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1. Heat equation

CAUCHY-KOVALEVSKAYA THEOREM. Let P be holomorphic with
respect to (x,t) at (zo,tg) € C* and polynomial in other variables.
Then the Cauchy problem

0w = P(,t, {05 01} ktiom, (k,1)£(0,m));
u(z, to) =pj(z), 0<j<m—1
has a unique local holomorphic solution u(xz,t) at (xo,ty) for any
choice of the holomorphic germs g, p1,..., Pm—_1 at xg.

In 1842 Cauchy proved this in a series of four long Comptes Rendus
notes using reduction to first-order systems and the majorant method. In
1873 Weierstrass posed it as a thesis problem for Kovalevskaya, without
the condition k+1 < m, (k,l) # (0, m). She has found a counterexample
and eventually proved the correct result.

Kovalevskaya considered the heat equation at (0,0) € C?:
(*) Oyu = 02u, u(z,0) = up(x).

Since &lu = 0% for all [, there is a unique formal power series solution

0 ! - k4l
T t rewritten as Z brix”t

1=0 k,l1=0

u(x, t) =

In particular, writing the initial condition in the form

- — (2k)!
u(x,0) = E e’ we have u(0,t) = g ( k:') canth.
k=0 k=0

The factor (Qkk!)! > k! increases rapidly as k — oco. Hence the last series

has zero radius of convergence and (x) has no local holomorphic solution
even when ug(xz) =1/(1 — ) and cox, = 1 for all k.

“...Today, a century and a quarter later, it is difficult to appreciate
how surprising such examples were in 1874. The discovery of them
often requires a young and fresh mind like Kovalevskaya’s, to wander
more freely along routes that experience had trained older minds to

ignore as unpromising...”
(Roger L. Cooke, The Cauchy—Kovalevskaya theorem, 2001)



THEOREM (S. vON KOWALEVSKY, 1875; J. LE Roux, 1895).
The Cauchy problem (x) is locally soluble at (0,0) <=
ug(z) = Yope o ek, where |cx|V/* < C/VE for some C >0 <
uo(x) is an entire functions of order at most 2 and finite type,
i.e. ug € O(C) and |up(x)| < AeBll® for some A, B > 0.

Formally speaking, Kovalevskaya only proved that these bounds for
|ci| are necessary for the local solubility of (%), whence ug(x) must be an
entire function, and showed by the example ug(z) = > o, z*/(k!)1/3
that not every entire function can be taken for ug(x). This already yields
a corollary on analytic extension of solutions of the heat equation.

COROLLARY. Ewvery solution uw € O(D;1 x Dsy) of the equation
U = AUgg, aecC\ {0}

in a bidisk D1 x Dy C C? extends analytically to u € O(C x D) and,
generally speaking, admits no further analytic extension.

Note that gemeric solutions (this means that u(z,ty) is an entire
function of order < 2 for at least one ty € D) extend to an entire
function on the whole of C2.

Theorem and Corollary also hold for all equations
Opu = (bO™ + 10"t +---+epn)u, beC\{0}, c1,...,¢m €C

with integer m > 2 if we replace “entire function of order 2" by “entire
functions of order m/(m—1)" (G.S.Salekhov, 1950). Thus the solubility
condition becomes more restrictive as m grows. Even more general
equations of the form

Oy’ u = Z ck10FOLu, cr € C,
k+l<m

satisfy Corollary (C.Kiselman, 1969) and appropriately modified Theo-
rem (Yu.F.Korobeinik, 1997). When cg; are entire functions of = and
holomorphic in ¢, we have an analogue of Corollary (M.Zerner, 1972)
and part = of Theorem (S.6uchi, 1983; M.Garay, 2016).



2. Soliton equations
Well-known examples of soliton equations in dimension 1 + 1:
Ut = AQUgrpe + DUy, a,be C\ {0},
Ut = QUggppr + DUlgy + bu2, a,be C\ {0},
Uy = QUgy + bujul?, a,b e R\ {0},

—~~ o~~~
w N =
~— ~— ~—

with |u|? in (3) understood as u(z,t)u(z,t). The inverse scattering
method (Gardner, Green, Kruskal, Miura 1967) for the Korteweg—de
Vries equation (1) (long waves on shallow water): when the poten-
tial u(z,t) changes in time according to (1), the evolution of its scatter-
ing data (some spectral characteristsics of the operator L = 02 +u(z, t)
on L?(R1)) is linear and explicitly integrable. Explanation (Lax 1968):
equation (1) with a = 1/4, b = 3/2 is the condition for solubility of the
auziliary linear problem

(4) Lp=Xp,  thpy = Pip

where L := 92 +u and P := 02 + (3/2)ud, + (3/4)uy, i.e. (1) is of
the form L; = [P, L] = the evolution of L is its conjugaton by a t-
dependent unitary operator on L?(Rl) = the evolution of its spectral
characteristics is simple.

