Reconstruction of the values of meromorphic functions on a compact Riemann surface via Hermite-Padé polynomials The 4th Sino-Russian Conference in Mathematics

Aleksandr Komlov (is based on joint work with E. Chirka, R. Palvelev, S. Suetin)

Steklov Mathematical Institute

Hong Kong 15–19 October, 2018

Padé polynomials

Let f be a multivalued analytic function on Riemann sphere $\widehat{\mathbb{C}}$ outside the finite number of points $\{a_1, a_2, \ldots, a_p\}$ and $\infty \notin \{a_1, \ldots, a_p\}$. Notation: $f \in \mathcal{A}(\widehat{\mathbb{C}} \setminus \{a_1, \ldots, a_p\})$.

Let f_{∞} be a germ of f at ∞ . Let $f_{\infty}(z) = \sum_{k=0}^{\infty} \frac{c_k}{z^k}$ be the Taylor expansion of f_{∞} at ∞ .

Definition

Padé polynomials for f_{∞} at ∞ (of order n): deg $P_{n,j} \leq n, j = 0, 1$,

$$(P_{n,0}+P_{n,1}f_\infty)(z)=O\left(rac{1}{z^{n+1}}
ight) \ \ \text{as} \ z o\infty.$$

$$-rac{P_{n,0}}{P_{n,1}}$$
 is called Padé approximant.

Stahl's theorem, 1985

Recall that $f \in \mathcal{A}(\widehat{\mathbb{C}} \setminus \{a_1, \ldots, a_p\})$, f_{∞} is a germ of f at ∞ ,

$$(P_{n,0}+P_{n,1}f_\infty)(z)=O\left(rac{1}{z^{n+1}}
ight) ext{ as } z o\infty.$$

Theorem

There exists the compact set $S = S(f_{\infty})$ (it is known that $\widehat{\mathbb{C}} \setminus S$ is connected and $S = \bigcup_{j=0}^{J} s_{j}$, where s_{j} are analytic arcs) such that 1) f_{∞} can be extended as meromorphic function in $\widehat{\mathbb{C}} \setminus S$; 2) $\frac{1}{n}\mu(P_{n,j}) \xrightarrow{*} \frac{1}{2\pi} \operatorname{dd^{c}} g_{\widehat{\mathbb{C}} \setminus S}(\cdot, \infty)$ in Meas(\mathbb{C}); 3) $-\frac{P_{n,0}}{P_{n,1}} \xrightarrow{\operatorname{cap}} f_{\infty}$ compactly in $\mathbb{C} \setminus S$.

For arbitrary polynomial P we denote $\mu(P) := \sum_{x:P(x)=0} \delta_x$, and $g_{\widehat{\mathbb{C}}\setminus S}(\cdot,\infty)$ is the Green function of $\widehat{\mathbb{C}}\setminus S$ with the singularity at ∞ .

Stahl's theorem, 1985

Recall that $f \in \mathcal{A}(\mathbb{C} \setminus \{a_1, \ldots, a_p\})$, f_∞ is a germ of f at ∞ ,

$$(P_{n,0}+P_{n,1}f_\infty)(z)=O\left(rac{1}{z^{n+1}}
ight)$$
 as $z
ightarrow\infty.$

Theorem

There exists the compact set S (it is known that $\widehat{\mathbb{C}} \setminus S$ is connected and $S = \bigcup_{j=0}^{J} s_j$, where s_j are analytic arcs) such that 1) f_{∞} can be extended as meromorphic function in $\widehat{\mathbb{C}} \setminus S$; 2) $\frac{1}{n}\mu(P_{n,j}) \xrightarrow{*} \frac{1}{2\pi} \operatorname{dd^{c}} g_{\widehat{\mathbb{C}} \setminus S}(\cdot, \infty) + \delta_{\infty}$ in $\operatorname{Meas}(\widehat{\mathbb{C}})$; 3) $-\frac{P_{n,0}}{P_{n,1}} \xrightarrow{\operatorname{cap}} f_{\infty}$ compactly in $\mathbb{C} \setminus S$.

