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Painlevé Property

• Let R(z , ·, ·) be rational in y , y ′, and the coefficients are analytic in
z . Picard proposed to determine the forms of R in

d2y

dz2
= R(z , y , y ′) =

P(z , y , y ′)

Q(z , y , y ′)

such that ALL solutions have only fixed critical points, where
P, Q are of the forms

∑
I=(i1, i2) aI y

i1 (y ′)i2 .

• The above assumption is equivalent to:

All solutions are single-valued around all movable singularities.

• This is the criterion used by Painlevé, Gambier et al (1893–1906) to

find all the possible R. The criterion is now called the

Painlevé property.

• Accordingly, 50 classes of R: 6 of them are new.
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Painlevé equations

• PI: y
′′ = 6y2 + z

• PII: y
′′ = 2y3 + zy + α

• PIII : y ′′ =
y ′2

y
− 1

z
y ′ +

1

z
(αy2 + β) + γy3 +

δ

y

• PIV : y ′′ =
y ′2

2y
+

3y3

2
+ 4zy2 + 2(z2 − α)y +

β

y
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[y ′2

2y
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y − 1

]
− y ′

z
+

(y − 1)2

z2

(
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y

)
+
γy

z
+
δy(y + 1)

y − 1
• PVI:
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1

2
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y − t
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(1

t
+
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t − 1
+
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y − t
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y ′

+
y(y − 1)(y − t)
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(
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t

y2
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+ δ

t(t − 1)

(y − t)2
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Which are Integrable discrete Eqns?

• What are integrable difference equations

xn+1 + xn−1 = R(n; xn−1, xn) =
P(n, xn−1, xn)

Q(n, xn−1, xn)
?

where R is rational in xn−1, xn, coefficients in n

• Grammaticos, Ramani and Papageorgiou (e.g. Phys. Rev.
Lett. 1991): Singularity Confinement Property that
successfully identified a large number of integrable difference
equations that arise from physical applications (e.g.
2D-quantum field theory)

• E.g. It is generally regarded that the Eqn

xn+1 + xn−1 =
(αn + β)xn + γ

1− x2
n

,

denoted by dPII, is a discrete analogue of PII
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Some discrete Painlevé equations

• dPI: xn+1 + xn + xn−1 =
αn + γ(−1)n

xn
+ δ;

• dPVI: (xn+1 + xn)(xn + xn−1) =
(x2

n − κ2)(x2
n − µ2)

(xn + αn + β)2 − γ2

• a− dPI:
(αn + β)

xn+1 + xn
+

(α(n − 1) + β)

xn + xn−1
= −x2

n + γ;

• a− dPI: xn+1 + xn−1 =
αn + β

xn
+

γ

x2
n

;

• a− dPII:
αn + β

xn+1xn + 1
+
α(n − 1) + β

xnxn−1 + 1
= −xn +

1

xn
+ (αn + β) + γ.
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Discrete to continuous

• Philosophy: In general, consider

y(z + 1)− y(z) = h F (y(z)).

• Change of variables:

y(z) = u(x), x = hz .

So
u(x + h)− u(x)

h
= F (u(x)).

Letting

h→ 0 ⇒ du

dx
= F (u(x)).

• But x = hz , so h→ 0⇒ z →∞.

• So local property (finite difference) is being “transferred” to
∞: Nevanlinna theory applies.
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Discrete Eqns verse Functional Eqns

•
Discrete variable −→ Continuous variable

• dPII

yn+1 + yn−1 =
(αn + β)yn + γ

1− y2
n

• −→
y(z + 1) + y(z − 1) =

(αz + β)y(z) + γ

1− y(z)2
.
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Difference Painlevé test

• Grammaticos, Ramani & Papageorgiou (1991): Singularity
Confinement Property : a, b, ∞, c , d , ∞, ∞, e, f · · · . If
finite values always return, then it is integrable.

• Conte and Mussette (1996): Discrete Painlevé Test.