The nonlinear Schrodinger equation (3) (propagation of wave pack-
ages in nonlinear dispersive media) was considered by V.E. Zakharov
and A.B. Shabat (1971) who replaced the scalar second-order differen-
tial equation Ly = Ay in (4) by a first-order 2 X 2-matrix equation:

where U(x,t,z) and V (z,t, z) are polynomials of degree 1 and 2 in the
spectral parameter z € C (related to X in (4) by the formula A = 22).
Then (3) is a reduction of the zero curvature equation

(6) U=V +[U,V]=0

(first explcictly written and applied by S. P. Novikov, 1974).

The Boussinesq equation (2) (describing water waves that can move
left or right) by V. E. Zakharov (1973): replace 2 x 2-matrices in (5) and
the second-order operator L in (4) by 3 X 3-matrices and a third order
operator.



“...To date there is no proof that the Korteweg—de Vries equation
possesses the Painlevé property. The main problem lies in the lack
of methods for obtaining the global analytic description of a locally
defined solution in the space of several complex variables...”

(Martin D. Kruskal, Analytic and asymptotic methods for nonlinear

singularity analysis: a review and extension of tests for the Painlevé
property, 1997-2004)

Here is the strongest form of the Painlevé property for (1)—(3).

THEOREM 1 (D., 2008-2012). For each equation (1)—(3), every
holomorphic solution w(x,t) in an arbitrary bidisk D x Dy C C2
(centred on R? in case (3)) extends analytically to a meromorphic
function u(z,t) in the strip S = C x Dy C C2.

REMARK 1. The theorem is non-empty and non-improvable. In-
deed, the Cauchy—Kovalevskaya theorem (with z as time variable) gives
a local holomorphic solution u(z,t) of (1) with dlu(zg,t) = ¢;(t),
j = 0,1,2, where ¢;(t) are any prescribed holomorphic germs. One
can choose them in such a way that the extension u cannot be further
extended holomorphically to any boundary point of S.

REMARK 2. To prove Theorem 1, we develop a local version of the
inverse scattering method for soliton equations of parabolic type (the
existsing hyperbolic version of |. M. Krichever 1981-1983 derives com-
pletely different conclusions for completely different equations), where
the potentials are holomorphic germs without any boundary conditions.
This makes a step towards another dream (how to study finite-gap and
rapidly decreasing solutions in a unified manner):

“...comment marier les solutions géometriques attachées aux courbes
algebriques [...] avec les diffusions qui viennent du scattering-inverse
(solutions L? de KdV par exemple)?”

(Daniel Bennequin, Hommage d Jean—Louis Verdier: Au jardin des
systemes intégrables, 1993)



3. Construction of soliton equations

The main tool is the zero curvature equation (6):

where U,V : R2, x Cl — gl(n, C) are polynomials in z (with coefficients
depending on x,t) of the form U(z,t,z) = az+q(x,t) and V(z,t, z) =
az™+rq(z,t) 2™ 14+ 41, (z,t) for some constant matrix a € gl(n, C)
and smooth functions ¢, ry,..., 7, : R2 — gl(n, C). The function

(@,t,2) » U = Vo + [U, V] =g = Vo + [U, V]

is a polynomial of degree < m+1 in z. We require it to be a polynomial
of degree 0, that is, to be independent of z. This condition gives m
differential relations (with respect to z, therefore in what follows we
omit the dependence on t) between q,r1,...,7y. If

1) a = diag(ay,...,a,) € gl(n,C) is diagonal and «; # a; for ¢ # j,
2) g(x) is off-diagonal, that is, ¢;;(z) =0 npu j =1,...,n,

then these m relations determine rq,...,7,, almost uniquely as differ-
ential polynomials of q in x:

ri =F;(q), j=1,...,m.
LEMMA 1. Fix any point ¢ € C and put

O(xg) := {holomorphic gl(n, C)-valued germs q(zx) at xy},
O(z0)°¢ := {all off-diagonal g € O(zg)}.

