Reconstruction of the values of meromorphic functions on a compact Riemann surface via Hermite-Padé polynomials The 4th Sino-Russian Conference in Mathematics

Aleksandr Komlov (is based on joint work with E. Chirka, R. Palvelev, S. Suetin)

Steklov Mathematical Institute

Hong Kong 15–19 October, 2018

KORK ERKER ADE YOUR

Padé polynomials

Let f be a multivalued analytic function on Riemann sphere $\widehat{\mathbb{C}}$ outside the finite number of points $\{a_1, a_2, \ldots, a_p\}$ and $\infty \notin \{a_1, \ldots, a_p\}$. Notation: $f \in \mathcal{A}(\widehat{\mathbb{C}} \setminus \{a_1, \ldots, a_p\})$.

Let f_{∞} be a germ of f at ∞ . Let $f_{\infty}(z) = \sum_{k=0}^{\infty}$ c_k $\frac{\partial x}{\partial x}$ be the Taylor expansion of f_{∞} at ∞ .

Definition

Padé polynomials for f_{∞} at ∞ (of order n): deg $P_{n,i} \leq n, j = 0, 1, j$

$$
(P_{n,0}+P_{n,1}f_{\infty})(z)=O\left(\frac{1}{z^{n+1}}\right) \text{ as } z\to\infty.
$$

KORKAR KERKER EL VOLO

$$
-\frac{P_{n,0}}{P_{n,1}}
$$
 is called Padé approximant.

Stahl's theorem, 1985

Recall that $f \in \mathcal{A}(\widehat{\mathbb{C}} \setminus \{a_1, \ldots, a_p\}), f_{\infty}$ is a germ of f at ∞ ,

$$
(P_{n,0}+P_{n,1}f_\infty)(z)=O\left(\frac{1}{z^{n+1}}\right) \text{ as } z\to\infty.
$$

Theorem

There exists the compact set $S = S(f_{\infty})$ (it is known that $\widehat{\mathbb{C}} \setminus S$ is connected and $S=\bigcup_{j=0}^J s_j$, where s_j are analytic arcs) such that 1) f_{∞} can be extended as meromorphic function in $\widehat{\mathbb{C}} \setminus S$; 2) $\frac{1}{n}\mu(P_{n,j}) \longrightarrow \frac{1}{2n}$ $\frac{1}{2\pi}$ dd^c g_{Ĉ\S} (\cdot, ∞) *in* Meas($\mathbb C)$; 3) $-\frac{P_{n,0}}{P_{n,0}}$ $P_{n,1}$ $\xrightarrow{\text{cap}} f_{\infty}$ compactly in $\mathbb{C} \setminus S$.

For arbitrary polynomial P we denote $\mu(P):=-\sum$ $\delta_{\mathsf x}$, $x: P(x)=0$ and $g_{\widehat{\mathbb{C}} \setminus S}(\cdot, \infty)$ is the Green function of $\widehat{\mathbb{C}} \setminus S$ with the singularity at ∞ . **KORKAR KERKER EL VOLO**

Stahl's theorem, 1985

Recall that $f \in \mathcal{A}(\mathbb{C} \setminus \{a_1,\ldots,a_p\})$, f_{∞} is a germ of f at ∞ ,

$$
(P_{n,0}+P_{n,1}f_\infty)(z)=O\left(\frac{1}{z^{n+1}}\right) \text{ as } z\to\infty.
$$

Theorem

There exists the compact set S (it is known that $\widehat{\mathbb{C}} \setminus S$ is connected and $S=\bigcup_{j=0}^J s_j$, where s_j are analytic arcs) such that 1) f_{∞} can be extended as meromorphic function in $\widehat{\mathbb{C}} \setminus S$; 2) $\frac{1}{n}\mu(P_{n,j}) \longrightarrow \frac{1}{2n}$ $\frac{1}{2\pi}$ dd^c $g_{\widehat{\mathbb{C}}\backslash S}(\cdot, \infty) + \delta_{\infty}$ *in* Meas($\widehat{\mathbb{C}}$); 3) $-\frac{P_{n,0}}{P_{n,0}}$ $P_{n,1}$ $\xrightarrow{\text{cap}} f_{\infty}$ compactly in $\mathbb{C} \setminus S$.

