Limiting forms of difference Little Picard theorems $^{\rm 1}$

Edmund Y. M. Chiang^a, Xudan Luo^b

^aThe Hong Kong University of Science & Technology ^bUniversity of Buffalo

The Fourth Sino-Russian Conference in Mathematics

The University of Hong Kong $(15^{th} - 19^{th}, \text{October})$

19th October 2018

¹Research partially supported by Hong Kong Research Grant Council, (a, b) = -200

Difference Painlevé property

Difference Little Picard Theorems

Infinite periods

Vanishing periods

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Difference Painlevé property

Difference Little Picard Theorems

Infinite periods

Vanishing periods

Painlevé Property

Let R(z, ·, ·) be rational in y, y', and the coefficients are analytic in z. Picard proposed to determine the forms of R in

$$\frac{d^2y}{dz^2} = R(z, y, y') = \frac{P(z, y, y')}{Q(z, y, y')}$$

such that ALL solutions have only fixed critical points, where P, Q are of the forms $\sum_{I=(i_1,i_2)} a_I y^{i_1} (y')^{i_2}$.

- The above assumption is equivalent to: All solutions are single-valued around all movable singularities.
- This is the criterion used by <u>Painlevé</u>, <u>Gambier</u> et al (1893–1906) to find all the possible *R*. The criterion is now called the Painlevé property.
- Accordingly, 50 classes of *R*: 6 of them are new.

Painlevé Property

Let R(z, ·, ·) be rational in y, y', and the coefficients are analytic in z. Picard proposed to determine the forms of R in

$$\frac{d^2y}{dz^2} = R(z, y, y') = \frac{P(z, y, y')}{Q(z, y, y')}$$

such that ALL solutions have only fixed critical points, where P, Q are of the forms $\sum_{I=(i_1,i_2)} a_I y^{i_1} (y')^{i_2}$.

- The above assumption is equivalent to: All solutions are single-valued around all movable singularities.
- This is the criterion used by <u>Painlevé</u>, <u>Gambier</u> et al (1893–1906) to find all the possible *R*. The criterion is now called the Painlevé property.
- Accordingly, 50 classes of *R*: 6 of them are new.

Vanishing periods

Painlevé equations

• $P_1: y'' = 6y^2 + z$ • Pu: $v'' = 2v^3 + zv + \alpha$ • P_{III}: $y'' = \frac{y'^2}{v} - \frac{1}{z}y' + \frac{1}{z}(\alpha y^2 + \beta) + \gamma y^3 + \frac{\delta}{v}$ • $P_{IV}: y'' = \frac{y'^2}{2y} + \frac{3y^3}{2} + 4zy^2 + 2(z^2 - \alpha)y + \frac{\beta}{y}$ • $P_V: y'' = \left[\frac{y'^2}{2v} + \frac{y'^2}{v-1}\right] - \frac{y'}{z} + \frac{(y-1)^2}{z^2}\left(\alpha + \frac{\beta}{v}\right)$ $+\frac{\gamma y}{z}+\frac{\delta y(y+1)}{y-1}$ • P_{VI}: $y'' = \frac{1}{2} \left(\frac{1}{v} + \frac{1}{v-1} + \frac{1}{v-t} \right) (y')^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{v-t} \right) y'$ $+\frac{y(y-1)(y-t)}{t^{2}(t-1)^{2}}\left(\alpha+\beta\frac{t}{v^{2}}+\gamma\frac{t-1}{(v-1)^{2}}+\delta\frac{t(t-1)}{(v-t)^{2}}\right)$

Which are Integrable discrete Eqns?

• What are *integrable difference equations*

$$x_{n+1} + x_{n-1} = R(n; x_{n-1}, x_n) = \frac{P(n, x_{n-1}, x_n)}{Q(n, x_{n-1}, x_n)}?$$

where *R* is rational in x_{n-1} , x_n , coefficients in *n*

- Grammaticos, Ramani and Papageorgiou (e.g. Phys. Rev. Lett. 1991): Singularity Confinement Property that successfully identified a large number of integrable difference equations that arise from physical applications (e.g. 2D-quantum field theory)
- E.g. It is generally regarded that the Eqn

$$x_{n+1}+x_{n-1}=\frac{(\alpha n+\beta)x_n+\gamma}{1-x_n^2},$$

denoted by dP_{II} , is a discrete analogue of P_{II}

Some discrete Painlevé equations

• dP_I:
$$x_{n+1} + x_n + x_{n-1} = \frac{\alpha n + \gamma (-1)^n}{x_n} + \delta;$$

