construct $+\infty$ many global admissible weak solutions?
- Under admissible condition??
- It will narrow down further the class of weak solutions to single out physical relevant solutions of the Euler equations for the uniqueness.


## Incompressible Euler equations

- A solution $(\mathbf{u}, P)$ to the incompressible Euler equations is such that

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\operatorname{div}(\mathbf{u} \otimes \mathbf{u})+\nabla P=0, \quad x \in \mathbb{T}^{3}, \\
\operatorname{div} \mathbf{u}=0 .
\end{array}\right.
$$

If the solution is sufficiently smooth, say $C^{1}$, then the total kinetic energy

$$
E(\mathbf{u}):=\frac{1}{2} \int_{\mathbb{T}^{3}}|\mathbf{u}(t, x)|^{2} d x
$$

is conserved, and any solution is uniquely determined by the initial data.

- A folklore conjecture: Uniqueness should fail when $\mathbf{u} \in C^{\alpha}$ for some $\alpha<1$, which is highly linked to Onsager's conjecture.


## Onsager's semi-formal proof of the sufficient condition

- Roughly speaking, enough regularity allows us to control convective term and to do integration by parts.


## Onsager's semi-formal proof of the sufficient condition

- Roughly speaking, enough regularity allows us to control convective term and to do integration by parts.
- The term to control is the total energy flux

$$
\Pi=\langle\operatorname{div}(\mathbf{u} \otimes \mathbf{u}), \mathbf{u}\rangle \sim\left\langle\left(\nabla^{1 / 3} \mathbf{u} \otimes \nabla^{1 / 3} \mathbf{u}\right): \nabla^{1 / 3} \mathbf{u}\right\rangle
$$

Thus the quantity $\left\|\nabla^{1 / 3} \mathbf{u}\right\|_{L^{3}}$ appears. Any better regularity would be sufficient to justify integration by parts to show that the flux $\Pi=0$.

## Onsager's Conjecture [Onsager '49]

The threshold Hölder regularity for the validity of the energy conservation of weak solutions has exponent $1 / 3$ :
(1) Every weak solution $\mathbf{u}$ to the Euler equations with Hölder continuity exponent $\alpha>\frac{1}{3}$ conserves energy.
(2) For any $\alpha<\frac{1}{3}$ there exists a weak solution
 $\mathbf{u} \in C^{\alpha}$ which does not conserve energy.

## Threshold regularity

energy not conserved
Scheffer '93
Shnirelman '97
De Lellis-Székelyhidi '12 B-DL-I-S '13
I '16, B-DL-S-V '17


De Lellis-Székelyhidi '09, '10
Daneri '14
Daneri-Székelyhidi '17
Daneri-Runa-Székelyhidi '20
based on a Baire category argument

## Weak solutions to the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\operatorname{div}(\mathbf{u} \otimes \mathbf{u})+\nabla p=0, \quad x \in \Omega \\
\operatorname{div} \mathbf{u}=0 \\
\left.\mathbf{u}\right|_{t=0}=\mathbf{u}^{0}
\end{array}\right.
$$

A divergence free vector field $\mathbf{u} \in L_{t}^{\infty} L_{x}^{2}$ is a global admissible weak solution if
$-\int_{0}^{\infty} \int_{\Omega}\left(\mathbf{u} \cdot \partial_{t} \varphi+\mathbf{u} \otimes \mathbf{u}: \nabla \varphi\right) d x d t=-\int_{\Omega} \mathbf{u}^{0} \cdot \varphi(\cdot, 0) d x$
for every test function $\varphi \in C_{c}^{\infty}$ with $\operatorname{div} \varphi=0$.
$-\int_{\Omega} \frac{1}{2}|\mathbf{u}(\cdot, t)|^{2} d x \leq \int_{\Omega} \frac{1}{2}\left|\mathbf{u}^{0}(\cdot)\right|^{2} d x \quad$ for every $t \geq 0$.

## Non-uniqueness and density of 'wild' data

## Theorem (Székelyhidi-Wiedemann '12, Chen-Vasseur-Y. )

 For any $\varepsilon>0$ and any $\mathbf{u}^{0} \in L^{2}\left(\mathbb{T}^{n}\right)$, there exist infinitely many $v^{0} \in L^{2}\left(\mathbb{T}^{n}\right)$ satisfying$$
\left\|v^{0}-\mathbf{u}^{0}\right\|_{L^{2}\left(\mathbb{T}^{n}\right)}^{2}<\varepsilon,
$$

such that for each such initial value $v^{0}$, there exist infinitely many global admissible weak solutions $v$ to the incompressible Euler equations.