For arbitrary polynomial P we denote $\mu(P):=-\sum$ $\delta_{\mathsf x}$, $x: P(x)=0$ and $g_{\widehat{\mathbb{C}} \setminus S}(\cdot, \infty)$ is the Green function of $\widehat{\mathbb{C}} \setminus S$ with the singularity at ∞ . **KORKAR KERKER EL VOLO** blue points are zeroes of $P_{300,0}$ for f red points are zeroes of $P_{300,1}$ for f

Hermite-Padé polynomials

Let us now fix an arbitrary $m \in \mathbb{N}$.

Definition

Hermite-Padé polynomials for $[1, f_\infty, f_\infty^2, \ldots, f_\infty^m]$ at ∞ (of order *n*): deg $Q_{n,i} \leq n, j = 0, \ldots, m$,

$$
\left(Q_{n,0}+Q_{n,1}f_\infty+Q_{n,2}f_\infty^2+\cdots+Q_{n,m}f_\infty^m\right)(z)=O\left(\frac{1}{z^{m(n+1)}}\right)
$$

as $z \to \infty$.

When $m = 1$, we have usual Padé polynomials

$$
\left(Q_{n,0}+Q_{n,1}f_\infty\right)(z)=O\left(\frac{1}{z^{n+1}}\right) \text{ as } z\to\infty.
$$

KORK ERKER ADE YOUR

Let now $f \in M(\mathfrak{R})$

Let \Re be a compact Riemann surface. Let $\pi : \mathfrak{R} \to \mathbb{\tilde{C}}$ be a (m+1)-sheeted branched covering of $\mathbb{\tilde{C}}$. (For points that lie above z we use notation z, so $\pi : \mathbf{z} \to z$.) By Σ denote the set of branch points of π . Let $\infty \notin \Sigma$.

Let now f be a meromorphic function on \mathfrak{R} . With the help of π^{-1} we have that $f \in \mathcal{A}(\widehat{\mathbb{C}} \setminus \Sigma)$. Choose $\infty^{(0)} \in \pi^{-1}(\infty)$. Let f_{∞} be the germ of f at $\infty^{(0)}$.

Now we consider Hermite-Padé polynomials for the tuple $[1, f_{\infty}, f_{\infty}^2, \ldots, f_{\infty}^m].$

KORKAR KERKER EL VOLO

Nuttall' 1984 Chirka, Palvelev, Suetin, K.' 2017

Nuttall partition of R

Let $u(\textsf{z})$ be the harmonic function on $\mathfrak{R}\setminus\pi^{-1}(\infty)$ with the following singularities at $\pi^{-1}(\infty)$:

$$
u(\mathbf{z}) = -m \log |z| + O(1), \quad \mathbf{z} \to \infty^{(0)},
$$

$$
u(\mathbf{z}) = \log |z| + O(1), \quad \mathbf{z} \to \pi^{-1}(\infty) \setminus \infty^{(0)}.
$$

Let $z \in \mathbb{C} \setminus \Sigma$. Then

$$
\pi^{-1}(z) = \{z^{(0)}, z^{(1)}, \dots, z^{(j)}, \dots, z^{(m)}\}
$$

and we order these points with respect to non-decreasing of the values of u:

$$
u(\mathbf{z}^{(0)}) \leq u(\mathbf{z}^{(1)}) \leq \cdots \leq u(\mathbf{z}^{(j)}) \leq \cdots \leq u(\mathbf{z}^{(m)}).
$$

$$
\mathfrak{R}^{(0)} := \{ \mathbf{z}^{(0)} \in \mathfrak{R} : u(\mathbf{z}^{(0)}) < u(\mathbf{z}^{(1)}) \};
$$
\n
$$
\mathfrak{R}^{(j)} := \{ \mathbf{z}^{(j)} \in \mathfrak{R} : u(\mathbf{z}^{(j-1)}) < u(\mathbf{z}^{(j)}) < u(\mathbf{z}^{(j+1)}) \}, \quad j = 1, \ldots, m-1;
$$
\n
$$
\mathfrak{R}^{(m)} := \{ \mathbf{z}^{(m)} \in \mathfrak{R} : u(\mathbf{z}^{(m-1)}) < u(\mathbf{z}^{(m)}) \}.
$$

