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Abstract. In this paper, we introduce a new energy density function Y on the

projective bundle P(TM ) → M for a smooth map f : (M, h) → (N, g) between

Riemannian manifolds

Y = gijf
i
αf j

β

W αW βP
hγδW γW δ

.

We get new Hessian estimates to this energy density and obtain various new Li-

ouville type theorems for holomorphic maps, harmonic maps and pluri-harmonic

maps. For instance, we show that there is no non-constant holomorphic map from

a compact Hermitian manifold with positive (resp. non-negative) holomorphic

sectional curvature to a Hermitian manifold with non-positive (resp. negative)

holomorphic sectional curvature.
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1. Introduction

Let f : (M,h) → (N, g) be a smooth map between two Riemannian manifolds. In
local coordinates {yα} and {xi} on M and N respectively, there is an energy density
function e on M

e = |df |2 = gijh
αβf i

αf j
β .

Many milestone works are achieved in the last century by using various techniques
in differential geometry and function theory in analysis, and thousands of mathe-
maticians contributed significantly in this rich field. There is a huge literature on
the subject, and we refer to the classical works [Boc55, ES64, Yau75, Yau78, Siu80,
Yau82, JY93, MSY93, EL78, EL83, EL88, Xin96] and the references therein.

This work was partially supported by China’s Recruitment Program of Global Experts and NSFC

11688101.
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In this paper, we introduce a new energy density function Y on the projective
bundle P(TM ) → M for the smooth map f : (M,h) → (N, g)

(1.1) Y = gijf
i
αf j

β

WαW β∑
hγδW γW δ

,

which is motivated by the Leray-Grothendieck spectral sequence for abstract vector
bundles used in our previous paper [Yang18a]. We obtain several new Hessian esti-
mates on this energy density (e.g. formulas (1.3), (1.7), (1.9), (1.11)). The key new
ingredient is that these new Hessian estimates can work for manifolds with partially
positive curvature tensors (e.g. the holomorphic sectional curvature, or more gener-
ally, the RC-positivity for abstract vector bundles introduced in [Yang18]). In this
paper, we only deal with applications when M is compact.

Part I. The generalized energy density and rigidity of holomorphic maps.
Let f : (M,h) → (N, g) be a holomorphic map between two Hermitian manifolds.
Let {zα}m

α=1 and {ηi}n
i=1 be the local holomorphic coordinates around p ∈ M and

q = f(p) ∈ N respectively. We consider the generalized energy density

(1.2) Y = gijf
i
αf

j
β

WαW
β∑

hγδW
γW

δ

over the projective bundle P(TM ) → M where {W 1, · · · ,Wm} are the holomorphic
coordinates on the fiber TpM with respect to the given trivialization. It is easy to see
that Y is a well-defined function on P(TM ). For simplicity, we set H =

∑
hγδW

γW
δ.

It is well-known that H −1 is a Hermitian metric on the tautological line bundle
OT ∗M

(1) of the projective bundle P(TM ) → M ([Gri65, Lemma 9.1]). The complex
Hessian of the new energy density has the following estimate.

Theorem 1.1. Let f : (M,h) → (N, g) be a holomorphic map between two Hermitian
manifolds. We have the following inequality on the projective bundle P(TM ) → M ,

(1.3)
√
−1∂∂Y ≥

(√
−1∂∂ log H −1

)
· Y −

√
−1Rijk`f

i
αf j

βfk
µf `

νW
µW

ν
dzα ∧ dzβ

H
.

In particular, if f : M → C is a holomorphic function, then

(1.4)
√
−1∂∂Y ≥

(√
−1∂∂ log H −1

)
· Y .

As applications of Theorem 1.1, we obtain several new rigidity theorems.

Theorem 1.2. Let f : (M,h) → (N, g) be a holomorphic map between two Hermitian
manifolds. Suppose M is compact. If

(1) (M,h) has positive (resp. non-negative) holomorphic sectional curvature;
(2) (N, g) has non-positive (resp. negative) holomorphic sectional curvature,

then f is a constant map.
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Let’s recall some classical results on rigidity of holomorphic maps. The classical
Schwarz-Pick lemma states that any holomorphic map from the unit disc in the com-
plex plane into itself decreases the Poincaré metric. This was extended by Ahlfors
([Ahl38]) to maps from the disc into a hyperbolic Riemann surface, and by Chern
[Che68] and Lu [Lu68] to higher-dimensional manifolds. A major advance was Yau’s
Schwarz Lemma [Yau78], which says that a holomorphic map from a complete Kähler
manifold with Ricci curvature bounded below into a Hermitian manifold with holo-
morphic bisectional curvature bounded above by a negative constant, is distance
decreasing up to a constant depending only on these bounds. In particular, there is
no nontrivial holomorphic map from compact Kähler manifolds with positive Ricci
curvature to Hermitian manifolds with non-positive holomorphic bisectional curva-
ture. By using the well-known “Royden’s trick” for Kähler metrics, Royden was able
to improve Yau’s result and show that there is no nontrivial holomorphic map from
compact Kähler manifolds with positive Ricci curvature to Kähler manifolds with
non-positive holomorphic sectional curvature ([Roy80]). Later generalizations were
mainly in two directions: relaxing the curvature condition or the Kähler assumption.
A general philosophy is that holomorphic maps from “positively curved” complex
manifolds to “non-positively curved” complex manifolds should be constant.

We confirmed in [Yang18, Theorem 1.7] a well-known problem of Yau ([Yau82,
Problem 47]) that if a compact Kähler manifold M has positive holomorphic sec-
tional curvature, then it is projective and rationally connected, i.e. any two points in
M can be connected by a rational curve. On the other hand, if N is Brody hyper-
bolic, it has no rational curves. Hence, there is no non-constant holomorphic maps
from compact Kähler manifolds M with positive holomorphic sectional curvature to
Brody hyperbolic manifolds (e.g. Hermitian manifold N with non-positive holomor-
phic sectional curvature). Recently, Lei Ni also obtained a rigidity theorem in [Ni18]
when M and N are both complete Kähler manifolds and one of the key ingredients
is the Royden’s trick ([Roy80]) for Kähler metrics. As it is shown in Lemma 1.1 and
Theorem 1.2, the new method in this paper has the key advantage that they can work
for Hermitian metrics on both M and N , and as it is well-known, the Royden’s trick
does not work on such manifolds.

Theorem 1.2 can not be proved by using algebraic methods developed in [Yang18a].
Indeed, when (N, g) has non-positive holomorphic sectional curvature, the pullback
bundle f∗(T ∗N ) has no desired positivity as an abstract bundle. On the other hand,
if (N, g) has negative holomorphic sectional curvature, then (TN , g) is RC-negative.
However, it is obvious that the RC-negativity is not preserved under the pull-back of
f , unless f is a holomorphic submersion. As it is shown in [Yang18, Corollary 3.8],
Kähler manifolds with negative first Chern classes have RC-negative tangent bundles
and some of them can contain rational curves, for instance, the quintic surface in P3.
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As another application of the Hessian estimate in Theorem 1.1, we obtain:

Corollary 1.3. Let f : M → N be a holomorphic map from a compact complex
manifold M to a complex manifold N . If OT ∗M

(−1) is RC-positive, and N has non-
positive holomorphic bisectional curvature, then f is a constant map.

Let’s explain the curvature condition on M briefly. A holomorphic line bundle L over
a complex manifold X is called RC-positive if it admits a smooth Hermitian metric
hL such that its Chern curvature tensor −

√
−1∂∂ log hL has at least one positive

eigenvalue everywhere. The RC-positivity of OT ∗M
(−1) is a very weak curvature con-

dition. Indeed, we proved in [Yang17, Theorem 1.4] that OT ∗M
(−1) is RC-positive if

and only if OT ∗M
(1) is not pseudo-effective. When restricted to the fibers of P(TM ),

one can deduce OT ∗M
(−1)|F ∼= OPm−1(−1) is negative. Roughly speaking, the RC-

positivity of OT ∗M
(−1) over the projective bundle P(TM ) means that OT ∗M

(−1) has at
least one “positive direction” along the base M directions. Moreover, complex man-
ifolds M with RC-positive tangent bundles have RC-positive OT ∗M

(−1) ([Yang18a]).
Recall that, a Hermitian holomorphic vector bundle (E , hE ) over a complex manifold
X is called RC-positive, if for any q ∈ X and any nonzero vector v ∈ Eq, there exists
some nonzero vector u ∈ TqX such that

(1.5) RE (u, u, v, v) > 0.