- Construct a sub-solution by vanishing viscosity limit from Navier-Stokes.
- Leray-Hopf theory for N.-S.
- Euler equations: No results of global existence of weak solutions.
- Inviscid limit ( $\mu \rightarrow 0$ ): weak limit is not commutative with nonlinear term.
- Applying C.I. to sub-solution to generate $\infty$ many weak solutions.

Isentropic Euler system

## Weak solutions

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{u})=0, \\
& (\rho \mathbf{u})_{t}+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u})+\nabla P=0
\end{aligned}
$$

- $\int_{0}^{\infty} \int_{\Omega}\left(\rho \partial_{t} \varphi+V \cdot \nabla \varphi\right) d x d t=-\int_{\Omega} \rho^{0} \varphi(\cdot, 0) d x$

$$
\begin{gathered}
\int_{0}^{\infty} \int_{\Omega}\left(V \cdot \partial_{t} \varphi+\frac{V \otimes V}{\rho}: \nabla \varphi+\rho^{\gamma} \operatorname{div} \varphi\right) d x d t \\
=-\int_{\Omega} V^{0} \cdot \varphi(\cdot, 0) d x
\end{gathered}
$$

where $V=\rho \mathbf{u}$.
$-\int_{\Omega}\left(\frac{|V|^{2}}{2 \rho}+\frac{\rho^{\gamma}}{\gamma-1}\right) d x \leq \int_{\Omega}\left(\frac{\left|V^{0}\right|^{2}}{2 \rho^{0}}+\frac{\left(\rho^{0}\right)^{\gamma}}{\gamma-1}\right) d x$.

## Related works

- The proof relies on the Convex integration machinery developed by De Lellis-Székelyhidi.
- Two directions of the isentropic flow
- One direction, pioneered by Chiodaroli, considers a wide class of initial densities. Some extensions, Luo-Xie-Xin, and Feireisl.
- The other direction, pioneered by Chiodaroli-De Lellis-Kreml, focuses on initial values being Riemann data.
- Extensions of both strategies have been studied for the full Euler system, see Chiodaroli-Feireisl-Kreml, Al

Baba-Klingenberg-Kreml-Mácha-Markfelder.

- Without energy condition, non-unique solutions can be constructed for any fixed initial values, see Abbatiello-Feireisl.
- A natural problem consists in studying the size of the class of initial values leading to non-unique solutions.


## Riemann data

## Theorem (Chiodaroli- De Lellis-Kreml,CPAM.)

For $\gamma=2$ in 2D, there are infinitely many bounded admissible solutions with the initial data

$$
\left(\rho^{0}, \boldsymbol{u}^{0}\right)= \begin{cases}\left(\rho_{-}, \boldsymbol{u}_{-}\right), & \text {if } x_{2}<0 \\ \left(\rho_{+}, \boldsymbol{u}_{+}\right), & \text {if } x_{2}>0\end{cases}
$$

- Admissible condition: energy inequality in distribution sense.
- Initial data is Riemann data.
- Key idea: sub-solutions+ convex integral.


## Key idea of CDK



- Classical theory in 1D conservation laws: Rankine-Hugoniot conditions.
- Sub-solutions: $(\bar{\rho}, \overline{\mathbf{u}})=\sum_{-}^{+}(\rho, \mathbf{u}) \rrbracket_{P_{i}}$
- Oscillation lemma: Let $\overline{\mathbf{u}} \otimes \overline{\mathbf{u}}-\bar{U}<\frac{C}{n} I d$, there exists infinitely many bounded maps $(\underline{\mathbf{u}}, \underline{U}) \in L^{\infty}$, such that
- $\underline{\mathbf{u}}, \underline{U}$ vanish identically outside $\Omega$,
- $\operatorname{div} \underline{\mathbf{u}}=0, \underline{\mathbf{u}}_{t}+\operatorname{div} \underline{U}=0 ;$
- $(\overline{\mathbf{u}}+\underline{\mathbf{u}}) \otimes(\overline{\mathbf{u}}+\underline{\mathbf{u}})-(\bar{U}+\underline{U})=\frac{c}{n} I d$.
- Solutions: $(\rho, \mathbf{u})=(\bar{\rho}, \overline{\mathbf{u}}+\underline{\mathbf{u}})$.