Nuttall partition of R

$$
u(\mathbf{z}^{(0)}) \leq u(\mathbf{z}^{(1)}) \leq \cdots \leq u(\mathbf{z}^{(j)}) \leq \cdots \leq u(\mathbf{z}^{(m)}).
$$

$$
\mathfrak{R}^{(m)} := {\mathbf{z}^{(m)} \in \mathfrak{R} : u(\mathbf{z}^{(m-1)}) < u(\mathbf{z}^{(m)})}.
$$

Let us now define the compact set

$$
F:=\{z\in\widehat{\mathbb{C}}:u(\mathbf{z}^{(m-1)})=u(\mathbf{z}^{(m)})\}.
$$

Lemma. $F = \bigcup_{j=0}^{J'} \gamma_j$, where γ_j are analytic arcs.

For $z \in \mathbb{C}$ define $u_j(z) := u(z^{(j)}), j = 0, \ldots, m$.

Lemma. u_j is a continious function on \mathbb{C} , $j = 0, \ldots, m$. **Lemma.** u_m is a subharmonic function on $\mathbb C$ (and harmonic on $\mathbb{C} \setminus F$).

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Nuttall partition of R

$$
u(\mathbf{z}^{(0)}) \leq u(\mathbf{z}^{(1)}) \leq \cdots \leq u(\mathbf{z}^{(j)}) \leq \cdots \leq u(\mathbf{z}^{(m)}).
$$

$$
\mathfrak{R}^{(m)} := \{\mathbf{z}^{(m)} \in \mathfrak{R} : u(\mathbf{z}^{(m-1)}) < u(\mathbf{z}^{(m)})\}.
$$

Let us now define the compact set

$$
F := \{ z \in \widehat{\mathbb{C}} : u(\mathbf{z}^{(m-1)}) = u(\mathbf{z}^{(m)}) \} = \pi \left(\partial \mathfrak{R}^{(m)} \right).
$$

Lemma. $F = \bigcup_{j=0}^{J'} \gamma_j$, where γ_j are analytic arcs.

For $z \in \mathbb{C}$ define $u_j(z) := u(z^{(j)}), j = 0, \ldots, m$.

Lemma. u_j is a continious function on \mathbb{C} , $j = 0, \ldots, m$. **Lemma.** u_m is a subharmonic function on $\mathbb C$ (and harmonic on $\mathbb{C} \setminus F$).

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Some analogue of Stahl's theorem

Theorem
\n1)
$$
\frac{1}{n}\mu(Q_{n,j}) \xrightarrow{*} \frac{1}{2\pi} dd^c u_m + \delta_\infty
$$
 in Meas($\widehat{\mathbb{C}}$).
\n2) $\frac{Q_{n,j}}{Q_{n,m}} \xrightarrow{cap} (-1)^{m-j} \sigma_{m-j}(f(z^{(0)}), f(z^{(1)}), \dots, f(z^{(m-1)}))$
\ncompactly in $\mathbb{C} \setminus F$, $j = 0, \dots, m-1$.
\nHere σ_j is the *j*-th symmetric polynomial of m variables.

Let us consider the corresponding polynomial equation:

$$
\frac{Q_{n,0}}{Q_{n,m}} + \frac{Q_{n,1}}{Q_{n,m}}w + \cdots + \frac{Q_{n,m-1}}{Q_{n,m}}w^{m-1} + w^m = 0.
$$
 (1)

From the theorem it follows that solutions of [\(1\)](#page-10-0) asymptotically reconstruct (as $n \to \infty$) the values of our function f on first m sheets of Nuttall partition of \Re outside the preimage of the compact set F.

 $\mathfrak{R} : w^4 = (1 + \frac{1+0.7i}{z})(1 - \frac{1+0.7i}{z})$ $\frac{(0.7i)}{z}$ $(-1+\frac{1+0.7i}{z})(1+\frac{-1-0.7i}{z}),$ $m = 3$

Numerical modelling of the compact set F for some initial point $\infty^{(0)} \in \mathfrak{R}.$

Green p[o](#page-10-1)ints are zeroes o[f](#page-11-0) $Q_{200,3}$ for some germ f_{∞} [at](#page-10-1) ∞ of $f := w$ $f := w$ $f := w$ $f := w$ $f := w$ [.](#page-17-0) K ≣ ▶ . ≣ 1990

Properties of Nuttall partition

Statement. $\mathfrak{R} \setminus \mathfrak{R}^{(m)}$ is connected.