For arbitrary polynomial P we denote $\mu(P) := \sum_{x:P(x)=0} \delta_x$, and $g_{\widehat{\mathbb{C}}\setminus S}(\cdot,\infty)$ is the Green function of $\widehat{\mathbb{C}}\setminus S$ with the singularity at ∞ . blue points are zeroes of $P_{300,0}$ for fred points are zeroes of $P_{300,1}$ for f

Hermite-Padé polynomials

Let us now fix an arbitrary $m \in \mathbb{N}$.

Definition

Hermite-Padé polynomials for $[1, f_{\infty}, f_{\infty}^2, \dots, f_{\infty}^m]$ at ∞ (of order n): deg $Q_{n,j} \leq n, j = 0, \dots, m$,

$$\left(Q_{n,0}+Q_{n,1}f_{\infty}+Q_{n,2}f_{\infty}^{2}+\cdots+Q_{n,m}f_{\infty}^{m}\right)(z)=O\left(\frac{1}{z^{m(n+1)}}\right)$$

as $z \to \infty$.

When m = 1, we have usual Padé polynomials

$$\left(\mathcal{Q}_{n,0} + \mathcal{Q}_{n,1} f_\infty
ight)(z) = O\left(rac{1}{z^{n+1}}
ight) ext{ as } z o \infty.$$

Let now $f \in M(\mathfrak{R})$

Let \mathfrak{R} be a compact Riemann surface. Let $\pi : \mathfrak{R} \to \widehat{\mathbb{C}}$ be a (m+1)-sheeted branched covering of $\widehat{\mathbb{C}}$. (For points that lie above z we use notation z, so $\pi : z \to z$.) By Σ denote the set of branch points of π . Let $\infty \notin \Sigma$.

```
Let now f be a meromorphic function on \mathfrak{R}.
With the help of \pi^{-1} we have that f \in \mathcal{A}(\widehat{\mathbb{C}} \setminus \Sigma).
Choose \mathbf{\infty}^{(0)} \in \pi^{-1}(\infty).
Let f_{\infty} be the germ of f at \mathbf{\infty}^{(0)}.
```

Now we consider Hermite-Padé polynomials for the tuple $[1, f_{\infty}, f_{\infty}^2, \dots, f_{\infty}^m]$.

```
Nuttall' 1984
Chirka, Palvelev, Suetin, K.' 2017
```

Nuttall partition of \mathfrak{R}

Let $u(\mathbf{z})$ be the harmonic function on $\mathfrak{R} \setminus \pi^{-1}(\infty)$ with the following singularities at $\pi^{-1}(\infty)$:

$$egin{aligned} &u(\mathbf{z})=-m\log|z|+O(1),\quad \mathbf{z} o\mathbf{\infty}^{(0)},\ &u(\mathbf{z})=\log|z|+O(1),\quad \mathbf{z} o\pi^{-1}(\infty)\setminus\mathbf{\infty}^{(0)}. \end{aligned}$$

Let $z \in \mathbb{C} \setminus \Sigma$. Then

$$\pi^{-1}(z) = \{\mathbf{z}^{(0)}, \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(j)}, \dots, \mathbf{z}^{(m)}\}$$

and we order these points with respect to non-decreasing of the values of u:

$$u(\mathbf{z}^{(0)}) \leq u(\mathbf{z}^{(1)}) \leq \cdots \leq u(\mathbf{z}^{(j)}) \leq \cdots \leq u(\mathbf{z}^{(m)}).$$

$$\begin{aligned} \mathfrak{R}^{(0)} &:= \{ \mathbf{z}^{(0)} \in \mathfrak{R} : u(\mathbf{z}^{(0)}) < u(\mathbf{z}^{(1)}) \}; \\ \mathfrak{R}^{(j)} &:= \{ \mathbf{z}^{(j)} \in \mathfrak{R} : u(\mathbf{z}^{(j-1)}) < u(\mathbf{z}^{(j)}) < u(\mathbf{z}^{(j+1)}) \}, \quad j = 1, \dots, m-1; \\ \mathfrak{R}^{(m)} &:= \{ \mathbf{z}^{(m)} \in \mathfrak{R} : u(\mathbf{z}^{(m-1)}) < u(\mathbf{z}^{(m)}) \}. \end{aligned}$$