There are many Kähler and non-Kähler complex manifolds with RC-positive tangent
bundles and we list some of them for readers’ convenience and for more details, we
refer to [Yang18, Yang18a, Yang18b] and the references therein.

• complex manifolds with positive holomorphic sectional curvature;
• Fano manifolds [Yang18, Corollary 3.8];
• manifolds with positive second Chern-Ricci curvature [Yang18, Corollary 3.7];
• Hopf manifolds S1 × S2n+1 ([LY14, formula (6.4)]);
• products of complex manifolds with RC-positive tangent bundles.

We need to point out that Corollary 1.3 can also be deduced from [Yang18a] (see also
Corollary 1.6).

We can define some other energy densities for f : (M,h) → (N, g). For instance,
on the projective bundle P(f∗T ∗N ) π1→ M , we have the energy density

(1.6) Y1 = hαβf i
αf

j
β

XiXj∑
gk`XkX`

where {Xi}n
i=1 are the holomorphic coordinates on the fiber f∗T ∗q N . For simplicity,

we set H1 =
∑

gk`XkX`.
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Proposition 1.4. Let f : (M,h) → (N, g) be a holomorphic map between two Her-
mitian manifolds. Then we have the following estimate over P(f∗T ∗N ) π1→ M

(1.7)
√
−1∂∂Y1 ≥

(√
−1∂∂ log H −1

1

)
·Y1 +

√
−1Rαβγδh

γνhµδfk
µf `

νXkX`dzα ∧ dzβ

H1
.

Similarly, we can define

(1.8) Y2 = f i
αf

j
β

XiXj∑
gk`XkX`

· WαW
β∑

hγδW
γW

δ

over the projective bundle P(π∗f∗T ∗N ) → P(TM ) where π : P(TM ) → M is the natural
projection. Recall that H =

∑
hγδW

γW
δ and H1 =

∑
gk`XkX`.

Proposition 1.5. Let f : (M,h) → (N, g) be a holomorphic map between two Her-
mitian manifolds. Then we have the following inequality over P(π∗f∗T ∗N ) → P(TM )

(1.9)
√
−1∂∂Y2 ≥

(√
−1∂∂ log H −1 +

√
−1∂∂ log H −1

1

)
· Y2.

As applications of generalized versions of Theorem 1.1, Proposition 1.4 or Proposi-
tion 1.5, and some deep approximations established by Demailly-Peternell-Schneider
([DPS94]), we conclude:

Corollary 1.6. Let f : M → N be a holomorphic map between compact complex
manifolds. If OT ∗M

(−1) is RC-positive and OT ∗N
(1) is nef, then f is a constant map.

Note that
√
−1∂∂ log H −1

1 is the curvature tensor of the line bundle
(
Of∗(TN )(−1),H1

)
.

When dimC N ≥ 2, f∗
(
OT ∗N

(1)
)

and Of∗TN
(−1) are not isomorphic. Actually, the re-

striction of Of∗(TN )(−1) on each fiber P(f∗T ∗q N) ∼= Pn−1 is isomorphic to OPn−1(−1).
Hence, Of∗(TN )(−1) can not be nef in any case. It is easy to see that if (N,h) has
non-positive holomorphic bisectional curvature, then Of∗(TN )(−1) is RC-nonnegative
along the base M directions. As analogous to the proof of Corollary 1.3, it is not hard
to see that we can prove Corollary 1.6 by using the generalized version of inequality
(1.3) or (1.9) for some other new energy density since the desired asymptotic metrics
constructed in [DPS94, Theorem 1.12] are on the vector bundle Sym⊗kT ∗N . It worths
to point out that, Corollary 1.6 was firstly established in [Yang18a, Theorem 1.1] by
using the Leray-Grothendieck spectral sequences and isomorphisms of various coho-
mology groups for abstract vector bundles. The algebraic proof in [Yang18a] is much
more effective in this setting!

In the same spirit of Theorem 1.2 and Corollary 1.6, we have:

Corollary 1.7. Let f : M → N be a holomorphic map between complex manifolds.
Suppose M is compact. If
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(1) OTM
(1) is nef;

(2) N has a Hermitian metric with negative holomorphic sectional curvature,
then f is a constant map.

Recently, there are many important works on holomorphic sectional curvature with
various positivity in the Kähler setting, and we refer to [HLW10, HW12, HW12,
HLW14, HW15, ACH15, Liu16, WY16, WY16a, Nom16, Yang16, YZ16, YbZ16,
AHZ16, CH17, Yang18, Yang18a, Yang18b, NZ18a, NZ18b, Ni18, Mat18a, Mat18b,
Gue18, Zha18] and the references therein. The results in this paper demonstrate cer-
tain similarity between Hermitian metrics and Kähler metrics with such curvature
positivity. It might be an interesting problem to ask whether all compact Hermitian
manifolds with positive holomorphic sectional curvature are Kähler or projective.

Part II. Rigidity of harmonic maps and pluri-harmonic maps. Let f : (M,h) →
(N, g) be a smooth map from a Hermitian manifold to a Riemannian manifold. Let
{zα}m

α=1 and {xi}n
i=1 be the local holomorphic coordinates and real coordinates on M

and N respectively. We consider the generalized energy density

(1.10) Y = gijf
i
αf

j
β

WαW
β∑

hγδW
γW

δ

over the projective bundle P(TM ), where (W 1, · · · ,Wm) are the holomorphic coordi-
nates on the fiber TpM . We set H = hγδW

γW
δ
.

It is well-known that pluri-harmonic maps are generalizations of holomorphic maps
and harmonic maps. Indeed, a smooth map f from a complex manifold M to a Kähler
(or Riemannian) manifold N is pluri-harmonic if and only if for any holomorphic curve
i: C → M , the composition f ◦ i is harmonic. On the other hand, ± holomorphic
maps between Kähler manifolds are pluri-harmonic. As analogous to Theorem 1.1,
we obtain:

Theorem 1.8. If f : (M,h) → (N, g) is a pluri-harmonic harmonic map, then we
have the following inequality on P(TM )

(1.11)
√
−1∂∂Y ≥

(√
−1∂∂ log H −1

)
· Y −

√
−1Ri`kjf

i
αf j

β
fk

γ f `
δ
W γW

δ
dzα ∧ dzβ

H
.

As applications of Theorem 1.8, we study the geometry of compact Kähler mani-
folds with negative/non-positive Riemannian sectional curvature by using harmonic
maps and pluri-harmonic maps into such manifolds. The motivation is the following
conjecture proposed by S.-T. Yau ([Yau82, Problem 37]) :

Conjecture 1.9. Let (X, ω) be a compact Kähler manifold with dimC X > 1. Suppose
(X, ω) has negative Riemannian sectional curvature, then X is rigid, i.e. X has only
one complex structure.
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It is a fundamental problem on the rigidity of Kähler manifolds with negative curva-
ture. S.-T. Yau proved in [Yau77, Theorem 6] that when X is covered by a 2-ball,
then any complex surface oriented homotopic to X must be biholomorphic to X. By
using the terminology of “strongly negativity”, Y.-T. Siu established in [Siu80, The-
orem 2] that a compact Kähler manifold of the same homotopy type as a compact
Kähler manifold (X, ω) with strongly negative curvature and dimC X > 1 must be
either biholomorphic or conjugate biholomorphic to X. It is well-known that the
strongly negative curvature condition can imply the negativity of the Riemannian
sectional curvature. Hence, Conjecture 1.9 holds under that stronger curvature con-
dition. Note that when dimC X = 2, Conjecture 1.9 has been completely solved in
[Zhe95] by F.-Y. Zheng. When dimC X ≥ 3, Conjecture 1.9 is still widely open since
there is no effective method to deal with the Riemannian sectional curvature on com-
plex manifolds.

Before stating the applications of Theorem 1.8, we recall the strategy in establishing
Siu’s strong rigidity mentioned above. Let f : (M,h) → (N, g) be a smooth map
between two compact Kähler manifolds.