Why is this statement interesting?

Stahl's theorem, 1985

Recall the definition of Padé polynomials:

$$
(P_{n,0}+P_{n,1}f_{\infty})(z)=O\left(\frac{1}{z^{n+1}}\right) \text{ as } z\to\infty.
$$

Theorem

There exists the compact set S (it is known that $\widehat{\mathbb{C}} \setminus S$ is connected and $S=\bigcup_{j=0}^J s_j$, where s_j are analytic arcs) such that 1) f_{∞} can be extended as meromorphic function in $\widehat{\mathbb{C}} \setminus S$; 2) $\frac{1}{n}\mu(P_{n,j}) \longrightarrow \frac{1}{2n}$ $\frac{1}{2\pi}$ dd^c $g_{\widehat{\mathbb{C}}\backslash S}(\cdot, \infty) + \delta_{\infty}$ *in* Meas($\widehat{\mathbb{C}}$); 3) $-\frac{P_{n,0}}{P_{n,0}}$ $P_{n,1}$ $\xrightarrow{\text{cap}} f_{\infty}$ compactly in $\mathbb{C} \setminus S$.

KORKAR KERKER EL VOLO

Nuttall partition's dependence on $\infty^{(0)}$

Recall that $u({\sf z})$ is the harmonic function on $\mathfrak{R} \setminus \pi^{-1}(\infty)$ with the following singularities at $\pi^{-1}(\infty)$:

$$
u(\mathbf{z}) = -m \log |z| + O(1), \quad \mathbf{z} \to \infty^{(0)},
$$

$$
u(\mathbf{z}) = \log |z| + O(1), \quad \mathbf{z} \to \pi^{-1}(\infty) \setminus \infty^{(0)}.
$$

We denote

$$
\pi^{-1}(z) = \{z^{(0)}, z^{(1)}, \ldots, z^{(j)}, \ldots, z^{(m)}\}
$$

and we order these points with respect to non-decreasing of the values of u:

$$
u(\mathbf{z}^{(0)}) \leq u(\mathbf{z}^{(1)}) \leq \cdots \leq u(\mathbf{z}^{(j)}) \leq \cdots \leq u(\mathbf{z}^{(m)}).
$$

$$
F := \{ z \in \widehat{\mathbb{C}} : u(\mathbf{z}^{(m-1)}) = u(\mathbf{z}^{(m)}) \} = \pi \left(\partial \mathfrak{R}^{(m)} \right).
$$

 $Q \cap C$

 $\mathfrak{R}: w^3 - 3(\frac{1}{z} - 3)^2 w + 2(\frac{3}{z} - 1)^3,$ $m = 2$

Numerical modelling of the compact set F for two different initial points $\infty^{(0)} \in \mathfrak{R}$.

Blue points are zeroes of $Q_{200,0}$ for two different germs f_{∞} at ∞ of $f := w$. **KORK STRAIN A BAR SHOP**

Property of Nuttall partition

 ${\boldsymbol{\mathsf{Statement}}.\; \mathfrak{R} \setminus \mathfrak{R}^{(m)} }$ is connected.

Conjecture. $\mathfrak{R} \setminus \overline{\bigcup_{j=k}^{m} \mathfrak{R}^{(j)}}$ is connected for $k = 1, \ldots, m$. In particular, the sheet $\mathfrak{R}^{(0)}$ is connected.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $\mathfrak{R}: w^3 - 3(\frac{1}{z} - 3)^2 w + 2(\frac{3}{z} - 1)^3,$ $m = 2$

Numerical modelling of the Stahl compact set S and the compact set F for two different initial points $\infty^{(0)} \in \mathfrak{R}$.

Red points are zeroes of $P_{300,1}$ for two different germs f_{∞} at ∞ of $f := w$, blue points are zeroes of $Q_{200,0}$ for the same germs. \Box