Nuttall partition of \mathfrak{R}

$$u(\mathbf{z}^{(0)}) \le u(\mathbf{z}^{(1)}) \le \dots \le u(\mathbf{z}^{(j)}) \le \dots \le u(\mathbf{z}^{(m)}).$$

$$\mathfrak{R}^{(m)} := \{\mathbf{z}^{(m)} \in \mathfrak{R} : u(\mathbf{z}^{(m-1)}) < u(\mathbf{z}^{(m)})\}.$$

Let us now define the compact set

$$F := \{z \in \widehat{\mathbb{C}} : u(\mathbf{z}^{(m-1)}) = u(\mathbf{z}^{(m)})\}.$$

Lemma. $F = \bigcup_{j=0}^{J'} \gamma_j$, where γ_j are analytic arcs.

For $z \in \mathbb{C}$ define $u_j(z) := u(\mathbf{z}^{(j)}), j = 0, \dots, m$.

Lemma. u_j is a continious function on \mathbb{C} , j = 0, ..., m. **Lemma.** u_m is a subharmonic function on \mathbb{C} (and harmonic on $\mathbb{C} \setminus F$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Nuttall partition of \mathfrak{R}

$$u(\mathbf{z}^{(0)}) \le u(\mathbf{z}^{(1)}) \le \dots \le u(\mathbf{z}^{(j)}) \le \dots \le u(\mathbf{z}^{(m)}).$$
$$\mathfrak{R}^{(m)} := \{\mathbf{z}^{(m)} \in \mathfrak{R} : u(\mathbf{z}^{(m-1)}) < u(\mathbf{z}^{(m)})\}.$$

Let us now define the compact set

$$F := \{z \in \widehat{\mathbb{C}} : u(\mathbf{z}^{(m-1)}) = u(\mathbf{z}^{(m)})\} = \pi\left(\partial \mathfrak{R}^{(m)}\right).$$

Lemma. $F = \bigcup_{j=0}^{J'} \gamma_j$, where γ_j are analytic arcs.

For $z \in \mathbb{C}$ define $u_j(z) := u(z^{(j)}), j = 0, \dots, m$.

Lemma. u_j is a continious function on \mathbb{C} , j = 0, ..., m. **Lemma.** u_m is a subharmonic function on \mathbb{C} (and harmonic on $\mathbb{C} \setminus F$).

Some analogue of Stahl's theorem

Theorem
1)
$$\frac{1}{n} \mu(Q_{n,j}) \xrightarrow{*} \frac{1}{2\pi} \operatorname{dd}^{c} u_{m} + \delta_{\infty} \text{ in } \operatorname{Meas}(\widehat{\mathbb{C}}).$$

2) $\frac{Q_{n,j}}{Q_{n,m}} \xrightarrow{\operatorname{cap}} (-1)^{m-j} \sigma_{m-j}(f(z^{(0)}), f(z^{(1)}), \dots, f(z^{(m-1)}))$
compactly in $\mathbb{C} \setminus F$, $j = 0, \dots, m-1.$

Here σ_j is the *j*-th symmetric polynomial of m variables.

Let us consider the corresponding polynomial equation:

$$\frac{Q_{n,0}}{Q_{n,m}} + \frac{Q_{n,1}}{Q_{n,m}}w + \dots + \frac{Q_{n,m-1}}{Q_{n,m}}w^{m-1} + w^m = 0.$$
(1)

From the theorem it follows that solutions of (1) asymptotically reconstruct (as $n \to \infty$) the values of our function f on first m sheets of Nuttall partition of \mathfrak{R} outside the preimage of the compact set F.