Then there is a unique sequence of differential polynomaials
F;: O(z9) = O(xp), j =0,1,2,... such that
1) Fo(q) = a for all g € O(xy),
2) F;(0) =0 forallj > 1,
3) the formal power series F(q, z) := Z;io F;(q)z™7 satisfies

0. F =laz+q,F] for all ¢ € O(xo)°.



For every m = 0,1,2,... the zero curvature condition (6) with
U=az+q and V =az™ + Fi(¢)z™ ' 4+ -+ F,(q)
takes the form

(Ed,y,) gt = [a, Frny1(q)],

where g(x,t) is the unknown off-diagonal gl(n, C)-valued germ at the
point (zg,tg) € C2. By fixing the matrix a and a reduction (i.e. depen-
dence of the matrix ¢ on a scalar u) and letting m = 1,2, ..., we obtain
a hierarchy (an infinite sequence of commuting flows).

Examples of reductions. 1) The hierarchy of the heat equation:

(8 5). weo=(357) -

—>  (Eq,,) takesthe form 0;u = 0 u.

2) The Korteweg—de Vries equation:

() (1) -

—>  (Eqs) takes the form w; = —6uuy, + Ugpypy-

3) The nonlinear Schrodinger equation:

a:(—z(')/2 z?2> q(w’t):(—u(of,i) U(T)’t)> -

—>  (Eqy) takes the form iu; = —uz, — 2u|u|?.

THEOREM 1’ (D. 2008). If the Cauchy problem q(x.tg) = qo(x)
for an equation Eq,,, m > 2, has a local holomorphic solution q(x,t)
in a neighbourhood of (xg,tg), then the germ qo(x) extends to a mero-
morphic matriz-valued function on the whole of C'.

Theorem 1 (along with many other results) follows from Theorem 1'.
To prove Theorem 1’, we construct all local holomorphic solutions of the
equations Eq,,, in terms of appropriate scattering data.



4. Construction of the solutions

LEMMA 2. For every q € O(x0)°? there is a unique formal series

p(z,z) =1+ i (z) + HQ(;E) + ... with p; € O(xo) such that
2 2

pr = (az + q)p — paz  and the series u(xg, z) — I is off-diagonal.

The equation for p is equivalent to 9, — (az + q) = u(0y — az)pu™ 1.

Geometrically it means that p is a gauge transformation of the connec-
tion 0, — az (with zero potential) to the connection 9, — (az + ¢q(x))
(with potential ¢(z)).

We define the local scattering data of any potential ¢ € O(z0)°? as
the formal power series

I:lﬁl(ﬂ?o)+u2($o)+““

Lq(2) := p(zo, 2) — p» 2

Its radius of convergence is zero for almost all potentials g. To measure
its divergence, we introduce the Gevrey class o for every a > 0:

0
Gev, := {formal power series ¢ = Z 90—,’: with off-diagonal
z
k=1

vr € gl(n, C) such that Z %Ak < oo for some A > 0}.
k=1

LEMMA 3. (A) The Cauchy problem q(x,ty) = qo(x) for the equa-
tion (Eqm,) has a local holomorphic solution q(x,t) at the point (xq, to)
if and only if Lqy € Gevy/p,.

(B) The map qo — Lqo is a bijection of O(xy)°? onto Gevy.

(C) If qo € O(z0)°¢ is such that Lgy € Gev, for some a < 1, then
the germ qo(z) extends analytically to an off-diagonal meromorphic

function Qo € M(C).

REMARK. Theorem 1’ follows immediately from Lemma 3(A),(C).

Proof of Lemma 3(A). Part “only if" is technical and based on a
theorem of Ya.Sibuya (1991) on Gevrey solutions of singularly peturbed
systems of ODE.