(A) Suppose (N, g) has strongly non-positive curvature in the sense of Siu. If f is
a harmonic map, then f is pluri-harmonic (see Lemma 4.8);

(B) Suppose (N, g) has strongly negative curvature in the sense of Siu. Then
any pluri-harmonic map f : M → (N, g) is holomorphic or anti-holomorphic
provided rankRdf ≥ 4 (see Remark 4.5).

As inspired by Yau’s conjecture 1.9 and Siu’s strategy in steps (A) and (B), we
attempt to investigate Riemannian (or Kähler) manifolds (N, g) with non-positive
Riemannian sectional curvature. As an application of Theorem 1.8, we obtain:

Theorem 1.10. Let f : M → (N, g) be a pluri-harmonic map from a compact com-
plex manifold M to a Riemannian manifold (N, g) with non-positive Riemannian
sectional curvature. If OT ∗M

(−1) is RC-positive, then f is a constant map.

Theorem 1.10 still holds when the target manifold is Kähler:

Theorem 1.11. Let f : M → (N, g) be a pluri-harmonic map from a compact com-
plex manifold M to a Kähler manifold (N, g) with non-positive Riemannian sectional
curvature. If OT ∗M

(−1) is RC-positive, then f is a constant map.

As we pointed out before, there are many Kähler and non-Kähler manifolds with
RC-positive OT ∗M

(−1). In particular, we get:

Corollary 1.12. Let f : M → (N, g) be a pluri-harmonic map from a compact
complex manifold M to a Kähler or Riemannian manifold (N, g) with non-positive
Riemannian sectional curvature. If M has a Hermitian metric with positive holomor-
phic sectional curvature, then f is a constant map.

7



Xiaokui Yang RC-positivity and the generalized energy density I: Rigidity

As an application of Theorem 1.10 and ideas in [Siu80, Sam85, Sam86, YZ91, JY91,
JY93, LY14, WY18], we consider harmonic maps from complex manifolds into Rie-
mannian manifolds.

Theorem 1.13. Let f : (M,h) → (N, g) be a harmonic map from a compact Kähler
manifold (M,h) to a Riemannian manifold (N, g) with non-positive complex sectional
curvature. If OT ∗M

(−1) is RC-positive, then f is a constant map.

Theorem 1.13 still holds if f is a Hermitian harmonic map from an astheno-Kähler
manifold (M,h) (i.e. ∂∂ωm−2

h = 0) (introduced by Jost-Yau in [JY93]) to a Riemann-
ian manifold (N, g) with non-positive complex sectional curvature. In [WY18], we
obtained some results by using the classical Chern-Lu type inequality (2.16) under a
much stronger condition that TM is uniformly RC-positive.

Remark 1.14. As analogous to the classical theory of harmonic maps, there are
many further applications of the generalized energy density (1.2). They are discussed
briefly in Section 5. For instances,

• the RC-positivity for Riemannian curvature tensor;
• the extension of Yau’s function theory on complete manifolds [Yau75, Yau78];
• the first and second variations of the generalized energy functions, and the

applications in investigating the existence of rational curves on manifolds with
RC-positive curvature by analytical methods ([SU81, SY80]);

• the analytical extension of methods in this paper to hyperbolic manifolds;
• the generalized energy density on Grassmannian manifolds Gr(k, TM ) for RC-

positivity in k linearly independent directions.

The Ricci-flow and Kähler-Ricci flow approaches ([Ham82, Cao85]) in this setting and
the applications of parabolic estimates corresponding to formulas (1.3), (1.7), (1.9)
and (1.11) are also expectable. The details of some topics listed above will appear
somewhere else.

This paper is organized as follows. In Section 2, we describe the relationship be-
tween the classical energy identity and the generalized energy density. In Section 3,
we prove Theorem 1.1, Theorem 1.2, Corollary 1.3 and Corollary 1.6. In Section 4,
we investigate harmonic maps and pluri-harmonic from complex manifolds to Rie-
mannian manifolds and Kähler manifolds, and establish Theorem 1.8, Theorem 1.10,
Theorem 1.11 and Theorem 1.13.

Acknowledgements. The author is very grateful to Professor K.-F. Liu and Pro-
fessor S.-T. Yau for their support, encouragement and stimulating discussions over
years. The author would also like to thank B.-L. Chen, F.-Q. Fang, N. Mok, J. Wang,
V. Tosatti, W.-P. Zhang and X.-Y. Zhou for some useful suggestions.
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2. The classical energy density and the generalized energy density

2.1. Holomorphic maps between complex manifolds. Let f : (M,h) → (N, g)
be a smooth map between two Hermitian manifolds. Let {zα}m

α=1 and {ηi}n
i=1 be the

local holomorphic coordinates around p ∈ M and q = f(p) ∈ N respectively. The
classical ∂-energy density is defined as

(2.1) u = |∂f |2 = gijh
αβf i

αf
j
β.

Here ∂f can be regarded as a section of the complex vector bundle E = T ∗M ⊗ f∗TN

and u is the norm square of ∂f with respect to the induced metric on E. As it is
well-known, if f is a holomorphic map, by using standard Bochner technique, one has
the following Chern-Lu inequality ([Che68, Lu68], see also [Yang18a, Lemma 5.1]).

Lemma 2.1. Let f : (M,h) → (N, g) be a holomorphic map between two Hermitian
manifolds. Then

(2.2)
√
−1∂∂u ≥

√
−1
(
Rαβγδh

µδhγνgijf
i
µf j

ν −Rijk`f
i
αf j

β

(
hµνfk

µf `
ν

))
dzα ∧ dzβ,

and
(2.3)

trωh

(√
−1∂∂u

)
≥
(
hαβRαβγδ

)
hµδhγν

(
gijf

i
µf j

ν

)
−Rijk`

(
hαβf i

αf j
β

)(
hµνfk

µf `
ν

)
.

Formulas (2.2), (2.3) and their parabolic analogs have many fantastic applications
in differential geometry and the theory of Ricci flows, and we refer to [Che68, Lu68,
Yau78, Roy80, EL83, EL88, Tos07, Che09, YZ16, Ni18] and the references therein.

Remark 2.2. In the formula 2.2, if we choose hαβ = δαβ at some point, then the

curvature term on the domain manifold is
√
−1Rαβγδgijf

i
γf j

δ dzα∧dzβ. In the approach
by using maximum principle, it is hard to get the desired positivity from this term.

Next, we introduce the generalized energy density on the projective bundle P(TM ).
The points of the projective bundle P(TM ) of T ∗M → M can be identified with the
hyperplanes of T ∗M . Note that every hyperplane V in T ∗p M corresponds bijectively
to the line of linear forms in TpM which vanish on V . Let π : P(TM ) → M be the
natural projection. Suppose (W 1, · · · ,Wm) are the holomorphic coordinates on the
fiber of TM . The generalized ∂-energy density on the projective bundle P(TM ) → M

is defined as

(2.4) Y = gijf
i
αf

j
β

WαW
β∑

hγδW
γW

δ
.

It is easy to easy see that (2.4) is well-defined on P(TM ). The classical energy density
(2.1) and the generalized energy density (2.4) are related in the following way.

Proposition 2.3. We have the following relation

(2.5) |∂f |2 = mπ∗(Y ),

9
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where π∗ is the fiberwise integration with respect to the fiberwise Fubini-Study metric
ω = −

√
−1∂∂ log(

∑
hγδW

γW
δ).

Proof. Indeed,

π∗(Y ) =
∫

P(TpM)
gijf

i
αf

j
β

WαW
β∑

hγδW
γW

δ
· ωm−1

(m− 1)!
= gijf

i
αf

j
β ·

hαβ

m
=
|∂f |2

m
,

where we use the well-known identity for the Fubini-Study metric ωFS on Pm−1

(2.6)
∫

Pm−1

WαW
β

|W |2
ωm−1

FS

(m− 1)!
=

δαβ

m
.

�

We can also define a conformal change for the generalized energy density

(2.7) Yϕ = eϕY = eϕgijf
i
αf

j
β

WαW
β∑

hγδW
γW

δ

for any ϕ ∈ C∞(P(TM ), R). As we pointed out before, H =
∑

hγδW
γW

δ is a (local)
Hermitian metric on OT ∗M

(−1), and so H e−ϕ is also a Hermitian metric on OT ∗M
(−1).

Actually, any Hermitian metric on it takes such a form.