 $\mathfrak{R}: w^4 = (1 + \frac{1 + 0.7i}{z})(1 - \frac{1 + 0.7i}{z})(-1 + \frac{1 + 0.7i}{z})(1 + \frac{-1 - 0.7i}{z}),$ m = 3

Numerical modelling of the compact set F for some initial point $\mathbf{\infty}^{(0)} \in \mathfrak{R}$.

Green points are zeroes of $Q_{200,3}$ for some germ f_{∞} at ∞ of f := w.

Properties of Nuttall partition

Statement. $\Re \setminus \overline{\Re^{(m)}}$ is connected.

Why is this statement interesting?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stahl's theorem, 1985

Recall the definition of Padé polynomials:

$$(P_{n,0}+P_{n,1}f_\infty)(z)=O\left(rac{1}{z^{n+1}}
ight) ext{ as } z o\infty.$$

Theorem

There exists the compact set S (it is known that $\widehat{\mathbb{C}} \setminus S$ is connected and $S = \bigcup_{j=0}^{J} s_j$, where s_j are analytic arcs) such that 1) f_{∞} can be extended as meromorphic function in $\widehat{\mathbb{C}} \setminus S$; 2) $\frac{1}{n}\mu(P_{n,j}) \xrightarrow{*} \frac{1}{2\pi} \operatorname{dd^{c}} g_{\widehat{\mathbb{C}} \setminus S}(\cdot, \infty) + \delta_{\infty}$ in $\operatorname{Meas}(\widehat{\mathbb{C}})$; 3) $-\frac{P_{n,0}}{P_{n,1}} \xrightarrow{\operatorname{cap}} f_{\infty}$ compactly in $\mathbb{C} \setminus S$.

Nuttall partition's dependence on $\infty^{(0)}$

Recall that $u(\mathbf{z})$ is the harmonic function on $\mathfrak{R} \setminus \pi^{-1}(\infty)$ with the following singularities at $\pi^{-1}(\infty)$:

$$egin{aligned} &u(\mathbf{z})=-m\log|z|+O(1),\quad \mathbf{z} o\mathbf{\infty}^{(0)},\ &u(\mathbf{z})=\log|z|+O(1),\quad \mathbf{z} o\pi^{-1}(\infty)\setminus\mathbf{\infty}^{(0)}. \end{aligned}$$

We denote

$$\pi^{-1}(z) = \{\mathbf{z}^{(0)}, \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(j)}, \dots, \mathbf{z}^{(m)}\}$$

and we order these points with respect to non-decreasing of the values of *u*:

$$u(\mathbf{z}^{(0)}) \leq u(\mathbf{z}^{(1)}) \leq \cdots \leq u(\mathbf{z}^{(j)}) \leq \cdots \leq u(\mathbf{z}^{(m)}).$$

$$F := \{ z \in \widehat{\mathbb{C}} : u(\mathbf{z}^{(m-1)}) = u(\mathbf{z}^{(m)}) \} = \pi \left(\partial \mathfrak{R}^{(m)} \right).$$

 $\Re: w^3 - 3(\frac{1}{z} - 3)^2 w + 2(\frac{3}{z} - 1)^3,$ m = 2

Numerical modelling of the compact set *F* for two different initial points $\mathbf{\infty}^{(0)} \in \mathfrak{R}$.

Blue points are zeroes of $Q_{200,0}$ for two different germs f_{∞} at ∞ of f := w.

Property of Nuttall partition

Statement. $\Re \setminus \overline{\Re^{(m)}}$ is connected.

Conjecture. $\Re \setminus \overline{\bigcup_{j=k}^{m} \Re^{(j)}}$ is connected for k = 1, ..., m. In particular, the sheet $\Re^{(0)}$ is connected.

 $\Re: w^3 - 3(\frac{1}{z} - 3)^2 w + 2(\frac{3}{z} - 1)^3,$ m = 2

Numerical modelling of the Stahl compact set *S* and the compact set *F* for two different initial points $\mathbf{\infty}^{(0)} \in \mathfrak{R}$.

Red points are zeroes of $P_{300,1}$ for two different germs f_{∞} at ∞ of f := w, blue points are zeroes of $Q_{200,0}$ for the same germs.