• dP_{VI}: $(x_{n+1} + x_n)(x_n + x_{n-1}) = \frac{(x_n^2 - \kappa^2)(x_n^2 - \mu^2)}{(x_n + \alpha n + \beta)^2 - \gamma^2}$
• a - dP_I: $\frac{(\alpha n + \beta)}{x_{n+1} + x_n} + \frac{(\alpha (n-1) + \beta)}{x_n + x_{n-1}} = -x_n^2 + \gamma;$
• a - dP_I: $x_{n+1} + x_{n-1} = \frac{\alpha n + \beta}{x_n} + \frac{\gamma}{x_n^2};$
• a - dP_{II}: $\frac{\alpha n + \beta}{x_{n+1}x_n + 1} + \frac{\alpha (n-1) + \beta}{x_n x_{n-1} + 1} = -x_n + \frac{1}{x_n} + (\alpha n + \beta) + \gamma$

•

Vanishing periods

Discrete to continuous

• Philosophy: In general, consider

$$y(z+1) - y(z) = h F(y(z)).$$

• Change of variables:

$$y(z) = u(x), \quad x = hz.$$

$$\frac{u(x+h)-u(x)}{h}=F(u(x)).$$

Letting

$$h \to 0 \quad \Rightarrow \quad \frac{du}{dx} = F(u(x)).$$

- But x = hz, so $h \to 0 \Rightarrow z \to \infty$.
- So local property (finite difference) is being "transferred" to ∞: Nevanlinna theory applies.

Vanishing periods

Discrete Eqns verse Functional Eqns

Discrete variable \longrightarrow Continuous variable

• dP_{II}

$$y_{n+1} + y_{n-1} = \frac{(\alpha n + \beta)y_n + \gamma}{1 - y_n^2}$$

• \longrightarrow $y(z+1) + y(z-1) = \frac{(\alpha z + \beta)y(z) + \gamma}{1 - v(z)^2}.$

Difference Painlevé test

- Grammaticos, Ramani & Papageorgiou (1991): Singularity Confinement Property: a, b, ∞, c, d, ∞, ∞, e, f ···. If finite values always return, then it is integrable.
- Conte and Mussette (1996): Discrete Painlevé Test.
- <u>Veselov</u> (1992): The *integability* has an essential correlation with the *weak growth* of certain characteristics. (Arnold (1991)).
- <u>Ablowitz, Halburd and Herbst</u> (2000): Finite order of growth at infinity via the Nevanlinna Theory.
- <u>Shimomura</u> (1981), <u>Yanagihara</u> (1985): there are large classes of 1st- and 2nd-order difference equations that admit (global) meromorphic solutions.

Difference Painlevé test

- Grammaticos, Ramani & Papageorgiou (1991): Singularity Confinement Property: a, b, ∞, c, d, ∞, ∞, e, f ···. If finite values always return, then it is integrable.
- Conte and Mussette (1996): Discrete Painlevé Test.
- <u>Veselov</u> (1992): The *integability* has an essential correlation with the *weak growth* of certain characteristics. (Arnold (1991)).
- <u>Ablowitz, Halburd and Herbst</u> (2000): Finite order of growth at infinity via the Nevanlinna Theory.
- <u>Shimomura</u> (1981), <u>Yanagihara</u> (1985): there are large classes of 1st- and 2nd-order difference equations that admit (global) meromorphic solutions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Difference Painlevé test

- Grammaticos, Ramani & Papageorgiou (1991): Singularity Confinement Property: a, b, ∞, c, d, ∞, ∞, e, f ···. If finite values always return, then it is integrable.
- Conte and Mussette (1996): Discrete Painlevé Test.
- <u>Veselov</u> (1992): The *integability* has an essential correlation with the *weak growth* of certain characteristics. (Arnold (1991)).
- <u>Ablowitz, Halburd and Herbst</u> (2000): Finite order of growth at infinity via the Nevanlinna Theory.
- <u>Shimomura</u> (1981), <u>Yanagihara</u> (1985): there are large classes of 1st- and 2nd-order difference equations that admit (global) meromorphic solutions.