2.2. Pluri-harmonic maps into Riemannian manifolds. Let (M.h) be a com-
plex Hermitian manifold, (N, g) be a Riemannian manifold and f : M → N be a
smooth map. We denote by E = f∗(TN) and endow it with the induced Levi-Civita
connection ∇E from TN . There is a natural decomposition ∇E = ∂E + ∂E according
to the complex structure on M . Let {zα}m

α=1 be the local holomorphic coordinates
on M and {xi}n

i=1 the local coordinates on N . Let ei = f∗( ∂
∂xi ). There are three

E -valued 1-forms, i.e.

(2.8) ∂f =
∂f i

∂zβ
dzβ ⊗ ei, ∂f =

∂f i

∂zα
dzα ⊗ ei, df = ∂f + ∂f.

It is easy to see that

(2.9) u = |∂f |2 = gijh
αβf i

αf
j
β, and u =

1
2
|df |2 = |∂f |2 = |∂f |2.

f is called a harmonic map if it is a critical point of the Euler-Lagrange equation of
the total energy E(f) =

∫
M udVM .

We consider the generalized energy density

(2.10) Y = gijf
i
αf

j
β

WαW
β∑

hγδW
γW

δ

10
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over the projective bundle P(TM ), where (W 1, · · · ,Wm) are the holomorphic coordi-
nates on the fiber TpM . We set H = hγδW

γW
δ
. Similarly, we have

(2.11) |df |2 = 2mπ∗(Y ).

Definition 2.4. A smooth map f : M → (N, g) from a complex manifold to a
Riemannian manifold is called pluri-harmonic if it satisfies ∂E ∂f = 0, i.e.

(2.12)
(

∂2f i

∂zα∂zβ
+ Γi

jk

∂f j

∂zβ

∂fk

∂zα

)
dzα ∧ dzβ ⊗ ei = 0

where Γi
jk is the Christoffel symbol of the Levi-Civita connection on (N, g).

It is easy to see that ± holomorphic maps from complex manifolds to Kähler manifolds
are pluri-harmonic.

Let (N, g) be a Riemannian manifold with the Levi-Civita connection ∇. Its cur-
vature tensor is defined as

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for any X, Y, Z ∈ Γ(N,TN). In the local coordinates {xi} of N , we adopt the
convention

R(X, Y, Z,W ) = g(R(X, Y )Z,W ) = Rijk`X
iY jZkW `.

It is easy to see that

(2.13) R`
ijk =

∂Γ`
kj

∂xi
−

∂Γ`
ki

∂xj
+ Γp

kjΓ
`
pi − Γp

kiΓ
`
pj , and Rijk` = gs`R

s
ijk.

The following constraint equation for pluri-harmonic maps is well-known (e.g.
[OU91, Lemma 1.3] and [WY18, Lemma 2.4]), and it follows by taking first order
derivatives on the pluri-harmonic equation (2.12).

Lemma 2.5. If f : M → (N,h) is a pluri-harmonic map, then

(2.14) Rikj`f
i
αf j

β
fk

γ = 0

for any α, β, γ and ` where f i
α = ∂f i

∂zα and f j

β
= ∂fj

∂zβ .

Remark 2.6. By using the constraint equation (2.14), we have

(2.15) Ĉ = Rik`j

(
hαβf i

αf j

β

)(
hγδfk

γ f `
δ

)
= 0.

If (N, g) has positive or negative constant Riemannian sectional curvature, one can
deduce from (2.15) that rankRdf ≤ 2 ([Sam85, Sam86]).

As analogous to the Chern-Lu inequalities for holomorphic maps in Lemma 2.1, Wang
and the author obtained in [WY18, Proposition 3.2] the following inequalities for
pluri-harmonic maps.

11
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Lemma 2.7. Let f : (M,h) → (N, g) be a pluri-harmonic map from a Hermitian
manifold M to a Riemannian manifold (N, g). Then we have

(2.16)
√
−1∂∂u ≥

√
−1
(
Rαβγδh

γνhµδgijf
i
µf j

ν −Ri`kjf
i
αf j

β

(
hγδfk

γ f `
δ

))
dzα ∧ dzβ .

and
(2.17)

trωh

(√
−1∂∂u

)
≥
(
hαβRαβγδ

)
hµδhγν

(
gijf

i
µf j

ν

)
−Ri`kj

(
hαβf i

αf j

β

)(
hµνfk

µf `
ν

)
.

Remark 2.8. The formulations of curvature terms in Lemma 2.7 and Lemma 2.1 on
the target manifolds are different.

For more detailed discussions on various harmonic maps and pluri-harmonic maps,
we refer to [EL78, Siu82, EL83, Ohn87, EL88, Uda88, CT89, OU90, OV90, YZ91,
MSY93, Uda94, JZ97, Lou99, Ni99, DEP03, Tos07, Zha12, YHD13, Dong13, LY14,
Sch15, YZ16, Yang18a, Yang18b, Ni18, WY18] and the references therein.

3. The Hessian estimates and rigidity of holomorphic maps

In this section, we prove Theorem 1.1, Theorem 1.2, Corollary 1.3 and Corollary
1.6. The proofs of Proposition 1.4 and Proposition 1.5 are similar to that in Theorem
1.1. To avoid identifications in algebraic geometry, we shall use straightforward local
computations for readers’ convenience.

The proof of Theorem 1.1. For simplicity, we write F = Y ·H . A straightforward
calculation on P(TM ) yields

(3.1) ∂∂Y =
(
∂∂ log H −1

)
Y +

∂∂F

H
+

F∂H ∧ ∂H

H 3
− ∂H ∧ ∂F + ∂F ∧ ∂H

H 2
.

Moreover, we set F i = f i
αWα and so F = gijF

iF
j . Since f is holomorphic, we have

(3.2) ∂F = ∂gij · F
iF j + gij · ∂F i · F j

, ∂F = ∂gij · F
iF j + gijF

i∂F j .

Therefore, we deduce

∂∂F

H
+

F∂H ∧ ∂H

H 3
− ∂H ∧ ∂F + ∂F ∧ ∂H

H 2
(3.3)

=
∂∂gij · F iF j + ∂gij · F i · ∂F j − ∂gij · ∂F i · F j + gij∂F i∂F j

H

+
F∂ log H −1 ∧ ∂ log H −1

H

−
∂ log H ·

(
∂gij · F iF j + gijF

i∂F j
)

+
(
∂gij · F iF j + gij · ∂F i · F j

)
· ∂ log H

H
.

12
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We define a (1, 1)-form on P(TM ):

(3.4) W = gij

(
∂F i + F i∂ log H −1 + T i

)
∧ (∂F j + F j∂ log H −1 + T j)

where T i = gi` ∂gk`
∂zp F k∂fp. It is easy to see that

(3.5) gijT
i =

∂gkj

∂zp
F k∂fp = (∂gkj)F

k.

By using (3.3), (3.4) and (3.5), we obtain

∂∂F

H
+

F∂H ∧ ∂H

H 3
− ∂H ∧ ∂F + ∂F ∧ ∂H

H 2
− W

H

=

(
∂∂gij

)
F iF j

H
−

gijT
i ∧ T j

H

= −
Rijk`f

i
αf j

βfk
µf `

νW
µW

ν
dzα ∧ dzβ

H
(3.6)

where the last identity follows from the facts that

(3.7) ∂∂gij =
∂2gij

∂zkz`
∂fk ∧ ∂f `, gijT

iT j = gpq ∂giq

∂zk

∂gpj

∂z`
F iF j∂fk ∧ ∂f `

and the curvature formula of the Chern connection on (N, g)

(3.8) Rk`ij = −
∂2gij

∂zk∂z`
+ gpq ∂giq

∂zk

∂gpj

∂z`
.

Hence, by (3.1) and (3.6), we get

√
−1∂∂Y =

(√
−1∂∂ log H −1

)
·Y +

√
−1W

H
−
√
−1Rijk`f

i
αf j

βfk
µf `

νW
µW

ν
dzα ∧ dzβ

H
.

On the other hand, by the definition equation (3.4) of W , it is easy to see that
√
−1W

is a semi-positive (1, 1)-form on P(TM ). Hence, we obtain Theorem 1.1. �

For the conformal energy density (2.7), we also have a similar inequality as in (1.3).