## Our further understanding from CDK

- Note that $\mathbf{u}=\overline{\mathbf{u}}+\underline{\mathbf{u}}=$ mean flow + fluctuation.
- This motivates us to reformulate the system for sub-solutions as

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \overline{\mathbf{u}})=0 \\
& (\rho \overline{\mathbf{u}})_{t}+\operatorname{div}\left(\rho \overline{\mathbf{u}} \otimes \overline{\mathbf{u}}+\bar{P} I_{n}+\rho R\right)=0
\end{aligned}
$$

where the Reynolds stress

$$
R=\overline{\mathbf{u} \otimes \mathbf{u}}-\overline{\mathbf{u}} \otimes \overline{\mathbf{u}}+\left(\overline{\rho^{\gamma}}-\bar{\rho}^{\gamma}\right) I_{n}
$$

is symmetric and positive semidefinite.

## Main result

Theorem (Chen-Vasseur-Y. , Adv. Math, 2021)
Whenever $1<\gamma \leq 1+\frac{2}{n}$, for any $\varepsilon>0$ and any $\left(\varrho^{0}, U^{0}\right)$ such that $E\left(\varrho^{0}, U^{0}\right) \in L^{1}\left(\mathbb{T}^{n}\right)$, there exist infinitely many $\left(\rho^{0}, V^{0}\right)$ satisfying

$$
\begin{aligned}
& \rho^{0}>0, \quad E\left(\rho^{0}, V^{0}\right) \in L^{1}\left(\mathbb{T}^{n}\right), \\
& \left\|\rho^{0}-\varrho^{0}\right\|_{L^{r}\left(\mathbb{T}^{n}\right)}^{\gamma}+\left\|\frac{V^{0}}{\sqrt{\rho^{0}}}-\frac{U^{0}}{\sqrt{\varrho^{0}}}\right\|_{L^{2}\left(\mathbb{T}^{n}\right)}^{2}<\varepsilon,
\end{aligned}
$$

such that, for each of such initial values $\left(\rho^{0}, V^{0}\right)$, there exist infinitely many global admissible weak solutions $(\rho, V)$ to the isentropic Euler equations.

## Remarks: $\infty$ many solutions

- The most interesting range of $\gamma$ in physics is $1<\gamma \leq \frac{5}{3}$ in 3D.
- This result can be regarded as a compressible counterpart of the one obtained by Szekelyhidi-Wiedemann (ARMA, 2012) for incompressible flows.
- The admissibility condition is defined in its integral form. In particular, the energy is decreasing in time $t$.
- The energy equality could be hold under particular conditions, see Y.(ARMA, 2017), R. Chen-Y.(JMPA, 2019),

Akramov-Debiec-Skipper-Wiedemann (Anal. PDE, 2020), Feireisl-Gwiazda-Swierczewska-Gwiazda-Wiedemann(ARMA,2017)

## Key steps

- Two steps: the construction of subsolutions, and the convex integration of these subsolutions to obtain actual solutions.
- Can we construct a sub-solution as follows

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \mathbf{u})=0 \\
& (\rho \mathbf{u})_{t}+\operatorname{div}\left(\rho \mathbf{u} \otimes \mathbf{u}+P(\rho) I_{n}+\rho R\right)=0 ?
\end{aligned}
$$

- Vanishing viscosity limits from the Navier-Stokes equation.
- Weak limits for nonlinear term can produce $R$.
- We need a suitable convex integral tool?
- a topological Bairé category argument.
- The energy-compatible subsolution ( $\rho, V, R$ ), denoting $U:=\left(V \otimes V-I d|V|^{2} / n\right) / \rho$, the oscillatory perturbations $(\tilde{V}, \tilde{U})$, readily generate $(\rho, V+\widetilde{V})$ as solutions to the the isentropic Euler system.


## Existence of NS

## Proposition

Fo any $\gamma>1$, there exists the global weak solution $\left(\rho_{v}, V_{v}\right)$ to

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{v}+\operatorname{div} V_{v}=0 \\
\partial_{t} V_{v}+\operatorname{div}\left(\frac{V_{v} \otimes V_{v}}{\rho_{v}}+p(\rho) I_{n}\right)=\operatorname{div}\left(\sqrt{v \rho_{v}} \mathscr{S}_{v}\right)
\end{array}\right.
$$

where $\sqrt{v \rho_{v}} \mathbb{S}_{v}:=v \rho_{v} \mathbb{D} v_{v}$ with $\mathbb{D} v_{v}:=\left(\frac{\nabla v_{v}+\nabla^{T} v_{v}}{2}\right)$ and $V_{v}=\rho_{v} v_{v}$.