Malmquist's theorem

• <u>L. Fuchs</u> (1884): Let the Eqn.

$$y'(z) = \frac{P(z, y)}{Q(z, y)}$$
(1)

where P, Q are polynomials in y with coefficients analytic in z. If all the solutions of (1) have only fixed critical points (i.e., Painlevé property), then it must reduce to a Riccati Eqn.:

$$y'(z) = p_2(z)y^2 + p_1(z)y + p_0(z).$$
 (2)

- Malmquist (1913): If the DE (1) admits a transcendental meromorphic solution, then it reduces to a Riccati eqn (1)
- <u>K. Yosida</u> (1933) gave a very simple "Nevanlinna proof".

Malmquist's theorem

• <u>L. Fuchs</u> (1884): Let the Eqn.

$$y'(z) = \frac{P(z, y)}{Q(z, y)}$$
(1)

where P, Q are polynomials in y with coefficients analytic in z. If all the solutions of (1) have only fixed critical points (i.e., Painlevé property), then it must reduce to a Riccati Eqn.:

$$y'(z) = p_2(z)y^2 + p_1(z)y + p_0(z).$$
 (2)

• <u>Malmquist</u> (1913): If the DE (1) admits *a transcendental meromorphic solution*, then it reduces to a Riccati eqn (1)

Malmquist's theorem

• <u>L. Fuchs</u> (1884): Let the Eqn.

$$y'(z) = \frac{P(z, y)}{Q(z, y)}$$
(1)

where P, Q are polynomials in y with coefficients analytic in z. If all the solutions of (1) have only fixed critical points (i.e., Painlevé property), then it must reduce to a Riccati Eqn.:

$$y'(z) = p_2(z)y^2 + p_1(z)y + p_0(z).$$
 (2)

- Malmquist (1913): If the DE (1) admits a transcendental meromorphic solution, then it reduces to a Riccati eqn (1)
- <u>K. Yosida</u> (1933) gave a very simple "Nevanlinna proof".

Nevanlinna characteristics

- <u>Nevanlinna</u> introduces the Nevanlinna characteristics T(r, f) to replace maximum modulus function $M(r, f) = \max_{|z|=r} |f(re^{i\theta})|$, and $T(r, f) \sim \log M(r, f)$ for f entire.
- n(r, f) := # (poles of f(z) in |z| < r).

$$\begin{aligned} f(r,f) &:= m(r,f) + N(r,f) \\ &:= \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta + \int_0^r \frac{n(t,f)}{t} dt. \end{aligned}$$

• Abbreviation: for arbitrary $a \in \mathbb{C}$

$$N(r, a) = N(r, \frac{1}{f-a})$$

• T(r, f) is a convex function of log r, $T(r, f) \uparrow \infty$ as $r \uparrow \infty$.

Infinite periods

Vanishing periods

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Nevanlinna order

• Let **f** be entire,

 $T(r, f) \sim \log M(r, f).$

• When f is meromorphic, its order $\sigma(f)$ is defined by

$$\sigma(f) = \lim_{r \to \infty} \frac{\log T(r, f)}{\log r} = \begin{cases} 0 & (\text{zero order}) \text{ e.g., polynomial} \\ < +\infty & (\text{finite order}) \text{ e.g., } e^{polynomial} \\ +\infty & (\text{infinite order}) \text{ e.g., } e^{e^z} \end{cases}$$

Vanishing periods

2nd order difference Malmquist's Thm Theorem (Halburd-Korhonen (2007)) *If the Eqn.*

$$y(z+1) + y(z-1) = R(z, y)$$

where R is rational in y and polynomial in z, has a finite order transcendental meromorphic solution., then either y satisfies • $\overline{y} + y + \underline{y} = \frac{\pi_1 z + \pi_2}{y} + \kappa_1;$ • $\overline{y} + \underline{y} = \frac{\pi_1 z + \pi_3}{v} + \pi_2; \qquad \overline{y} + \underline{y} = \frac{\pi_1 z + \kappa_1}{v} + \frac{\pi_2}{v^2};$ • $\overline{y} + \underline{y} = \frac{(\pi_1 z + \kappa_1)y + \pi_2}{(-1)^{-z} - v^2}; \quad \overline{y} + \underline{y} = \frac{(\pi_1 z + \kappa_1)y + \pi_2}{1 - v^2};$