Theorem 3.1. Let f : (M,h) → (N, g) be a holomorphic map. Then for any ϕ ∈
C∞(P(TM ), R), we have

(3.9)
√
−1∂∂Yϕ ≥

(√
−1∂∂ log Hϕ

−1
)
· Yϕ −

√
−1Rijk`f

i
αf j

βfk
µf `

νW
µW

ν
dzα ∧ dzβ

Hϕ
,

where Yϕ = eϕY and Hϕ = H e−ϕ.

Proof. We use the same notions as in the proof of Theorem 1.1. It is easy to see that
F = Y ·H = Yϕ ·Hϕ. By defining a new quantity as in the equation (3.4)

(3.10) Wϕ = gij

(
∂F i + F i∂ log H −1

ϕ + T i
)
∧
(
∂F j + F j∂ log H −1

ϕ + T j
)
,

one can use similar computations as in the proof of Theorem 1.1 to deduce (3.9). �
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The proof of Theorem 1.2. We compute the curvature form
√
−1∂∂ log H −1 over the

projective bundle X := P(TM ) where π : X → M the natural projection, following
the calculations in [Gri65, Proposition 9.2]. Indeed,

√
−1∂∂ log H −1 is the curvature

of the tautological line bundle
(
OT ∗M

(−1),H
)
. On the Hermitian manifold M , we

can choose “normal coordinates” {zα}m
α=1 on a small open set U ⊂ M centered at

point p ∈ M such that

(3.11) hαβ(p) = δαβ,
∂hαβ

∂zγ
(p) = −

∂hγβ

∂zα
(p).

By using this local trivialization chart U on M , we know TM |U ∼= U × Cm and
π−1(U) ∼= U×Pm−1. Let q ∈ X such that π(q) = p. Locally, we write p = (z1

o , · · · , zm
o )

and q = (z1
o , · · · , zm

o , [W 1
o , · · · ,Wm

o ]) where [W 1, · · · ,Wm] are the homogeneous co-
ordinates on the fiber P(TpM) ∼= Pm−1. Let u = (W 1

o , · · · ,Wm
o , 0, · · · , 0︸ ︷︷ ︸

m−1

) ∈ TqX. We

claim that at point q ∈ X, u is a positive direction of
√
−1∂∂ log H −1, i.e.

(3.12)
(√
−1∂∂ log H −1

)
(u, u) > 0.

Indeed, if we set Hγδ = W γW
δ, then H = hαβHαβ and

∂∂ log H −1 =
∂H ∧ ∂H

H 2
− ∂∂H

H

=

(
Hαδ∂hαβ + hαβ∂Hαβ

)
∧
(
Hγδ∂hγδ + hγδ∂Hγδ

)
H 2

−
∂∂hγδ ·H

γδ + ∂hγδ ∧ ∂Hγδ + ∂Hγδ ∧ ∂hγδ + hγδ∂∂Hγδ

H
.

Note that ∂hαβ =
∂hαβ

∂zµ dzµ is along the base directions and ∂Hγδ = ∂
(
W γW

δ
)

is along the fiber directions. We evaluate the (1, 1) form
√
−1∂∂ log H −1 at point

q = (z1
o , · · · , zm

o , [W 1
o , · · · ,Wm

o ]) with u = (W 1
o , · · · ,Wm

o , 0, · · · , 0) ∈ TqX. Since(
∂hαβ ∧ ∂Hγδ

)
(u, u) = 0, (∂∂Hαβ)(u, u) = 0,

(
∂Hαβ ∧ ∂Hγδ

)
(u, u) = 0,

we obtain (
∂∂ log H −1

)
(u, u)

=

−Hγδ
o ∂∂hγδ

Ho
+

Hαβ
o Hγδ

o ∂hαβ ∧ ∂hγδ

H 2
o

 (u, u)

=

(
−

∂2hγδ

∂zµ∂zν + hαβ
∂hγβ

∂zµ

∂hαδ

∂zν

)
Wµ

o W
ν
oW

γ
o W

δ
o

|Wo|2
(3.13)

=
RµνγδW

µ
o W

ν
oW

γ
o W

δ
o

|Wo|2

14
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where in the second identity we used the anti-symmetric property of the first order
derivatives given in the normal coordinates (3.11).

Suppose Y is not identically zero on X. Let q ∈ X be a maximum value point
of Y and p = π(q) ∈ M . Hence Y (q) > 0 and

√
−1∂∂Y (q) ≤ 0. By using the

previous setting, we can choose “normal coordinates” {zα}m
α=1 centered at point p

(e.g. 3.11) and we write p = (z1
o , · · · , zm

o ) and q = (z1
o , · · · , zm

o , [W 1
o , · · · ,Wm

o ]) where
[W 1

o , · · · ,Wm
o ] is the homogeneous coordinate on the fiber P(TpM). Evaluating the

inequality (1.3) on the vector u = (W 1
o , · · · ,Wm

o , 0, · · · , 0) ∈ TqX, we have

(3.14) 0 ≥
(
∂∂Y

)
(u, u) ≥

(
∂∂ log H −1

)
(u, u) · Y −

Rijk`f
i
αf j

βfk
µf `

νW
α
o W

β
oWµ

o W
ν
o

H
.

If we set F i = f i
αWα

o , then by (3.14) and (3.13), we obtain

(3.15) 0 ≥
RµνγδW

µ
o W

ν
oW

γ
o W

δ
o

|Wo|2
· Y (q)−

Rijk`F
iF

j
F kF

`

H
.

Note that Y (q) =
gijF iF

j

H > 0 and so (F i) 6= 0. If (M,h) has positive (resp. nonneg-
ative) holomorphic sectional curvature and (N, g) has non-positive (resp. negative)
holomorphic sectional curvature, then the right hand side of (3.15) is positive, which
is absurd. Therefore, Y must be identically zero on X and so f is a constant map. �

The proof of Corollary 1.3. Fix an arbitrary smooth metric h on M and let H =
hγδW

γW
δ. Suppose OT ∗M

(−1) is RC-positive, then there exists a Hermitian metric

H̃ on OT ∗M
(−1) such that its curvature −

√
−1∂∂ log H̃ has at least one positive

eigenvalue at each point of P(TM ). Since H is also a smooth Hermitian metric on
OT ∗M

(−1), there exists ϕ ∈ C∞(P(TM ), R) such that H̃ = H e−ϕ and

(3.16) −
√
−1∂∂ log H̃ = −

√
−1∂∂ log H +

√
−1∂∂ϕ.

We consider Ỹ = Y eϕ on P(TM ). By Theorem 3.1, we obtain

(3.17)
√
−1∂∂Ỹ ≥

(√
−1∂∂ log H̃ −1

)
· Ỹ −

√
−1Rijk`f

i
αf j

βfk
µf `

νW
µW

ν
dzα ∧ dzβ

H̃
.

Suppose Ỹ is not identically zero on P(TM ). Let p ∈ P(TM ) be a maximum value
point of Ỹ . Hence, Ỹ (p) > 0 and

(3.18)
√
−1∂∂Ỹ (p) ≤ 0.

On the other hand, since (N, g) has non-positive holomorphic bisectional curvature,

(3.19)
√
−1∂∂Ỹ ≥

(√
−1∂∂ log H̃ −1

)
· Ỹ .
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This contradicts to (3.18) since
√
−1∂∂ log H̃ −1 has at least one positive eigenvalue

at point p and Ỹ (p) > 0. �

The sketched proof of Corollary 1.6. Fix an arbitrary smooth metric h on M and
set H = hγδW

γW
δ. Suppose OT ∗M

(−1) is RC-positive, then there exists ϕ ∈
C∞(P(TM ), R) such that H e−ϕ is a smooth Hermitian metric on OT ∗M

(−1) and

(3.20) −
√
−1∂∂ log H +

√
−1∂∂ϕ

has at least one positive eigenvalue at each point in P(TM ).
Since OT ∗N (1) is nef, by [DPS94, Theorem 1.12], for any given Hermitian metric

ωN on N , there exist Hermitian metrics gk on Sym⊗kTN and εk > 0 such that

(3.21) RijKLuiujV KV
` ≤ kεk|u|2ωN

|V |2gk

where εk → 0 as k → ∞. Let {WA} be the symmetric polynomials in {Wα}m
α=1 of

degree k. We can define the higher order energy density on P(TM ) as following:

(3.22) Yk = gIJF I
AF

J
B

WAW
B(∑

hγδW
γW

δ
)k

,

where the matrix
(
F I

A

)
is the k-th symmetric power product Sym⊗k

(
f i

α

)
and

(
gIJ

)
is the metric matrix of gk on Sym⊗kTN with respect to the given trivialization on N .
We use the conformal change (2.7) of the generalized energy density Yk, i.e.

