Arithmetic surfaces and higher adeles

Denis Osipov

Steklov Mathematical Institute of RAS

NRU HSE

NUST MISIS

The 4th Sino-Russian Conference in Mathematics
15–19 October 2018, The University of Hong Kong
One-dimensional case: number fields

Let K be a number field such that $[K : \mathbb{Q}] = 1$. Let E be the ring of integers in K, i.e. $E \supset \mathbb{Z}$ is the integral closure of \mathbb{Z} in \mathbb{Q}. The ring of adeles of K is $A_K = \prod_v K_v = \{ f \in \prod_v K_v | f \in \hat{E}_\sigma \text{ for almost all } \sigma \}$, where v runs over all places of K, K_v is the completion of the field K with respect to v, $'$ means the restricted product with respect to the subrings E_σ, σ runs over the set of all non-Archimedean places of K (which is the set of all maximal ideals of E), \hat{E}_σ is the corresponding completion of E at σ (which is the ring of integers in K_σ).
One-dimensional case: number fields

Let K be a number field such that $[K : \mathbb{Q}] = 1$. Let E be the ring of integers in K, i.e. $E \supset \mathbb{Z}$ is the integral closure of \mathbb{Z} in \mathbb{Q}.

The ring of adeles of K is

$$\mathbb{A}_K = \prod' K_v = \{ f \in \prod K_v \mid f \in \hat{E}_\sigma \text{ for almost all } \sigma \},$$

where v runs over all places of K, K_v is the completion of the field K with respect to v, \prod' means the restricted product with respect to the subrings E_σ, σ runs over the set of all non-Archimedean places of K (which is the set of all maximal ideal of E), \hat{E}_σ is the corresponding completion of E at σ (which is the ring of integers in K_σ).
Quotient group of the ring of adeles

The field K_v has a locally compact topology. Hence the ring \mathbb{A}_K has a topology of the restricted product. Thus, \mathbb{A}_K is a locally compact topological ring.
Quotient group of the ring of adeles

The field K_v has a locally compact topology. Hence the ring \mathbb{A}_K has a topology of the restricted product. Thus, \mathbb{A}_K is a locally compact topological ring. The field K is diagonally embedded in the ring \mathbb{A}_K (through the natural embedding $K \hookrightarrow K_v$). The strong approximation theorem implies the well-known result.

Theorem

There is an exact sequence of groups

$$0 \longrightarrow \prod_{\sigma} \hat{E}_\sigma \longrightarrow \mathbb{A}_K/K \longrightarrow \left(\prod_w K_w \right)/E \longrightarrow 0,$$

where σ runs over the set of all non-Archimedean places of K, w runs over the (finite) set of all Archimedean places of K.
Example

The group $\prod \hat{E}_\sigma$ is compact.

The group $\left(\prod K_w \right) / E \simeq \mathbb{T}^d$, where $\mathbb{T} = \mathbb{R} / \mathbb{Z}$ is also compact. Thus, the group \mathbb{A}_K / K is compact and is an extension of two compact groups through the above exact sequence.
Example

The group $\prod_{\sigma} \hat{E}_{\sigma}$ is compact.

The group $\left(\prod_{w} K_w \right) / E \simeq T^1$, where $T = \mathbb{R} / \mathbb{Z}$ is also compact. Thus, the group \mathbb{A}_K / K is compact and is an extension of two compact groups through the above exact sequence.

Example

For $K = \mathbb{Q}$ the above sequence is

$$0 \longrightarrow \hat{\mathbb{Z}} \longrightarrow \mathbb{A}_\mathbb{Q} / \mathbb{Q} \longrightarrow \mathbb{R} / \mathbb{Z} \longrightarrow 0,$$

where $\hat{\mathbb{Z}} \simeq \prod_{p} \mathbb{Z}_p$.
One-dimensional geometric case

In the geometric case there is an analogous exact sequence for the ring of adeles \mathbb{A}_K, where $K = \mathbb{F}_q(C)$, and C is a smooth projective curve over a finite field \mathbb{F}_q.

