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One-dimensional case: number �elds

Let K be a number �eld such that [K : Q] = l.
Let E be the ring of integers in K, i.e. E ⊃ Z is the integral
closure of Z in Q.

The ring of adeles of K is

AK =
∏′

v

Kv = {f ∈
∏
v

Kv | f ∈ Êσ for almost all σ} ,

where v runs over all places of K,
Kv is the completion of the �eld K with respect to v,∏′ means the restricted product with respect to the subrings Eσ,
σ runs over the set of all non-Archimedean places of K (which is
the set of all maximal ideal of E),
Êσ is the corresponding completion of E at σ (which is the ring of
integers in Kσ).
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Quotient group of the ring of adeles

The �eld Kv has a locally compact topology.
Hence the ring AK has a topology of the restricted product.
Thus, AK is a locally compact topological ring.

The �eld K is diagonally embedded in the ring AK (through the
natural embedding K ↪→ Kv). The strong approximation theorem
implies the well-known result.

Theorem

There is an exact sequence of groups

0 −→
∏
σ

Êσ −→ AK/K −→
(∏

w

Kw

)
/E −→ 0 ,

where σ runs over the set of all non-Archimedean places of K,
w runs over the (�nite) set of all Archimedean places of K.
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Example

The group
∏
σ
Êσ is compact.

The group
(∏
w
Kw

)
/E ' Tl, where T = R/Z is also compact.

Thus, the group AK/K is compact and is an extension of two
compact groups through the above exact sequence.

Example

For K = Q the above sequence is

0 −→ Ẑ −→ AQ/Q −→ R/Z −→ 0 ,

where Ẑ ' ∏
p
Zp.
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One-dimensional geometric case

In the geometric case there is an analogous exact sequence for the
ring of adeles AK, where K = Fq(C), and C is a smooth projective
curve over a �nite �eld Fq.
Fix a �nite set of points s1, . . . , sn (the analog of above set of
Archimedean places). Let A = H0(C \ ⋃ si),O). Then

0 −→
∏

u∈C,u 6=si
Ôu−→AK/K−→(

∏
i

Ksi)/A −→ 0 .

In other notation, AK = AC,01, K = AC,0.
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Adeles on two-dimensional schemes

In higher dimensions rings of adeles were introduced: by
A. N. Parshin (1976) for smooth algebraic surfaces, and by
A. A. Beilinson (1980) for arbitrary Noetherian schemes.

Rings of higher adeles (and higher-dimensional local �elds) are
important for the arithmetic properties of schemes:
higher-dimensional generalization of the class �eld theory and
possible generalization of the Tate-Iwasawa method (on
meromorphic continuation and functional equation for
L-functions) from one-dimensional case to the case of higher
dimensions.

We restrict ourselves to the case of dimension 2.
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Algebraic and arithmetic surfaces

We consider two parallel (and analogous cases):

Y is an irreducible normal algebraic surface over a �nite �eld
Fq,
X is an arithmetic surface, i.e. a two-dimensional normal
integral scheme with projective and surjective morphism to
SpecZ.

Then for the rings of adeles we have:

AY ⊂
∏
x∈D

Kx,D AX ⊂
∏
x∈D

Kx,D,

where x ∈ D is a pair with a closed point x ∈ X and an irreducible
curve D ⊂ Y (or an integral closed one-dimensional subscheme
D ⊂ X).
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Local components

The ring
Kx,D =

∏
1≤i≤l

Ki ,

where Ki is the completion of the �eld Frac Ôx with respect to
Di ⊂ Spec Ôx, where D |Spec Ôx= ⋃

1≤i≤l
Di and Di is irreducible.

In other words, Ki is associated with every branch of D at the
formal neighbourhood of x ∈ X (or x ∈ Y).
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Two-dimensional local �elds

The �eld Ki is a two-dimensional local �eld:

Ki ' Fqr((u))((t)) in the geometric case,

Ki ⊃ Qp((t)) or Ki ⊃ Qp{{t}} in the arithmetic case,

where f =
+∞∑
−∞

ait
i ∈ Qp{{t}} ( with ai ∈ Qp) i�

there is cf ∈ Z such that νp(ai) > cf for all i,

and lim
i→−∞

νp(ai) = +∞.
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Algebraic surfaces

Let us give an exact de�nition of AY.
For any irreducible curve C on Y let tC = 0 be an equation of C
on some a�ne open subset of Y. We note that

AC((tC)) ⊂
∏
x∈C

Kx,C .

Then g ∈ AY ⊂
∏
x∈D

Kx,D i�

g ∈ ∏
D⊂X

AD((tD)),

and for almost all D ⊂ X the restriction of g to D-component
belongs to AD[[tD]].