(3.23) Yk,ϕ = ekϕYk.

As in Theorem 1.1 and Theorem 3.1, it is not hard to deduce the inequality
(3.24)

√
−1∂∂Yk,ϕ ≥

(√
−1∂∂ log H −k

ϕ

)
· Yk,ϕ −

√
−1RijKLf i

αf j
βFK

C FL
DWCW

D
dzα ∧ dzβ

H k
ϕ

,

where RijKL is the curvature tensor component of the Hermitian vector bundle(
Sym⊗kTN , gk

)
. Since M is compact and

(
OT ∗M

(−1),H e−ϕ
)

is RC-positive, we
deduce

(3.25) min
P∈P(TM )

sup
u∈TP P(TM ),u 6=0

(√
−1∂∂ log H −1

ϕ

)
(u, u)

|u|2ω
≥ 4C

where ω is a fixed metric on P(TM ) and C = C(ω, Hϕ) is a positive constant.
Suppose Yk,ϕ is not identically zero on P(TM ). Let P ∈ P(TM ) be a maximum

value point of Yk,ϕ. Hence,
√
−1∂∂Yk,ϕ(P ) ≤ 0. Let u ∈ TP (P(TM )) be a positive

direction of
√
−1∂∂ log H −1

ϕ such that

(3.26)
(√
−1∂∂ log H −1

ϕ

)
(u, u) ≥ 2C|u|2ω.
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By (3.24), (3.21) and (3.26), we deduce

(3.27)
(√
−1∂∂Yk,ϕ

)
(u, u) ≥ 2kC|u|2ωYk,ϕ − kεk · |∂f |2ω⊗f∗ωN

· |u|2ω · Yk,ϕ.

Since εk → 0 as k →∞, we deduce that when k is large enough

(3.28) 2C − εk · |∂f |2ω⊗f∗ωN
> C.

Hence, we obtain (√
−1∂∂Yk,ϕ

)
(u, u) ≥ kC|u|2ωYk,ϕ > 0

which is absurd. We conclude Yk,ϕ is identically zero and so f is a constant map. �

Corollary 1.7 can be proved by using similar strategies as in the proof of Corollary
1.6, and we need to use the generalized version of the energy density (1.6) on P(f∗T ∗N ).
The negative holomorphic sectional curvature is used in a similar way as in the proof
Theorem 1.2.

By using the proof in Corollary 1.6, we get the following generalization.

Corollary 3.2. Let f : M → N be a holomorphic map between compact complex
manifolds. If OSym⊗kT ∗M

(−1) is RC-positive for some k ≥ 1 and OT ∗N
(1) is nef, then

f is a constant map.

4. The Hessian estimates and rigidity of harmonic maps and pluri-harmonic maps

In this section, we use the Hessian estimate of the generalized energy density to in-
vestigate harmonic maps and pluri-harmonic from complex manifolds to Riemannian
manifolds and Kähler manifolds, and establish Theorem 1.8, Theorem 1.10, Theorem
1.11 and Theorem 1.13.

4.1. The Hessian estimate and rigidity of pluri-harmonic maps into Rie-
mannian manifolds. Now we are ready to prove Theorem 1.8, i.e. a projective
bundle version of Lemma 2.7.

The proof of Theorem 1.8. We shall use similar strategies as in the proof of Theorem
1.1. We choose an arbitrary point p ∈ M and q = f(p) ∈ N . Let {zα} and {xi} be
coordinates centered at point p ∈ M and q ∈ N respectively such that

hαβ(p) = δαβ, gij(q) = δij ,
∂gij

∂x`
(q) = 0.

Since f is pluri-harmonic, by formula (2.12), at point p, we have

(4.1) f i
αβ

(p) =
∂2f i

∂zαzβ
(p) = 0.
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We write F = Y ·H . A straightforward calculation on X := P(TM ) yields

(4.2) ∂∂Y =
(
∂∂ log H −1

)
Y +

∂∂F

H
+

F∂H ∧ ∂H

H 3
− ∂H ∧ ∂F + ∂F ∧ ∂H

H 2
.

We write F i = f i
αWα and F = gijF

iF
j . Hence,

∂F = ∂gij · F iF j + gij · ∂F i · F j + gijF
i∂f i

β
·W β

,

and
∂F = ∂gij · F iF j + gijF

i∂F j + gijF
j
∂f i

α ·Wα.

By using (4.1), at point P ∈ X with π(P ) = p, we have

∂F = ∂gij · F iF j + gij · ∂F i · F j , ∂F = ∂gij · F iF j + gijF
i∂F j .

By a similar computation as in (3.3), we deduce

∂∂F

H
+

F∂H ∧ ∂H

H 3
− ∂H ∧ ∂F + ∂F ∧ ∂H

H 2

=
∂∂gij · F iF j + ∂gij · F i · ∂F j − ∂gij · ∂F i · F j + gij∂F i∂F j

H

+
gij · ∂∂F i · F j + gij · F i · ∂∂F

j

H 2

+
F∂ log H −1 ∧ ∂ log H −1

H

−
∂ log H ·

(
∂gij · F iF j + gijF

i∂F j
)

+
(
∂gij · F iF j + gij · ∂F i · F j

)
· ∂ log H

H
.

The key ingredient is to define the (1, 1)-form W on X as in (3.4):

(4.3) W := gij

(
∂F i + F i∂ log H −1 + T i

)
∧ (∂F j + F j∂ log H −1 + T j)

where T i = Γi
pkF

k∂fp. By using a similar computation as in (3.6), we obtain

∂∂F

H
+

F∂H ∧ ∂H

H 3
− ∂H ∧ ∂F + ∂F ∧ ∂H

H 2
− W

H

=

(
∂∂gij

)
F iF j

H
− gijT

i ∧ T j

H
+

gij · ∂∂F i · F j + gij · F i · ∂∂F
j

H 2

=

(
∂∂gij

)
F iF j

H
− gijT

i ∧ T j

H
+

gij ·
(
∂∂f i

γ

)
W γ · F j + gij · F i ·

(
∂∂f j

δ

)
W

δ

H 2

=

(
∂2gij

∂xk∂x`
fk

αf `
β
f i

γf j

δ
+ f i

αβγ
f i

δ
+ f i

γf i
αβδ

)
W γW

δ
dzα ∧ dzβ

H

= −
(Ri`kj + Rik`j) f i

αf j

β
fk

γ f `
δ
W γW

δ
dzα ∧ dzβ

H
,
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where the last identity follows from a standard computation by using the pluri-
harmonic equation (2.12). Indeed, by (2.12), we obtain

f i
αβγ

f i
δ

= −
∂Γ`

ij

∂xk
f i

αf j

β
fk

γ f `
δ
, f i

αβδ
f i

γ = −
∂Γk

ij

∂x`
f i

αf j

β
fk

γ f `
δ
,

and

∂2gij

∂xk∂x`
fk

αf l
β
f i

γf j

δ
+ f i

αβγ
f i

δ
+ f i

γf i
αβδ

=

(
∂2gk`

∂xi∂xj
−

∂Γ`
ij

∂xk
−

∂Γk
ij

∂x`

)
f i

αf j

β
fk

γ f `
δ
.

By using the Riemannian curvature tensor (2.13), it is easy to show that

(4.4)
∂2gk`

∂xi∂xj
−

∂Γ`
ij

∂xk
−

∂Γk
ij

∂x`
= − (Ri`kj + Rik`j) .

By using the constraint equation (2.14), we get

∂∂F

H
+

F∂H ∧ ∂H

H 3
− ∂H ∧ ∂F + ∂F ∧ ∂H

H 2
− W

H

= −
Ri`kjf

i
αf j

β
fk

γ f `
δ
W γW

δ
dzα ∧ dzβ

H
.