• Veselov (1992): The integability has an essential correlation
with the weak growth of certain characteristics. (Arnold
(1991)).

• Ablowitz, Halburd and Herbst (2000): Finite order of growth
at infinity via the Nevanlinna Theory.

• Shimomura (1981), Yanagihara (1985): there are large classes
of 1st- and 2nd-order difference equations that admit (global)
meromorphic solutions.
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Malmquist’s theorem

• L. Fuchs (1884): Let the Eqn.

y ′(z) =
P(z , y)

Q(z , y)
(1)

where P, Q are polynomials in y with coefficients analytic in
z . If all the solutions of (1) have only fixed critical points (i.e.,
Painlevé property), then it must reduce to a Riccati Eqn.:

y ′(z) = p2(z)y2 + p1(z)y + p0(z). (2)

• Malmquist (1913): If the DE (1) admits a transcendental
meromorphic solution, then it reduces to a Riccati eqn (1)

• K. Yosida (1933) gave a very simple “Nevanlinna proof”.
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Nevanlinna characteristics

• Nevanlinna introduces the Nevanlinna characteristics T (r , f )
to replace maximum modulus function
M(r , f ) = max|z|=r |f (re iθ)|, and T (r , f ) ∼ logM(r , f ) for f
entire.

• n(r , f ) := #
(
poles of f (z) in |z | < r

)
.

•

T (r , f ) : = m(r , f ) + N(r , f )

:=
1

2π

∫ 2π

0
log+ |f (re iθ)|dθ +

∫ r

0

n(t, f )

t
dt.

• Abbreviation: for arbitrary a ∈ C

N(r , a) = N
(
r ,

1

f − a

)
• T (r , f ) is a convex function of log r , T (r , f ) ↑ ∞ as r ↑ ∞.
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Nevanlinna order

• Let f be entire,

T (r , f ) ∼ logM(r , f ).

• When f is meromorphic, its order σ(f ) is defined by

σ(f ) = lim
r→∞

logT (r , f )

log r
=


0 (zero order) e.g., polynomial

< +∞ (finite order) e.g.,epolynomial

+∞ (infinite order) e.g., ee
z
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2nd order difference Malmquist’s Thm

Theorem (Halburd-Korhonen (2007))

If the Eqn.
y(z + 1) + y(z − 1) = R(z , y)

where R is rational in y and polynomial in z , has a finite order
transcendental meromorphic solution., then either y satisfies
y = (py + q)/(y + p) or after a linear transformation

• y + y + y =
π1z + π2

y
+ κ1;

y − y + y =
π1z + π2

y
+ (−1)zκ1;

• y + y =
π1z + π3

y
+ π2; y + y =

π1z + κ1

y
+
π2

y2
;

• y + y =
(π1z + κ1)y + π2

(−1)−z − y2
; y + y =

(π1z + κ1)y + π2

1− y2
;

• yy + yy = p; y + y = py + q where p, q are polynomials and
πk , κk are periodic of period k (= 1, 2, 3).
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A discrete Clunie lemma

• Theorem (Halburd-Korhonen (2006))

Let f (z) is a finite order σ meromorphic solution to the difference
equation

f n P(z , f ) = Q(z , f )

where both P and Q are difference polynomials of f (z) and its
shifts such that the total degree of Q ≤ n. Then for each ε > 0

m(r , P) = O(rσ−1+ε)

holds for all r without exceptional set (written in C.-Feng format).

• This lemma is crucial in establishing the conjecture of
Ablowitz, Halburd & Herbst.