Vanishing periods

2nd order difference Malmquist's Thm Theorem (Halburd-Korhonen (2007)) If the Eqn.

$$y(z+1) + y(z-1) = R(z, y)$$

where *R* is rational in *y* and polynomial in *z*, has a finite order transcendental meromorphic solution., then either *y* satisfies $\overline{y} = (\overline{p}y + q)/(y + p)$ or after a linear transformation

- $\overline{y} + y + \underline{y} = \frac{\pi_1 z + \pi_2}{y} + \kappa_1;$ $\overline{y} - y + \underline{y} = \frac{\pi_1 z + \pi_2}{y} + (-1)^z \kappa_1;$ • $\overline{y} + \underline{y} = \frac{\pi_1 z + \pi_3}{y} + \pi_2;$ $\overline{y} + \underline{y} = \frac{\pi_1 z + \kappa_1}{y} + \frac{\pi_2}{y^2};$ • $\overline{y} + \underline{y} = \frac{(\pi_1 z + \kappa_1)y + \pi_2}{(-1)^{-z} - y^2};$ $\overline{y} + \underline{y} = \frac{(\pi_1 z + \kappa_1)y + \pi_2}{1 - y^2};$
 - $\overline{y}y + \underline{y}y = p$; $\overline{y} + \underline{y} = py + q$ where p, q are polynomials and π_k, κ_k are periodic of period k (= 1, 2, 3).

A discrete Clunie lemma

• Theorem (Halburd-Korhonen (2006))

Let f(z) is a finite order σ meromorphic solution to the difference equation

$$f^n P(z, f) = Q(z, f)$$

where both *P* and *Q* are difference polynomials of f(z) and its shifts such that the total degree of $Q \le n$. Then for each $\varepsilon > 0$

$$m(r, P) = O(r^{\sigma-1+\varepsilon})$$

holds for all r without exceptional set (written in C.-Feng format).

- This lemma is crucial in establishing the conjecture of Ablowitz, Halburd & Herbst.
- The lemma is refined by Laine and Yang (2007). There are several versions now.

A logarithmic difference lemma

Theorem (Halburd-Korhonen (2006), C.-Feng (2008))
 Let f(z) be a meromorphic function of finite order σ. Then for each ε > 0, we have

$$m\left(r, \frac{f(z+1)}{f(z)}\right) = O(r^{\sigma-1+\varepsilon}).$$
(3)

- This is generally not true for infinite order functions.
- This essentially means that

$$m(\frac{f(z+1)}{f(z)}, r) = o(T(r, f))$$
 a.e. (4)

• Nevanlinna's original estimate:

$$f(z+1)/f(z) \longrightarrow f'(z)/f(z),$$

so that (4) holds without growth order restriction !!

Little Picard's Theorem

• Theorem (Picard (1879))

An entire function f assumes every value in $\mathbb{C},$ except perhaps for at most one exception

(E.g. $f(x) = e^{x}$.)

- Method: Elliptic modular functions and Liouville's theorem.
- Thus for an non-constant meromorphic function f

 $f(\mathbb{C}) = \hat{\mathbb{C}} \setminus \{ \text{at most two points} \}.$

That is, a meromorphic function that omits three points must reduce to a *constant*.

• We say points in $\hat{\mathbb{C}}$ that are missed or assumed only finitely many times by f a *Picard exceptional values*.

Little Picard's Theorem

• Theorem (Picard (1879))

An entire function f assumes every value in $\mathbb{C},$ except perhaps for at most one exception

(E.g. $f(x) = e^{x}$.)

- Method: Elliptic modular functions and Liouville's theorem.
- Thus for an non-constant meromorphic function *f*

 $f(\mathbb{C}) = \hat{\mathbb{C}} \setminus \{ \text{at most two points} \}.$

That is, a meromorphic function that omits three points must reduce to a *constant*.

 We say points in Ĉ that are missed or assumed only finitely many times by f a Picard exceptional values.