- This weak solution was constructed by Vasseur-Y. and Bresch-Vasseur-Y. .
- The standard theory need $\gamma>\frac{3}{2}$ in the framework of Lions-Feireisl.
- The most interesting range of $\gamma$ in physics is $1 \leq \gamma \leq \frac{5}{3}$.


## Vanishing viscosity limits

- As $v \rightarrow 0$, up to a subsequence,

$$
\left(\rho_{v}, V_{v}\right) \rightharpoonup(\rho, V) \text { weakly in } L^{\infty}\left(\mathbb{R}_{+} ; L^{\gamma}\left(\mathbb{T}^{n}\right)\right) \times L^{\infty}\left(\mathbb{R}_{+} ; L^{\frac{2 \gamma}{\gamma+1}}\left(\mathbb{T}^{n}\right)\right)
$$

which defines

$$
R:=\lim _{v \rightarrow 0} \frac{V_{v} \otimes V_{v}}{\rho_{v}}-\frac{V \otimes V}{\rho}, \quad r:=\lim _{v \rightarrow 0} p\left(\rho_{v}\right)-p(\rho) \quad \text { in } \mathscr{D}^{\prime}
$$

$-\frac{\left|V_{v}\right|^{2}}{\rho_{v}}-\frac{|V|^{2}}{\rho}+\operatorname{Tr} R, P\left(\rho_{v}\right)-P(\rho)+r$, by energy inequality, we have

$$
\int_{\mathbb{T}^{n}}\left(E(\rho, V)+\frac{1}{2} \operatorname{Tr} R+\frac{r}{\gamma-1}\right) d x \leq E_{0} .
$$

- Then there exist a subsolution ( $\rho, V, R, r$ ) of the compressible Euler equations with energy inequality, called $\left(\mathscr{E}^{0}, T\right)$-energy compatible subsolution.


## Regularity and positivity enhancement

- Subsolutions via v.v. are rough and $R+r I_{n}$ may degenerate.


## Regularity and positivity enhancement

- Subsolutions via v.v. are rough and $R+r I_{n}$ may degenerate.
- Smoothing via convolution.


## Regularity and positivity enhancement

- Subsolutions via v.v. are rough and $R+r I_{n}$ may degenerate.
- Smoothing via convolution.
- Enhancing positivity via convex combination of ( $\left.\mathscr{E}^{0}, T\right)$-energy compatible subsolutions.


## Regularity and positivity enhancement

- Subsolutions via v.v. are rough and $R+r I_{n}$ may degenerate.
- Smoothing via convolution.
- Enhancing positivity via convex combination of ( $\left.\mathscr{E}^{0}, T\right)$-energy compatible subsolutions.
- The above two procedures respect energy compatibility because of convexity.


## Regularity and positivity enhancement

- Subsolutions via v.v. are rough and $R+r I_{n}$ may degenerate.
- Smoothing via convolution.
- Enhancing positivity via convex combination of ( $\left.\mathscr{E}^{0}, T\right)$-energy compatible subsolutions.
- The above two procedures respect energy compatibility because of convexity.
- Therefore we are left to consider convex integration from smooth energy compatible subsolutions with positive definite total defect matrix $R+r I_{n}$.


## Oscillation lemma

## Proposition (Chen-Vasseur-Y., 2021.)

There exist infinitely many $\widetilde{V}$ and traceless $\widetilde{U}$ (as oscillatory perturbations), both supported in $\Omega$, such that in $\mathbb{R}^{n} \times \mathbb{R}_{+}$:

$$
\left\{\begin{aligned}
\operatorname{div} \tilde{V} & =0 \\
\partial_{t} \tilde{V}+\operatorname{div} \widetilde{U} & =0
\end{aligned}\right.
$$

while

$$
\frac{(V+\widetilde{V}) \otimes(V+\widetilde{V})}{\rho}-(U+\widetilde{U})=\left(\frac{|V|^{2}}{n \rho}+q\right) I_{n}
$$

is achieved as to eliminate the Reynolds stress $R:=q I_{n}$.
Energy injection
( $\rho, V+\tilde{V}$ ) Euler solution.

$$
\frac{|V+\tilde{V}|^{2}}{\rho}=\frac{|V|^{2}}{\rho}+\operatorname{tr} R
$$

$\frac{1}{2} \operatorname{tr} R$ is pumped into the kinetic energy density through C.I..