Fix a finite set of points s_1, \ldots, s_n (the analog of above set of Archimedean places). Let $A = H^0(C \setminus \bigcup s_i), \mathcal{O})$. Then

$$0 \longrightarrow \prod_{u \in C, u \neq s_i} \mathcal{O}_u \longrightarrow \mathbb{A}_K/K \longrightarrow (\prod_{i} K_{s_i})/A \longrightarrow 0.$$

In other notation, $\mathbb{A}_K = \mathbb{A}_{C,01}$, $K = \mathbb{A}_{C,0}$.

Denis Osipov

Arithmetic surfaces and higher adeles

Hong Kong 2018
Adeles on two-dimensional schemes

In higher dimensions rings of adeles were introduced: by A. N. Parshin (1976) for smooth algebraic surfaces, and by A. A. Beilinson (1980) for arbitrary Noetherian schemes.

Rings of higher adeles (and higher-dimensional local fields) are important for the arithmetic properties of schemes: higher-dimensional generalization of the class field theory and possible generalization of the Tate-Iwasawa method (on meromorphic continuation and functional equation for L-functions) from one-dimensional case to the case of higher dimensions.

We restrict ourselves to the case of dimension 2.
Algebraic and arithmetic surfaces

We consider two parallel (and analogous cases):

- Y is an irreducible normal algebraic surface over a finite field \mathbb{F}_q,
- X is an arithmetic surface, i.e. a two-dimensional normal integral scheme with projective and surjective morphism to Spec \mathbb{Z}.

Then for the rings of adeles we have:

$$A_Y \subset \prod_{x \in D} K_{x,D} \quad A_X \subset \prod_{x \in D} K_{x,D},$$

where $x \in D$ is a pair with a closed point $x \in X$ and an irreducible curve $D \subset Y$ (or an integral closed one-dimensional subscheme $D \subset X$).
Local components

The ring

$$K_{x,D} = \prod_{1 \leq i \leq l} K_i,$$

where K_i is the completion of the field $\text{Frac} \, \hat{O}_x$ with respect to $D_i \subset \text{Spec} \, \hat{O}_x$, where $D \mid_{\text{Spec} \, \hat{O}_x} = \bigcup_{1 \leq i \leq l} D_i$ and D_i is irreducible.

In other words, K_i is associated with every branch of D at the formal neighbourhood of $x \in X$ (or $x \in Y$).
Two-dimensional local fields

The field K_i is a two-dimensional local field:

- $K_i \cong \mathbb{F}_q((u))((t))$ in the geometric case,
- $K_i \supset \mathbb{Q}_p((t))$ or $K_i \supset \mathbb{Q}_p\{\{t\}\}$ in the arithmetic case,

where $f = \sum_{-\infty}^{+\infty} a_i t^i \in \mathbb{Q}_p\{\{t\}\}$ (with $a_i \in \mathbb{Q}_p$) iff

- there is $c_f \in \mathbb{Z}$ such that $\nu_p(a_i) > c_f$ for all i,
- and $\lim_{i \to -\infty} \nu_p(a_i) = +\infty$.
Algebraic surfaces

Let us give an exact definition of A_Y.

For any irreducible curve C on Y let $t_C = 0$ be an equation of C on some affine open subset of Y. We note that

$$A_C((t_C)) \subset \prod_{x \in C} K_{x,C}.$$

Then $g \in A_Y \subset \prod_{x \in D} K_{x,D}$ iff

- $g \in \prod_{D \subset X} A_D((t_D))$,
- and for almost all $D \subset X$ the restriction of g to D-component belongs to $A_D[[t_D]]$.

This definition does not depend on the choice of t_D.

Denis Osipov

Arithmetic surfaces and higher adeles

Hong Kong 2018
Subgroups of the ring of adeles

Similarly to A_Y one defines the ring A_X (with more technical details).

Let $A_{012} = A_Y$ (or $A_{012} = A_X$).

For any $D \subset Y$ (or $D \subset X$) let K_D be the completion of the field of rational functions $\mathbb{F}_q(Y)$ (or $\mathbb{Q}(X)$) with respect to the discrete valuation given by D. We have $K_D \subset \prod_{x \in D} K_{x,D}$.
Subgroups of the ring of adeles

Similarly to \mathbb{A}_Y one defines the ring \mathbb{A}_X (with more technical details).

Let $\mathbb{A}_{012} = \mathbb{A}_Y$ (or $\mathbb{A}_{012} = \mathbb{A}_X$).