Nevanlinna Theory I

• Key inequality I: Given $a_1, a_2 \in \mathbb{C}$, $T(r, f) < N(r, f) + N(r, a_1) + N(r, a_2) - N_1(r, f)$ (5) $+ O(r \log T(r, f)), r \to \infty (\notin E)$

where

$$N_1(r, f) = N(r, 1/f') + 2N(r, f) - N(r, f').$$

- z_0 is a pole of f: contrib. of $N(r, f) - N_1(r) = N(r, f) - 2N(r, f) + N(r, f')$ = -N(r, f) + N(r, f') = 1;
- z_0 is a a_j -point (j = 1, 2) of f: contrib. of $N(r, a_j) - N_1(r) = N(r, a_j) - N(r, 1/f')$ $= N(r, a_j) - N(r, 1/(f - a_j)') = 1;$

Nevanlinna Theory II

• Key inequality II: Given $a_1, a_2 \in \mathbb{C}$,

$$T(r, f) < \overline{N}(r, f) + \overline{N}(r, a_1) + \overline{N}(r, a_2)$$
(6)
+ $O(r \log T(r, f)), \quad r \to \infty \ (\notin E)$

where

 $\overline{N}(r, f) = \text{counts each pole with multiplicity 1},$ $\overline{N}(r, a_j) = \text{counts each } a_j\text{-point with multiplicity 1}$

• Multiply $\frac{-1}{T(r,f)}$ and add 3 on both sides:

$$\left(1 - \frac{\overline{N}(r, f)}{T(r, f)}\right) + \left(1 - \frac{\overline{N}(r, a_1)}{T(r, f)}\right) + \left(1 - \frac{\overline{N}(r, a_2)}{T(r, f)}\right) + o(1) \le 3 - 1$$

$$r \to \infty \ (\notin E)$$

Infinite periods

Nevanlinna Theory III

$\left(1-\frac{\overline{N}(r, f)}{T(r, f)}\right)+\left(1-\frac{\overline{N}(r, a_1)}{T(r, f)}\right)+\left(1-\frac{\overline{N}(r, a_2)}{T(r, f)}\right)+o(1)\leq 2$

 $r \to \infty \ (\not\in E)$

• If f misses ∞ , a_1 , a_2 , then the above becomes

 $3 + o(1) \approx (1 - o(1)) + (1 - o(1)) + (1 - o(1)) \le 2.$

A contradiction and thus proves the Little Picard Theorem.

• Nevanlinna deficiency at a:

$$0 \leq \Theta(a) = 1 - \limsup_{r o \infty} rac{N(r, a)}{T(r, f)} \leq 1$$

Vanishing periods

Difference Variations

- We re-interpret the followings:
- (i) <u>constants</u> belong to $\operatorname{ker}\left(\frac{d}{dx}\right)$

(ii) f has three Picard values a, b, c means

$$f^{-1}(a)=\emptyset, \quad f^{-1}(b)=\emptyset, \quad f^{-1}(c)=\emptyset.$$

(I) <u>functions</u> belong to ker (some difference operator)(II)

 $f^{-1}(a)
eq \emptyset, \quad f^{-1}(b)
eq \emptyset, \quad f^{-1}(c)
eq \emptyset.$

- Halburd-Korhonen (2006): $\Delta f(x) = f(x+1) f(x)$,
- Chiang-Feng (2008, 2018): Askey-Wilson operator $\mathcal{D}_q f(x)$;
- Cheng-Chiang (2017): Wilson operator $D_W f(x)$;
- Chiang-Luo (2017): vanishing/infinite periods operators $\Delta_{\eta} f(x) = f(x + \eta) - f(x).$

Difference Variations

- We re-interpret the followings:
- (i) <u>constants</u> belong to ker $\left(\frac{d}{dx}\right)$
- (ii) f has three Picard values a, b, c means

$$f^{-1}(a) = \emptyset, \quad f^{-1}(b) = \emptyset, \quad f^{-1}(c) = \emptyset.$$

(I) <u>functions</u> belong to ker (some difference operator)(II)

$$f^{-1}(a)
eq \emptyset, \quad f^{-1}(b)
eq \emptyset, \quad f^{-1}(c)
eq \emptyset.$$

- Halburd-Korhonen (2006): $\Delta f(x) = f(x+1) f(x)$,
- Chiang-Feng (2008, 2018): Askey-Wilson operator $\mathcal{D}_q f(x)$;
- Cheng-Chiang (2017): Wilson operator $D_W f(x)$;
- Chiang-Luo (2017): vanishing/infinite periods operators $\Delta_{\eta} f(x) = f(x + \eta) - f(x).$