To prove part “if”, we define
Ent,, := {all holomorphic E : C — GL(n,C) such that

|E(z2)| < AePI*I™ for some A, B > 0}

and consider the Riemann factorization problem: given any ¢ € Gevy
and E € Ent,,, find ¢ € Gevy/y, and F' € Ent,, such that

E(z)(I+¢(2)™" = (I +4(2) 7" F(2)
as formal Laurent series. If we choose E(z,t,z) = e((z—z0)2+(t—to)2
for all (z,t) € C2, then the Riemann problem

e@((@=z0)z+(t=t0)2™) r=1( )y — v~ V(p ¢ 2}y (2,t, 2)

has a solution v+ (x,t, z) for all (x,t) in some neighbourhood Q2 = Q(¢p)
of the point (zg,to) in C2. This is because the problem is equivalent to
solving a linear equation (I+ K (z,t))u(z,t) = ug(x,t) in an appropriate
Banach space, where K (xz,t) is a holomorphic family of bounded linear
operators on C2, with K (zg,to) = 0.
Taking the logarithmic derviatives of both parts of the equality

vy = y_ed(@=0)z+(t=10)z™) =1 ‘\where (2,t) € Q, z € CP', we have
(02v+)7:" = (827 + v—az)y_". Separate the positive and negative
parts of the Laurent series:

{ 0oy )vs' = {v—azy"'}4

0 = (O )v=" + {y—azy 1}
This can be rewritten as

(7) { 8:674- — (CLZ + Q(CE, t))7+
Opy- = (az+q(z,t))y- — v-az,
where

™)

Q(mat) - (BSO)(CL‘at) = Zli)n;ozh—(xat’z)aa]'

Repeating the whole argument for ¢ instead of x, we similarly get the
second equation of the auziliary linear system (5):

v+ = Ula)+, v+ = V(a)r+,
where U(q) := az + q and V(q) := az™ + Fi(q)z™ ' + -+« + F,,,(q).
Therefore, by cross-differentiation, g(x,t) satisfies the zero curvature
condition Uy — V, + [U,V] = 0, which is equivalent to (Eq,,). If we
now choose ¢ = Lqq (which lies in Gevy/,,, by the hypothesis), then the
initial condition ¢(z,ty) = qo(x) will also hold. [



REMARK. The equalities (7) reveal the geometric meaning of 7.:
the columns of 4 form a parallel frame field (a trivialization) of the
flat connection V(q) := (0, — U(q))dz + (0; — V(q)) dt on Q x CP},
and v_ is a formal gauge transformation of the connection V(0) to the
connection V(q) on © x CPL, Here Q C C2, is the neighbourhood of
(zo,tp) where the Riemann problem is soluble.

Proof of Lemma 3(B). When m = 1 and t = t;, the proof of
Lemma 3(A) yields that the maps L : O(z¢)°? — Gev; and

B : Gevy — O(z0)%, By(z) := lim z[y_(z, 2), al,
zZ— 00
are inverse to each other: BoL =1d, Lo B =1d. [

Proof of Lemma 3(C). If Lgg € Gev, for some o < 1, then the
Riemann problem (with m =1, t = tg)

!PT + Lao(2)) ™ = 72 (&, )7+ (2, 2)

is equivalent to solving a linear equation (I + K(x))u(z) = ug(z) in
an appropriate Banach space, where K (z) is a holomorphic family of
compact linear operators parametrized by C. with K(zp) = 0. Hence
the following lemma is applicable.

LEMMA 4 (MEROMORPHIC FREDHOLM ALTERNATIVE). Let X be
a complex Banach space, D a Stein manifold with H*(D,Z) = 0, and
K : D — B(X) a holomorphic family of compact operators such that
I+ K(x) is invertible for some xq € D. Then there is a holomorphic
function T € O(D) with T(xg) = 1 such that

I+ K(x) isinvertible <=  7(z)#0,

and the map x — 7(z)(I + K(z))~1 extends to the zero set of T as a
holomorphic map D — B(X). Thus (I + K(z))~! is a meromorphic
operator-valued function on D.

The matrix-valued function
Qo(x) := BLqo(x) = Zlim z[y— (=, tg, 2), a

— 00

is defined for all z € C such that 7(z) # 0. We have Qo € M(C) by
Lemma 4 and Qo(z) = go(x) in a neighbourhood of z( in CL by what
was said in the proof of Lemma 3(B). Hence it is the desired meromorphic
extension of go(z). O



5. Further properties of solutions

1) The heat equation again. In this case the direct (¢ — Lq) and
inverse (¢ — Byp) scattering tranforms are reduced to the classical
Laplace and Borel transforms:

@ =3 () He-nr = wm@=-3 (5 %) n

k=0

GEPCIERE R (R b

J=0

Classically, the map q(z) — Lq(z) = — fooo q(x)e **dx is a bijection of
Ent; onto {f € O(0) | f(00) =0} and B is the inverse map.