Finally, we obtain

√
−1∂∂Y =

(√
−1∂∂ log H −1

)
·Y +

√
−1W

H
−

√
−1Ri`kjf

i
αf j

β
fk

γ f `
δ
W γW

δ
dzα ∧ dzβ

H

and the proof of Theorem 1.8 is completed. �

The proof of Theorem 1.10. The proof is similar to that in Corollary 1.3. Fix an
arbitrary smooth metric h on M and let H = hγδW

γW
δ. Since OT ∗M

(−1) is RC-

positive, there exist a Hermitian metric H̃ on OT ∗M
(−1) and ϕ ∈ C∞(P(TM ), R) such

that H̃ = H e−ϕ and

(4.5) −
√
−1∂∂ log H̃ = −

√
−1∂∂ log H +

√
−1∂∂ϕ

has at least one positive eigenvalue at each point in P(TM ). We consider Ỹ = Y eϕ on
P(TM ). By using similar computations as in the proof of Theorem 1.8 and Theorem
3.1, we obtain

(4.6)
√
−1∂∂Ỹ ≥

(√
−1∂∂ log H̃ −1

)
· Ỹ −

√
−1Ri`kjf

i
αf j

β
fk

γ f `
δ
W γW

δ
dzα ∧ dzβ

H̃
.

Suppose Ỹ is not identically zero on P(TM ). Let p ∈ P(TM ) be a maximum value
point of Ỹ . Hence, Ỹ (p) > 0 and

(4.7)
√
−1∂∂Ỹ (p) ≤ 0.
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Since
√
−1∂∂ log H̃ −1 has at least one positive eigenvalue at point p, there exists a

non-zero vector u = (a1, · · · , am, v1, · · · , vm−1) such that

(4.8)
√
−1∂∂ log H̃ −1(u, u) > 0.

Let Hγδ = W γW
δ and

(4.9) Cαβ = Ri`kjf
i
αf j

β

(
Hγδfk

γ f `
δ

)
.

By using the constraint equation (2.14) for pluri-harmonic maps, we have

(4.10) Cαβ = Ri`kjf
i
αf j

β

(
Hγδfk

γ f `
δ

+ Hγδf `
γfk

δ

)
On the other hand, since

√
−1Cαβdzα ∧ dzβ is a real (1, 1) form, we obtain

(4.11) Cαβ = Cβα = Ri`kjf
j
αf i

β

(
Hγδfk

γ f `
δ

+ Hγδf `
γfk

δ

)
.

Therefore,

(4.12) Cαβ =
1
2
Ri`kj

(
f i

αf j

β
+ f j

αf i
β

)(
Hγδfk

γ f `
δ

+ Hγδf `
γfk

δ

)
.

If we set ui =
∑

α f i
αaα and F k =

∑
γ fk

γ W γ , then at point p,

(4.13)
∑
α,β

Cαβaαaβ =
1
2

∑
Ri`kj

(
uiuj + ujui

) (
F kF

` + F `F
k
)

.

Let ui = ci +
√
−1bi and F i = Ai +

√
−1Bi where ci, bi, Ai, Bi are real numbers.

Therefore we have

(4.14)
∑
α,β

Cαβaαaβ = 2
∑

Ri`kj

(
cicj + bibj

)
(AkA` + BkB`).

Since (N,h) has non-positive Riemannian sectional curvature, we deduce

(4.15)
∑
α,β

Cαβaαaβ = 2
∑

Ri`kj

(
cicj + bibj

)
(AkA` + BkB`) ≤ 0.

By formulas (4.6), (4.7), (4.8) and (4.15), we get a contradiction. Hence Ỹ is a
constant and f must be a constant map. �

By using formula (2.17) and the conformal change technique, we also obtain:

Theorem 4.1. Let f : M → (N, g) be a pluri-harmonic map from a compact complex
manifold to a Riemannian manifold (N, g) with non-positive Riemannian sectional
curvature. If there exist a Hermitian metric ω on M and a Hermitian metric h on
T 1,0M such that

trωR(T 1,0M,h) ∈ Γ(M,End(T 1,0M))

is quasi-positive, then f is a constant map.
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Proof. Let ωG = efω be a smooth Gauduchon metric in the conformal class of ω, i.e.
∂∂ωm−1

G = 0. Let ωG =
√
−1Gαβdzα ∧ dzβ. By taking trace of (2.16), we obtain

trωG

√
−1∂∂u ≥

(
GαβRh

αβγδ

)
hγνhµδgijf

i
µf j

ν −Ri`kj

(
Gαβf i

αf j

β

)(
hγδfk

γ f `
δ

)
.

By using a similar argument as above, we have

Ri`kj

(
Gαβf i

αf j

β

)(
hγδfk

γ f `
δ

)
=

1
2
Ri`kj

(
Gαβf i

αf j

β
+ Gαβf j

αf i
β

)(
hγδfk

γ f `
δ

+ hγδf `
γfk

δ

)
.

At a point p ∈ M , we can assume hαβ(p) = δαβ and Gαβ(p) = λαδαβ where λα > 0.
Hence,

Ri`kj

(
Gαβf i

αf j

β

)(
hγδfk

γ f `
δ

)
= 2

∑
α,γ

Ri`kjλα(Ai
αAj

α + Bi
αBj

α)(Ak
γA`

γ + Bk
γB`

γ) ≤ 0

where f i
α = Ai

α +
√
−1Bi

α and Ai
α, Bi

α are real numbers.
On the other hand, since trωR(T 1,0M,h) is quasi-positive, we know

trωGR(T 1,0M,h) = e−f trωR(T 1,0M,h)

is also quasi-positive. Therefore,(
GαβRh

αβγδ

)
hγνhµδgijf

i
µf j

ν ≥ 0.

Since ωG is Gauduchon, by (4.16) we deduce∫
M

(
GαβRh

αβγδ

)
hγνhµδgijf

i
µf j

ν · ω
m
G = 0

and ∂f must be identically zero on the open set where the curvature
(
GαβRh

αβγδ

)
is

strictly positive. Since pluri-harmonic maps are also Hermitian harmonic, by [JY93,
Theorem 6], f must be a constant map. �

4.2. Rigidity of pluri-harmonic maps into Kähler manifolds. In this subsec-
tion, we shall prove Theorem 1.11. Let M be a complex manifold, (N, g) be a Her-
mitian manifold and f : M → N be a smooth map. We denote by E = f∗(T 1,0N) and
endow it with the induced Chern connection ∇E from T 1,0N . There is a natural
decomposition ∇E = ∂E + ∂E . Let {zα}m

α=1 be the local holomorphic coordinates on
M and {wi}n

i=1 be the local holomorphic coordinates on N . Let ei = f∗( ∂
∂wi ). There

are three E -valued 1-forms, i.e.,

(4.16) ∂f =
∂f i

∂zβ
dzβ ⊗ ei, ∂f =

∂f i

∂zα
dzα ⊗ ei, df = ∂f + ∂f.

Definition 4.2. A smooth map f : M → (N, g) from a complex manifold M to a
Hermitian manifold (N, g) is called pluri-harmonic if it satisfies ∂E∂f = 0, i.e.

(4.17)
(

∂2f i

∂zα∂zβ
+ Γi

jk

∂f j

∂zα

∂fk

∂zβ

)
dzα ∧ dzβ ⊗ ei = 0,

where Γi
jk = gi` ∂gk`

∂zj is the Christoffel symbol of the Chern connection on (T 1,0N, g).
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Remark 4.3. If (N,h) is not Kähler, in general, the indices j and k in the formula
(4.17) are not symmetric. In particular, we do not have a constraint equation as in
(2.14) since neither ∂E∂f = 0 nor ∂E∂f = 0 holds. Note that the pluri-harmonic maps
in (2.12) and (4.17) are different since the metric connections on the target manifolds
are different.

Lemma 4.4. Let f : M → (N, g) be a pluri-harmonic map from a complex manifold
M to a Kähler manifold (N, g). Suppose gR is the background Riemannian metric of
the Kähler metric g on N . Then f : M → (N, gR) is a pluri-harmonic map in the
sense of (2.12).