• The lemma is refined by Laine and Yang (2007). There are
several versions now.
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A logarithmic difference lemma

• Theorem (Halburd-Korhonen (2006), C.-Feng (2008))

Let f (z) be a meromorphic function of finite order σ. Then for
each ε > 0, we have

m
(
r ,

f (z + 1)

f (z)

)
= O(rσ−1+ε). (3)

• This is generally not true for infinite order functions.
• This essentially means that

m
( f (z + 1)

f (z)
, r
)

= o(T (r , f )) a.e. (4)

• Nevanlinna’s original estimate:

f (z + 1)/f (z) −→ f ′(z)/f (z),

so that (4) holds without growth order restriction !!
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Little Picard’s Theorem

• Theorem (Picard (1879))

An entire function f assumes every value in C, except perhaps for
at most one exception

(E.g. f (x) = ex .)

• Method: Elliptic modular functions and Liouville’s theorem.

• Thus for an non-constant meromorphic function f

f (C) = Ĉ \ {at most two points}.

That is, a meromorphic function that omits three points must
reduce to a constant.

• We say points in Ĉ that are missed or assumed only finitely
many times by f a Picard exceptional values.
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Nevanlinna Theory I
• Key inequality I: Given a1, a2 ∈ C,

T (r , f ) < N(r , f ) + N(r , a1) + N(r , a2)− N1(r , f ) (5)

+ O
(
r logT (r , f )

)
, r →∞ (6∈ E )

where

N1(r , f ) = N(r , 1/f ′) + 2N(r , f )− N(r , f ′).

• z0 is a pole of f :

contrib. of N(r , f )− N1(r) = N(r , f )− 2N(r , f ) + N(r , f ′)

= −N(r , f ) + N(r , f ′)= 1;

• z0 is a aj -point (j = 1, 2) of f :

contrib. of N(r , aj)− N1(r) = N(r , aj)− N(r , 1/f ′)

= N(r , aj)− N(r , 1/(f − aj)
′)= 1;

•
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Nevanlinna Theory II

• Key inequality II: Given a1, a2 ∈ C,

T (r , f ) < N(r , f ) + N(r , a1) + N(r , a2) (6)

+ O
(
r logT (r , f )

)
, r →∞ (6∈ E )

where

N(r , f ) = counts each pole with multiplicity 1,

N(r , aj) = counts each aj -point with multiplicity 1

• Multiply −1
T (r , f ) and add 3 on both sides:

(
1−N(r , f )

T (r , f )

)
+
(

1−N(r , a1)

T (r , f )

)
+
(

1−N(r , a2)

T (r , f )

)
+o
(
1
)
≤ 3−1

r →∞ ( 6∈ E )
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Nevanlinna Theory III

• (
1− N(r , f )

T (r , f )

)
+
(

1− N(r , a1)

T (r , f )

)
+
(

1− N(r , a2)

T (r , f )

)
+o
(
1
)
≤ 2

r →∞ ( 6∈ E )

• If f misses ∞, a1, a2, then the above becomes

3 + o(1) ≈
(
1− o(1)

)
+
(
1− o(1)

)
+
(
1− o(1)

)
≤ 2.

A contradiction and thus proves the Little Picard Theorem.

• Nevanlinna deficiency at a:

0 ≤ Θ(a) = 1− lim sup
r→∞

N(r , a)

T (r , f )
≤ 1
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Difference Variations

• We re-interpret the followings:

(i) constants belong to ker
(

d
dx

)
(ii) f has three Picard values a, b, c means

f −1(a) = ∅, f −1(b) = ∅, f −1(c) = ∅.

→
(I) functions belong to ker (some difference operator)

(II)
f −1(a) 6= ∅, f −1(b) 6= ∅, f −1(c) 6= ∅.

but each lies on a specific periodic sequences.
• Halburd-Korhonen (2006): ∆f (x) = f (x + 1)− f (x),
• Chiang-Feng (2008, 2018): Askey-Wilson operator Dqf (x);
• Cheng-Chiang (2017): Wilson operator DW f (x);
• Chiang-Luo (2017): vanishing/infinite periods operators

∆ηf (x) = f (x + η)− f (x).
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Difference-type Picard theorem

Theorem (Halburd-Korhonen (2006))

If f is a finite-order meromorphic function that admits three
difference Picard values with separation η, then
0 ≡ ∆f (z) := f (z + η)− f (z). That is, f is a periodic function of
period η.