 \rightarrow

Difference Variations

- We re-interpret the followings:
- (i) <u>constants</u> belong to ker $\left(\frac{d}{dx}\right)$
- (ii) f has three Picard values a, b, c means

$$f^{-1}(a) = \emptyset, \quad f^{-1}(b) = \emptyset, \quad f^{-1}(c) = \emptyset.$$

(I) <u>functions</u> belong to ker (some difference operator)(II)

 $f^{-1}(a) \neq \emptyset, \quad f^{-1}(b) \neq \emptyset, \quad f^{-1}(c) \neq \emptyset.$

- Halburd-Korhonen (2006): $\Delta f(x) = f(x+1) f(x)$,
- Chiang-Feng (2008, 2018): Askey-Wilson operator $\mathcal{D}_q f(x)$;
- Cheng-Chiang (2017): Wilson operator $D_W f(x)$;
- Chiang-Luo (2017): vanishing/infinite periods operators $\Delta_{\eta} f(x) = f(x + \eta) - f(x).$

 \rightarrow

Difference Variations

- We re-interpret the followings:
- (i) <u>constants</u> belong to ker $\left(\frac{d}{dx}\right)$
- (ii) f has three Picard values a, b, c means

$$f^{-1}(a) = \emptyset, \quad f^{-1}(b) = \emptyset, \quad f^{-1}(c) = \emptyset.$$

(I) <u>functions</u> belong to ker (some difference operator)(II)

$$f^{-1}(a) \neq \emptyset, \quad f^{-1}(b) \neq \emptyset, \quad f^{-1}(c) \neq \emptyset.$$

- Halburd-Korhonen (2006): $\Delta f(x) = f(x+1) f(x)$,
- Chiang-Feng (2008, 2018): Askey-Wilson operator $\mathcal{D}_q f(x)$;
- Cheng-Chiang (2017): Wilson operator $D_W f(x)$;
- Chiang-Luo (2017): vanishing/infinite periods operators $\Delta_{\eta} f(x) = f(x + \eta) - f(x).$

Difference-type Picard theorem

Theorem (Halburd-Korhonen (2006))

If f is a finite-order meromorphic function that admits three difference Picard values with separation η , then $0 \equiv \Delta f(z) := f(z + \eta) - f(z)$. That is, f is a periodic function of period η .

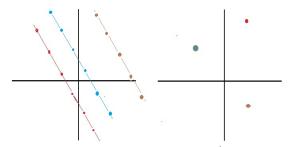


Figure: The left-side represents three preimages (any two consecutive points differ by η) of the right-side.

Varying-step difference operator

It is natural to ask if we could recover the classical Picard theorem by letting the steps/periods

 ω → ∞ so that the periodic sequences (the preimage) of difference Picard theorem become sparse and "finally almost disappeared" when interpreted appropriately:

 $\Delta_{\omega}f(x)=f(x+\omega)-f(x)$

where $\omega \to \infty$;

• or $c \rightarrow 0$ so that the period of the periodic function from

 $\Delta_c f(x) = f(x+c) - f(x)$

shrinks to zero so the a periodic function of zero-period is a constant.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Proximity function with Infinite periods

Theorem (C.-Luo (2017))

Let f(z) be a meromorphic function of finite order σ , $0 < \beta < 1$ and $0 < |\omega| < r^{\beta}$. Then given $0 < \varepsilon < (1 - \beta)/(2 - \beta)$, we have

$$m\left(r, \frac{f(z+\omega)}{f(z)}\right) = O(r^{\sigma-(1-\beta)(1-\varepsilon)+\varepsilon})$$

= $o(T(r, f))$ (7)

holds for r outside a set of finite logarithmic measure.

Infinite period theory I

 Key inequality I': Given a₁, a₂ ∈ C. The log-difference lemma above leads to

$$T(r, f) < N(r, f) + N(r, a_1) + N(r, a_2) - N_{\Delta_{\omega}}(r, f) \quad (8) + O(r^{\sigma - (1-\beta)(1-\varepsilon)+\varepsilon}), \quad r \to \infty$$

where

 $N_{\Delta_{\omega}}(r, f) = N(r, 1/\Delta_{\omega}f) + 2N(r, f) - N(r, \Delta_{\omega}f).$

• The main task here is to find an analogue $\overline{N}_{\Delta_{\omega}}(r, f)$ for $\overline{N}(r, f)$ for the Δ_{ω} -operator.