- The subsolutions

$$
\left\{\begin{aligned}
\partial_{t} \rho+\operatorname{div} V & =0 \\
\partial_{t} V+\operatorname{div}\left(\frac{V \otimes V}{\rho}+p(\rho) I d+R\right) & =0
\end{aligned}\right.
$$

- There exist infinitely many $\widetilde{V}$ and traceless $\widetilde{U}$ (as oscillatory perturbations):

$$
\left\{\begin{aligned}
\operatorname{div} \widetilde{V} & =0 \\
\partial_{t} \tilde{V}+\operatorname{div} \widetilde{U} & =0
\end{aligned}\right.
$$

while

$$
\frac{(V+\tilde{V}) \otimes(V+\tilde{V})}{\rho}-(U+\widetilde{U})=\left(\frac{|V|^{2}}{n \rho}+q\right) I d,
$$

is achieved as to eliminate the Reynolds stress $R:=q I d$.

- The energy-compatible subsolution ( $\rho, V, R$ ), denoting $U:=\left(V \otimes V-I d|V|^{2} / n\right) / \rho$, the oscillatory perturbations $(\widetilde{V}, \widetilde{U})$, readily generate $(\rho, V+\widetilde{V})$ as solutions to the the isentropic Euler system.


## Compensation for potential energy

$\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow\left(\mathscr{E}^{0}, T\right)$-compatible subsolution $W_{1}$
Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


## Compensation for potential energy

$\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow\left(\mathscr{E}^{0}, T\right)$-compatible subsolution $W_{1}$
Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


## Compensation for potential energy

$\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow\left(\mathscr{E}^{0}, T\right)$-compatible subsolution $W_{1}$
Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


Energy $\neq: \quad E(\rho, \hat{V})$ v.s. $E(\rho, V)+\frac{1}{2} \operatorname{tr} \mathscr{R}+\frac{r}{\gamma-1}$

## Compensation for potential energy

$\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow\left(\mathscr{E}^{0}, T\right)$-compatible subsolution $W_{1}$
Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


Energy $\neq: \quad E(\rho, \hat{V})$ v.s. $E(\rho, V)+\frac{1}{2} \operatorname{tr} \mathscr{R}+\frac{r}{\gamma-1}$

$$
1<\gamma \leq 1+\frac{2}{n}
$$

$\Rightarrow$ need compensation for

## Compensation for potential energy

$\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow\left(\mathscr{E}^{0}, T\right)$-compatible subsolution $W_{1}$
Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


$$
W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

## Compensation for potential energy

$$
\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow\left(\mathscr{E}^{0}, T\right) \text {-compatible subsolution } W_{1}
$$

Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


$$
W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

Issue: bump-up of initial energy

$$
E\left(\rho^{0}, V^{0}\right) \longrightarrow E\left(\rho^{0}, V^{0}\right)+\frac{1}{2} \operatorname{tr} R
$$

## Double convex integration

$$
\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$

close in natural norms

## Double convex integration

$$
\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


## Double convex integration

$$
\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$

close in energy norm

$$
\mathscr{E}^{0}=\int E\left(\tilde{\rho}_{\epsilon}^{0}, \tilde{V}_{\epsilon}^{0}\right)
$$

## Double convex integration

$$
\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$

close in energy norm

$$
\mathscr{E}^{0}=\int E\left(\tilde{\rho}_{\epsilon}^{0}, \tilde{V}_{\epsilon}^{0}\right)
$$

Note: $\infty$ many choices for $\tilde{t} \Rightarrow \infty$ many initial data $\left(\tilde{\rho}_{\epsilon}^{0}, \tilde{V}_{\epsilon}^{0}\right)$

## Double convex integration

$$
\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$


## Double convex integration

$$
\mathscr{E}^{0}, W^{0}=\left(\rho^{0}, V^{0}, \mathscr{R}^{0}, r^{0}\right) \Rightarrow W=\left(\rho, V, \mathscr{R}, r+r_{c}\right)
$$

Say $\quad \rho>0, \quad R=\mathscr{R}+r \mathrm{I}_{n}>0$