For any $D \subset Y$ (or $D \subset X$) let K_D be the completion of the field of rational functions $\mathbb{F}_q(Y)$ (or $\mathbb{Q}(X)$) with respect to the discrete valuation given by D. We have $K_D \subset \prod_{x \in D} K_{x, D}$.

For any $x \in Y$ (or $x \in X$) let $K_x = \hat{O}_x \cdot L$, where $L = \mathbb{F}_q(Y)$ (or $L = \mathbb{Q}(X)$). We have $K_x \subset \prod_{D \ni x} K_{x, D}$.

We define inside $\prod_{x \in D} K_{x, D}$:

$$\mathbb{A}_{01} = \mathbb{A}_{012} \cap \prod_{D} K_D,$$
$$\mathbb{A}_{02} = \mathbb{A}_{012} \cap \prod_{x} K_x.$$
Adelic quotient group for algebraic surface

We fix an ample divisor C on Y. Then the complement $U = Y \setminus \text{supp} C$ is affine.

Theorem

There is an exact sequence of compact groups for $\mathbb{A}_{012} = \mathbb{A}_Y$:

$$0 \rightarrow G_1 \rightarrow \mathbb{A}_{012}/(\mathbb{A}_{01} + \mathbb{A}_{02}) \rightarrow G_2 \rightarrow 0,$$

where

$$G_1 \simeq \left(\prod_{D \subseteq Y, D \not\subseteq C} \left(\left(\prod_{x \in D} \mathcal{O}_{x, \mathcal{D}} \right) / \hat{\mathcal{O}}_D \right) \right) / \left(\prod_{x \in U} \hat{\mathcal{O}}_x \right),$$

and \prod' means an adelic (on algebraic surface) product, the ring $\mathcal{O}_{x, D}$ is the product of discrete valuation rings from the ring $K_{x,D}$ (for example, if $K_{x,D} = \mathbb{F}_{q^r}((u))((t))$, then $\mathcal{O}_{K_{x,D}} = \mathbb{F}_{q^r}((u))[[t]]$), the ring $\hat{\mathcal{O}}_D$ is the discrete valuation ring in K_D.
Groups G_1 and G_2

The group G_1 is compact, since the group

$$\hat{\mathcal{O}}_x \simeq \mathbb{F}_q[[u, t]]$$

is compact, and for a fixed $D \subset Y$ the group

$$\left(\prod_{x \in D} ' \mathcal{O}_{x, D} \right) / \hat{\mathcal{O}}_D \simeq (\mathbb{A}_D / \mathbb{F}_q(D)) [[t_D]]$$

is also compact.
Groups G_1 and G_2

The group G_1 is compact, since the group

$$\hat{\mathcal{O}}_x \simeq \mathbb{F}_q[[u, t]]$$

is compact, and for a fixed $D \subset Y$ the group

$$\left(\prod_{x \in D}' \mathcal{O}_{x,D}\right)/\hat{\mathcal{O}}_D \simeq \left(\mathbb{A}_D/\mathbb{F}_q(D)\right)[[t_D]]$$

is also compact.

The group G_2 has also an explicit presentation. We note only that in the simplest case

$$Y = \mathbb{P}^1_{\mathbb{F}_q} \times_{\mathbb{F}_q} \mathbb{P}^1_{\mathbb{F}_q}, \quad C = \mathbb{P}^1_{\mathbb{F}_q} \times y + y \times \mathbb{P}^1_{\mathbb{F}_q}$$

(y is a fixed \mathbb{F}_q-rational point on $\mathbb{P}^1_{\mathbb{F}_q}$) we have

$$G_2 \simeq \mathbb{F}_q((u))((t))/\left(\mathbb{F}_q[u^{-1}]((t)) + \mathbb{F}_q((u))[t^{-1}]\right).$$
Arithmetic surfaces

An arithmetic surface \(X \) (with morphism \(X \to \text{Spec} \mathbb{Z} \)) is “not compact” (since \(\text{Spec} \mathbb{Z} \) is “not compact”).
To have the good analogy with projective algebraic surface \(Y \) we have “to compactify” \(X \).
For this goal we have to take into account the fibre over the \(\infty \)-point of \(\text{Spec} \mathbb{Z} \), which corresponds to the Archimedean valuation of \(\mathbb{Q} \).
Arithmetic surfaces

An arithmetic surface X (with morphism $X \to \text{Spec} \mathbb{Z}$) is “not compact” (since $\text{Spec} \mathbb{Z}$ is “not compact”).