Figure: The left-side represents three preimages (any two consecutive
points differ by η) of the right-side.
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Varying-step difference operator

It is natural to ask if we could recover the classical Picard theorem
by letting the steps/periods

• ω →∞ so that the periodic sequences (the preimage) of
difference Picard theorem become sparse and “finally almost
disappeared” when interpreted appropriately:

∆ωf (x) = f (x + ω)− f (x)

where ω →∞;

• or c → 0 so that the period of the periodic function from

∆c f (x) = f (x + c)− f (x)

shrinks to zero so the a periodic function of zero-period is a
constant.
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Proximity function with Infinite periods

Theorem (C.-Luo (2017))

Let f (z) be a meromorphic function of finite order σ, 0 < β < 1
and 0 < |ω| < rβ. Then given 0 < ε < (1− β)/(2− β), we have

m
(
r ,

f (z + ω)

f (z)

)
= O

(
rσ−(1−β)(1−ε)+ε

)
= o

(
T (r , f )

) (7)

holds for r outside a set of finite logarithmic measure.
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Infinite period theory I

• Key inequality I’: Given a1, a2 ∈ C. The log-difference lemma
above leads to

T (r , f ) < N(r , f ) + N(r , a1) + N(r , a2)− N∆ω(r , f ) (8)

+ O
(
rσ−(1−β)(1−ε)+ε

)
, r →∞

where

N∆ω(r , f ) = N(r , 1/∆ωf ) + 2N(r , f )− N(r , ∆ωf ).

• The main task here is to find an analogue Ñ∆ω(r , f ) for
N(r , f ) for the ∆ω−operator.
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Difference Painlevé property Difference Little Picard Theorems Infinite periods Vanishing periods

Infinite period theory II

• Our aim is to find a correct Ñ∆ω
(r , f ) so that

T (r , f ) < Ñ∆ω (r , f ) + Ñ∆ω (r , a1) + Ñ∆ω (r , a2)

+ O
(
rσ−(1−β)(1−ε)+ε

)
, r → +∞,

where the varying steps-integrated counting fns are defined by

•
Ñ∆ω

(r , a) = Ñ∆ω

(
r ,

1

f − a

)
=

∫ r

0

ñ∆ω
(t, a)

t
dt,

and

Ñ∆ω
(r ,∞) := Ñ∆ω

(r , f ) =

∫ r

0

ñ∆ω (t, f )

t
dt.

The above are the analogues for the N(r , a) and N(r , f )
respectively.
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Infinite period theory II

• Our aim is to find a correct Ñ∆ω
(r , f ) so that

T (r , f ) < Ñ∆ω (r , f ) + Ñ∆ω (r , a1) + Ñ∆ω (r , a2)

+ O
(
rσ−(1−β)(1−ε)+ε

)
, r → +∞,

where the varying steps-integrated counting fns are defined by

•
Ñ∆ω

(r , a) = Ñ∆ω

(
r ,

1

f − a

)
=

∫ r

0

ñ∆ω
(t, a)

t
dt,

and

Ñ∆ω
(r ,∞) := Ñ∆ω

(r , f ) =

∫ r

0

ñ∆ω (t, f )

t
dt.