2) Generic solutions. If Lqgy € Gevy, for some a < 1/m, then
the solution g(x,t) of the local holomorphic Cauchy problem for (Eq,,)
extends meromorphically to the whole of C2.

3) The set of admissible initial data decreases as the number of flow
increases. In particular, if the Cauchy problem is soluble even locally for
some flow, then it is soluble globally (in ¢) for all lower flows.

4) Trivial-monodromy property. If the Cauchy problem q(z,ty) =
qo(x) for an equation Eq,,, m > 2, is soluble locally, then the auxiliary
linear system E, = (az 4 qo(z))E (see (5)) has a globally meromorphic
(in x) fundamental system of solutions E(z,z) = vy (z,z) for every
z € C (see (7)). In case of the KdV equation w; = auu, + buzys,
a,b € C\ {0}, this property implies that every local holomorphic solution
u(x,t) for every fixed t = ty takes the following form near every its
pole x:

- 6b k(k+1)

(8) u(z,to) = o (2 —29)?

(0. @)
—I—ch(x—:co)”, 0<|z— x| <e,
n=0
where k = k(tg) € N and k(tp) = 1 for almost all t, while the co-
efficients ¢; = ¢;(to) € C, 5 = 0,1,2,... satisfy c2;_1 = 0 for all
j =1,...,k (characterization of trivial monodromy by Dujstermaat and
Grinbaum 1986). In particular, all poles of u(x,%y) are of second order
and of a rather special kind. These properties were known for finite-
gap solutions (Gesztesy and Weikard 1996, Veselov 1999), but not for
general holomorphic ones.



5) Tau functions. The KdV equation
(%) U = QUUy + DUgyy, a,be C\ {0},

has “running wave" solutions

—12bA2 B
ui(z,t) =——p(Ax + Bt + C) + — > finite-gap
a Aa
12ba=1 A2 .
uz(z,t) =— — one-solition
ch®(Ax 4+ 4bA3t + C)
_ —12ba™?

— Calogero—Moser rational solutions

us(z,t) —m

and the Kontsevich-Witten solution uy(x,t) = (z+ B)/(C —at), where
A € C\{0}, B,C € C, p(s) is the Weierstrass function (general solution
of the equation """ = 12pp"). The functions us and ug are limiting cases
of u1 as one or both periods tend to oc.

THEOREM 2 (D. 2018). Ewvery local holomorphic solution u(x,t)
of the equation (xx) may be written in the form

12b 12b 7,7 — T2

u(z,t) = —02log 7(x,t) = 5
a

a T

where T(x,t) is an entire function of x for every fixed t.
CONJECTURE. This entire function always has order < 3.

For example, the solutions w1, uo, usz, u4 have tau functions 71, 7, 73, 74
of orders 2,1, 0, 3 respectively.

COROLLARY 1 OF THE CONJECTURE. If a local holomorphic solu-
tion u(x,t) of the equation (kx) has no poles z € C for at least one
value of t € C, then u(x,t) is either a constant of the Kontsevich-Witten
solution uy(x,t) = (z + B)/(C — at) for some B,C € C. In particular,
the KdV equation has no non-constant entire solutions (holomorphic
in the whole of C?).



COROLLARY 2 OF THE CONJECTURE. Every local holomorphic solu-
tion u(x,t) of (xx) having only a finite number of poles zq,...,z) € C
for some t € C, is a rational Calogero-Moser solution (a sum of the
principal parts of several Laurent series (8))

M(t)
u(z,t) = — ibz ((:E)(_C(()t; ), cj(t) € C, M(t),k;(t) € N.

Here we have k;(t) = 1 and M (t) = M for all j and almost all ¢t € C
and, for such ¢, the trajectories of poles are described by the differential
equations

o 125 o
=2 G o M

and necessarily satisfy >, (ci(t) — cj(t))™>=0,7=1,..., M. More-
over, the number of poles (counting multiplicities) must be triangular:

M(t)
2M = Zk t)y+1)=n(n+1) forsome necN.