To have the good analogy with projective algebraic surface Y we have “to compactify” X.

For this goal we have to take into account the fibre over the ∞-point of $\text{Spec} \mathbb{Z}$, which corresponds to the Archimedean valuation of \mathbb{Q}.

Let a curve $X_\mathbb{Q} = X \times_{\text{Spec} \mathbb{Z}} \text{Spec} \mathbb{Q}$ be the fibre over the generic point of $\text{Spec} \mathbb{Z}$.

We define a ring of arithmetic adeles

$$A_X^{\text{ar}} = A_X \oplus (A_{X_\mathbb{Q}} \hat{\otimes}_\mathbb{Q} \mathbb{R}),$$

where the ring

$$A_{X_\mathbb{Q}} \hat{\otimes}_\mathbb{Q} \mathbb{R} = \lim_{\longrightarrow} \lim_{\longleftarrow} \prod_{D_1 \in \text{Div}(X_\mathbb{Q}) \atop D_2 \leq D_1} \left(\hat{\mathcal{O}}_u(D_1)/\hat{\mathcal{O}}_u(D_2) \right) \otimes_\mathbb{Q} \mathbb{R}.$$
Subgroups of the group of arithmetic adeles

We define subgroups of the group $\mathbb{A}^\text{ar}_{012} = \mathbb{A}^\text{ar}_X$ as

\[
\mathbb{A}^\text{ar}_{01} = \mathbb{A}_{01}, \quad \mathbb{A}^\text{ar}_{02} = \mathbb{A}_{X,02} \oplus (\mathbb{Q}(X) \otimes_\mathbb{Q} \mathbb{R}),
\]

where the group in the first formula is naturally embedded into the both summands for $\mathbb{A}^\text{ar}_{012}$,
the first summand in the second formula is naturally embedded into the first summand (scheme part) for $\mathbb{A}^\text{ar}_{012}$,
the second summand in the second formula is naturally embedded into the second summand (Archimedean part) for $\mathbb{A}^\text{ar}_{012}$.
Quotient group

We fix a “horizontal divisor” \(C \) on \(X \). Then \(U = X \setminus C \) is affine, and “\(C \) plus Archimedean fibre” is an analog of an ample divisor on a projective algebraic surface.

Theorem
There is an exact sequence of compact groups:

\[
0 \to \tilde{G}_1 \to \mathbb{A}^{ar}_{012}/(\mathbb{A}^{ar}_{01} + \mathbb{A}^{ar}_{02}) \to \tilde{G}_2 \to 0,
\]

where \(\tilde{G}_1 \) is written analogously to the group \(G_1 \) for an algebraic surface (but we have to take into account the fields \(\mathbb{R}((t)) \) and \(\mathbb{C}((t)) \) which come from the Archimedean part of \(\mathbb{A}^{ar}_{012} \)).
The group \tilde{G}_2

Let us give the description of the group \tilde{G}_2

Example

In the simplest case when $X = \mathbb{P}^1_{\mathbb{Z}}$ and C is a hyperplane section, we have that

$$\tilde{G}_2 \simeq \mathbb{R}((t))/\left(\mathbb{Z}((t)) + \mathbb{R}[t^{-1}]\right).$$
The group \tilde{G}_2

Let us give the description of the group \tilde{G}_2

Example

In the simplest case when $X = \mathbb{P}^1_{\mathbb{Z}}$ and C is a hyperplane section, we have that

$$\tilde{G}_2 \simeq \mathbb{R}((t))/\left(\mathbb{Z}((t)) + \mathbb{R}[t^{-1}]\right).$$

Proposition

For an arithmetic surface X we have $\tilde{G}_2 \simeq \lim_{\leftarrow m \geq 0} \Theta_m$, where the group

$$\Theta_m \simeq H^1(X, \mathcal{O}_X(-mC)) \otimes_{\mathbb{Z}} \mathbb{T} \simeq \mathbb{T}^{\text{rank}(H^1(X, \mathcal{O}_X(-mC)))}$$

is a finite direct product of copies of \mathbb{T} (we recall that $\mathbb{T} \simeq \mathbb{R}/\mathbb{Z}$).