This de�nition does not depend on the choice of tD.
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Subgroups of the ring of adeles

Similarly to AY one de�nes the ring AX (with more technical
details).
Let A012 = AY (or A012 = AX).
For any D ⊂ Y (or D ⊂ X) let KD be the completion of the �eld
of rational functions Fq(Y) (or Q(X)) with respect to the discrete
valuation given by D. We have KD ⊂

∏
x∈D

Kx,D.

For any x ∈ Y (or x ∈ X) let Kx = Ôx · L, where L = Fq(Y) (or
L = Q(X)). We have Kx ⊂

∏
D3x

Kx,D.

We de�ne inside
∏
x∈D

Kx,D:

A01 = A012 ∩
∏
D

KD , A02 = A012 ∩
∏
x

Kx .
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Adelic quotient group for algebraic surface

We �x an ample divisor C on Y. Then the complement
U = Y \ suppC is a�ne.

Theorem

There is an exact sequence of compact groups for A012 = AY:

0 −→ G1 −→ A012/(A01 + A02) −→ G2 −→ 0 ,

where G1 '

 ∏
D⊂Y,D6⊂C

((∏′

x∈D
Ox,D

)
/ÔD

) /(∏
x∈U
Ôx

)
,

and
∏′ means an adelic (on algebraic surface) product, the ring

Ox,D is the product of discrete valuation rings from the ring Kx,D

(for example, if Kx,D = Fqr((u))((t)), then OKx,D
= Fqr((u))[[t]]),

the ring ÔD is the discrete valuation ring in KD.
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Groups G1 and G2

The group G1 is compact, since the group

Ôx ' Fqr[[u, t]]
is compact, and for a �xed D ⊂ Y the group(∏′

x∈D
Ox,D

)
/ÔD ' (AD/Fq(D)) [[tD]]

is also compact.

The group G2 has also an explicit presentation. We note only that
in the simplest case

Y = P1Fq ×Fq P1Fq , C = P1Fq × y + y × P1Fq
(y is a �xed Fq-rational point on P1Fq) we have

G2 ' Fq((u))((t))/
(
Fq[u−1]((t)) + Fq((u))[t−1]

)
.
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Arithmetic surfaces

An arithmetic surface X (with morphism X→ SpecZ) is �not
compact� (since SpecZ is �not compact�).
To have the good analogy with projective algebraic surface Y we
have � to compactify� X.
For this goal we have to take into account the �bre over the
∞-point of SpecZ, which corresponds to the Archimedean
valuation of Q.

Let a curve XQ = X×SpecZ SpecQ be the �bre over the generic
point of SpecZ.
We de�ne a ring of arithmetic adeles

Aar
X = AX ⊕

(
AXQ⊗̂QR

)
,

where the ring

AXQ⊗̂QR = lim
−→

D1∈Div (XQ)

lim
←−

D2≤D1

∏
u∈XQ

(
Ôu(D1)/Ôu(D2)

)
⊗Q R .
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Subgroups of the group of arithmetic adeles

We de�ne subgroups of the group Aar
012 = Aar

X as

Aar
01 = A01 , Aar

02 = AX,02 ⊕ (Q(X)⊗Q R) ,

where the group in the �rst formula is naturally embedded into
the both summands for Aar

012,

the �rst summand in the second formula is naturally embedded
into the �rst summand (scheme part) for Aar

012,

the second summand in the second formula is naturally embedded
into the second summand (Archimedean part) for Aar

012.
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Quotient group

We �x a �horizontal divisor� C on X. Then U = X \ C is a�ne,
and �C plus Archimedean �bre� is an analog of an ample divisor
on a projective algebraic surface.

Theorem

There is an exact sequence of compact groups:

0 −→ G̃1 −→ Aar
012/(Aar

01 + Aar
02) −→ G̃2 −→ 0 ,

where G̃1 is written analogously to the group G1 for an algebraic
surface (but we have to take into account the �elds R((t)) and
C((t)) which come from the Archimedean part of Aar

012).
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The group G̃2

Let us give the description of the group G̃2

Example

In the simplest case when X = P1Z and C is a hyperplane section,
we have that

G̃2 ' R((t))/
(
Z((t)) + R[t−1]

)
.

Proposition

For an arithmetic surface X we have G̃2 ' lim
←−
m≥0

Θm, where the

group

Θm ' H1(X,OX(−mC))⊗Z T ' T rank(H1(X,OX(−mC)))

is a �nite direct product of copies of T (we recall that T ' R/Z).
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