The above are the analogues for the N(r , a) and N(r , f )
respectively.
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Varying-step a−points counting functions I

We define the Verying steps counting function of f

ñ∆ω(r , a) = ñ∆ω

(
r ,

1

f − a

)
=

∑
|x |<r ,

h= multiplicity of f (x)=a,
k= multiplicity of ∆ωf (x)=0

(h − k)

over all x in {|x | < r} where h = h(x) is the multiplicity of the
a−points of f (x), and k = k(x) is the multiplicity of the 0−point
of ∆ωf (x), respectively.
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Varying-steps type pole counting functions II

Similarly, we define

ñ∆ω(r , ∞) = ñ∆ω

(
r ,

1

f
= 0
)

=
∑
|x |<r ,

h= multiplicity of 1/f (x)=0,
k= multiplicity of ∆ω(1/f )(x)=0

(h − k)

over all x in {|x | < r}, where h = h(x) is the multiplicity of the
zeros of 1/f (x), and k = k(x) is the multiplicity of zeros of
∆ω(1/f )(x).
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Varying-step Nevanlinna Deficiency

• We have

0 ≤ Θ∆ω(a) = 1− lim
r→∞

Ñ∆ω(r , a)

T (r , f )
≤ 1

• Let f (z) be a meromorphic function of finite order σ, we call
a ∈ Ĉ to be a Picard exceptional value for a varying-steps
difference operator with infinite period if
Ñ∆ω

(
r , 1/(f − a)

)
= O(1)

• If a is a Picard-value for a varying-steps difference operator
with infinite periods, then Θ∆ω(a) = 1,
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Varying-step Nevanlinna Deficiency

• We have

0 ≤ Θ∆ω(a) = 1− lim
r→∞

Ñ∆ω(r , a)

T (r , f )
≤ 1

• Let f (z) be a meromorphic function of finite order σ, we call
a ∈ Ĉ to be a Picard exceptional value for a varying-steps
difference operator with infinite period if
Ñ∆ω

(
r , 1/(f − a)

)
= O(1)

• If a is a Picard-value for a varying-steps difference operator
with infinite periods, then Θ∆ω(a) = 1,
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Difference Picard theorem with infinite periods

Theorem (C.-Luo (2017))

Let f (z) be a meromorphic function of finite order σ. Suppose f
has three Picard exceptional values with respect to a varying-steps
difference operator ∆ω with infinite period. Then f (z) is a
constant.
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Proximity function with vanishing periods

Theorem (C.-Luo (2017))

Let f (z) be a meromorphic function in C and r = |z | be fixed. We
have

lim
η→0

mη

(
r ,

f (z + η)

f (z)

)
= 0. (9)

Moreover, if we further assume 0 < |η| < α1(r), where

α1(r) = min
{

log−
1
2 r , 1/ (n(r + 1))2 }, n(r) = n(r , f )+n (r , 1/f ) .

(10)
Then

lim
r→∞

mη

(
r ,

f (z + η)

f (z)

)
= 0. (11)
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Difference Picard theorem with vanishing periods

Definition
We call a ∈ Ĉ is a Picard exceptional value for varying-steps
difference operator with vanishing period of f (z) if there is a
sequence ηn → 0 as n→∞ such that Ñ∆ηn

(r , 1/(f − a)) = O(1).

Theorem ((C.-Luo (2017))

Let f (z) be a meromorphic function having three Picard
exceptional values for varying-steps difference operator ∆η with
vanishing period. Then f (z) is a constant.
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Re-formulation of logarithmic derivative lemma

We give an alternative derivation of Nevanlinna’s original
logarithmic derivative lemma for finite order meromorphic function

m(r ,
f ′

f
) = O(log r)

for all r →∞ via a formal limiting process:

m

(
r ,

1

η

( f (z + η)

f (z)
− 1
))
−→ m

(
r ,

f ′

f

)
, η → 0.
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Limits

Theorem (C.- Luo (2017))

Let f (z) be a meromorphic function of finite order σ, then

lim
r→∞

lim
η→0

mη

(
r ,

1

η

( f (z + η)

f (z)
− 1
))

= O(log r), when σ ≥ 1;

(12)

lim
r→∞

lim
η→0

mη

(
r ,

1

η

( f (z + η)

f (z)
− 1
))

= O(1), when σ < 1. (13)

These results can be considered as Nevanlinna’s original estimate
for finite order meromorphic functions.
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Thank you for your attention !!
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