Proof. It follows from the standard complexification since the Chern connection is
the same as the Levi-Civita connection when the manifold (N, g) is Kähler. �

Remark 4.5. If f : M → (N, g) is a pluri-harmonic map from a complex manifold
M to a Kähler manifold (N, g), we can get a similar constraint equation as in (2.14).
Indeed, it is exactly the complexification of (2.14). Moreover, the complexification of
the constraint term (2.15) is

(4.18)
∑
α,γ

Rijk`

(
∂f i

∂zα

∂f
j

∂zγ
− ∂f i

∂zγ

∂f
j

∂zα

)(
∂f `

∂zα

∂f
k

∂zγ
− ∂f `

∂zγ

∂f
k

∂zα

)
= 0,

which is the notion introduced by Siu ([Siu80]). If (N, g) has strongly negative cur-
vature in the sense of Siu and rankRdf ≥ 4, then the pluri-harmonic map f is holo-
morphic or anti-holomorphic.

The proof of Theorem 1.11. It follows from Lemma 4.4 and Theorem 1.10. �

The proof of Corollary 1.12. By using the formula (3.13), we deduce that if a Hermit-
ian manifold (M,h) has positive holomorphic sectional curvature, then (OT ∗M (−1),H )
is RC-positive. Hence, Corollary 1.12 follows from Theorem 1.10. �

4.3. Rigidity of harmonic maps into Riemannian manifolds. In this subsec-
tion, we shall prove Theorem 1.13. Let (M,h) be a compact Hermitian manifold,
(N, g) a Riemannian manifold and E = f∗(TN) with the induced Levi-Civita con-
nection. f is called Hermitian harmonic if it satisfies trωh

∂E ∂f = 0, i.e.

(4.19) hαβ

(
∂2f i

∂zα∂zβ
+ Γi

jk

∂f j

∂zβ

∂fk

∂zα

)
⊗ ei = 0.

It is easy to see that

Corollary 4.6. Let f : (M,h) → (N, g) be a smooth map from a compact Kähler
manifold (M,h) to a Riemannian manifold (N, g). Then Hermitian harmonic maps
and harmonic maps coincide.
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As analogous to Siu’s strong negativity [Siu80], Sampson proposed in [Sam85] the
following definition (see also [JY91, Definition 4.2]):

Definition 4.7. Let (N, g) be a Riemannian manifold. The (complexified) curvature
tensor R of (N, g) is said to have non-positive complex sectional curvature if

(4.20) R(Z,W, W, Z) ≤ 0

for any Z,W ∈ TCN .

If (N, g) has non-positive complex sectional curvature, then it has non-positive Rie-
mannian sectional curvature. Moreover, a Kähler manifold (N, g) has strongly non-
positive curvature in the sense of Siu if and only if its background Riemannian metric
has non-positive complex sectional curvature (e.g. [LSYY17, Theorem 4.4]).

By using Siu’s ∂∂-trick and ideas in [Siu80, Sam85, Sam86, JY91, JY93], one has
the following result (see [LY14, Theorem 6.11] and [WY18, Theorem 4.2]).

Lemma 4.8. Let (M,h) be a compact astheno-Kähler manifold (i.e. ∂∂ωm−2
h = 0)

and (N, g) a Riemannian manifold. Let f : (M,h) → (N, g) be a Hermitian harmonic
map. If (N, g) has non-positive complex sectional curvature, then f is pluri-harmonic.

Proof. If f is Hermitian harmonic, i.e., trωh
∂E ∂f = 0, it is easy to see that

(4.21) ∂∂{∂f, ∂f}
ωm−2

h

(m− 2)!
= 4|∂E ∂f |2

ωm
h

m!
− 4Ĉ ·

ωm
h

m!

where

Ĉ = Rik`j

(
hαβf i

αf j

β

)(
hγδfk

γ f `
δ

)
is defined in (2.15). From integration by parts, one obtains

4
∫

M
|∂E ∂f |2

ωm
h

m!
−
∫

M
Ĉ ·

ωm
h

m!
= 0.

If (N, g) has non-positive complex sectional curvature, then Ĉ ≤ 0. Hence, we have
Ĉ ≡ 0 and ∂E ∂f = 0, i.e. f is pluri-harmonic. �

The proof of Theorem 1.13. Let (M,h) be a compact astheno-Kähler manifold and
(N, g) be a Riemannian manifold with non-positive complex sectional curvature. By
Lemma 4.8, every Hermitian harmonic map f : (M,h) → (N, g) is pluri-harmonic. If
OT ∗M

(−1) is RC-positive, then by Theorem 1.10, the pluri-harmonic map f : M →
(N, g) is constant. �
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5. Further applications of the generalized energy density

In this section, we discuss briefly some further applications of the generalized energy,
which are analogous to the classical theory of harmonic maps. For more related
topics, we refer to the survey papers and books [EL78, EL83, EL88, Xin96] and the
references therein.

5.1. RC-positivity for Riemannian curvature tensor. As analogous to the RC-
positivity for abstract vector bundles, one can define it for Riemannian manifolds.

Definition 5.1. Let (N, g) be a Riemannian manifold. The curvature tensor R of
(N, g) is said to be RC-positive if at each point p ∈ N and for any nonzero vector
Z ∈ TpN , there exists a vector W ∈ TpN such that

(5.1) R(Z,W,W,Z) > 0.

This terminology is a generalization of positive Riemannian sectional curvature. For
instances, Riemannian manifolds with positive Ricci curvature must be RC-positive.
Similarly, one can define the uniform RC-positivity and other similar notions.

Definition 5.2. Let (N, g) be a Riemannian manifold. The curvature tensor R of
(N, g) is called uniformly RC-positive if at each point p ∈ N there exists a vector
W ∈ TpN such that for any nonzero vector Z ∈ TpN ,

(5.2) R(Z,W,W,Z) > 0.

We can define the energy density function Y on the projective bundle P(TM ) → M

Y = gijf
i
αf j

β

WαW β∑
hγδW γW δ

for a smooth map f : (M,h) → (N, g) between Riemannian manifolds. By using this
setting, we can obtain similar Hessian estimates as in Theorem 1.1, Proposition 1.4
and Proposition 1.5 for totally geodesic maps (or some other harmonic maps), and
rigidity of such maps follow in a similar way.

5.2. The extension of Yau’s function theory on complete manifolds. It is
easy to see that by using (1.3) and (1.4), their traces or integration by parts, we can
extend Yau’s function theory (e.g. [Yau75, Yau78]) on complete manifolds by various
generalized maximum principles. One of the key steps is established in [Yang17,
Corollary 2.3].

5.3. The first and second variations of the generalized energy function. Let
ft : (M, g) → (N,h) be a family of smooth maps parameterized by t ∈ ∆, the corre-
sponding generalized energy density is denoted by Yt. The first and second variations
of Yt are powerful in analyzing the stability and related properties of harmonic maps
as shown in the classical works [SU81, SY80] and also a recent work [FLW17]. The
energy density (1.6) would be crucial in this context.
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5.4. The analytical extension of this method to hyperbolic manifolds. By
using the theory of RC-positivity and results in algebraic geometry (in particular,
seminal works of Graber-Harris-Starr [GHS03], Boucksom-Demailly-Paun-Peternell
[BDPP13] and Campana-Demailly-Peternell [CDP14]), we obtain the following rigid-
ity theorem in [Yang18b, Corollary 1.5]

Theorem 5.3. Let (M,h) be a compact Kähler manifold with positive holomorphic
sectional curvature (or more generally, with uniformly RC-positive tangent bundle).
Then there is no non-constant homomorphic map from M to a Brody hyperbolic com-
plex manifold N .

It is a natural task to explore a purely differential geometric proof of this result. More
generally, we propose the following conjecture (see also similar versions in [Yang18b,
Conjecture 1.9]).

Conjecture 5.4. Let M and N be two compact complex manifolds. If OT ∗M (−1) is
RC-positive and N is Kobayashi hyperbolic, then there is no non-constant holomorphic
map from M to N .

The key difficulty is that there is no Hermitian metric with desire curvature positivity
on hyperbolic manifolds. It is a reasonable way to attack Conjecture 5.4 by using
Proposition 1.5 and the Demailly-Semple tower method (e.g. [Dem18, BD18]).

5.5. The generalized energy density on Grassmannian manifolds Gr(k, TM ).
Let’s called that the curvature matrix is call RC-positive if it has at least one positive
eigenvalue. In this case, we considered the projection of this positive direction on the
projective bundle P(TM ). If the curvature matrix has k-positive directions ([Yang18,
Yang18b]), we can consider the associated Grassmannian manifold Gr(k, TM ). Many
results of this paper still work in this general setting.
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