Infinite period theory I

 Key inequality I': Given a₁, a₂ ∈ C. The log-difference lemma above leads to

$$T(r, f) < N(r, f) + N(r, a_1) + N(r, a_2) - N_{\Delta_{\omega}}(r, f) \quad (8) + O(r^{\sigma - (1-\beta)(1-\varepsilon)+\varepsilon}), \quad r \to \infty$$

where

$$N_{\Delta_{\omega}}(r, f) = N(r, 1/\Delta_{\omega}f) + 2N(r, f) - N(r, \Delta_{\omega}f).$$

• The main task here is to find an analogue $\widetilde{N}_{\Delta_{\omega}}(r, f)$ for $\overline{N}(r, f)$ for the Δ_{ω} -operator.

Infinite period theory II

• Our aim is to find a correct $\tilde{N}_{\Delta_{\omega}}(r, f)$ so that

$$egin{aligned} T(r,\,f) &< \widetilde{N}_{\Delta_\omega}(r,f) + \widetilde{N}_{\Delta_\omega}(r,a_1) + \widetilde{N}_{\Delta_\omega}(r,a_2) \ &+ Oig(r^{\sigma-(1-eta)(1-arepsilon)+arepsilon}ig), \quad r o +\infty, \end{aligned}$$

where the varying steps-integrated counting fns are defined by

and

$$\widetilde{N}_{\Delta_\omega}(r,\infty):=\widetilde{N}_{\Delta_\omega}(r,\,f)=\int_0^r rac{\widetilde{n}_{\Delta_\omega}(t,f)}{t}\,dt.$$

The above are the analogues for the N(r, a) and N(r, f) respectively.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Infinite period theory II

• Our aim is to find a correct $\tilde{N}_{\Delta_{\omega}}(r, f)$ so that

$$egin{aligned} T(r,\,f) &< \widetilde{N}_{\Delta_\omega}(r,f) + \widetilde{N}_{\Delta_\omega}(r,a_1) + \widetilde{N}_{\Delta_\omega}(r,a_2) \ &+ Oig(r^{\sigma-(1-eta)(1-arepsilon)+arepsilon}ig), \quad r o+\infty, \end{aligned}$$

where the varying steps-integrated counting fns are defined by

 $\widetilde{N}_{\Delta_{\omega}}(r,a) = \widetilde{N}_{\Delta_{\omega}}\left(r, \frac{1}{f-a}\right) = \int_{0}^{r} \frac{\widetilde{n}_{\Delta_{\omega}}(t,a)}{t} dt,$

and

$$\widetilde{N}_{\Delta_{\omega}}(r,\infty) := \widetilde{N}_{\Delta_{\omega}}(r, f) = \int_{0}^{r} rac{\widetilde{n}_{\Delta_{\omega}}(t, f)}{t} dt.$$

The above are the analogues for the $\overline{N}(r, a)$ and $\overline{N}(r, f)$ respectively.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Varying-step *a*-points counting functions I

We define the Verying steps counting function of f

$$\tilde{n}_{\Delta_{\omega}}(r, a) = \tilde{n}_{\Delta_{\omega}}\left(r, \frac{1}{f-a}\right) \\ = \sum_{\substack{|x| < r, \\ h = \text{ multiplicity of } f(x) = a, \\ k = \text{ multiplicity of } \Delta_{\omega}f(x) = 0} (h-k)$$

over all x in $\{|x| < r\}$ where h = h(x) is the *multiplicity* of the *a*-points of f(x), and k = k(x) is the *multiplicity* of the 0-point of $\Delta_{\omega} f(x)$, respectively.

Varying-steps type pole counting functions II

Similarly, we define

$$ilde{n}_{\Delta_{\omega}}(r, \infty) = ilde{n}_{\Delta_{\omega}}\left(r, \ rac{1}{f} = 0
ight)
onumber \ = \sum_{\substack{|x| < r, \ h = ext{ multiplicity of } 1/f(x) = 0, \ k = ext{ multiplicity of } \Delta_{\omega}(1/f)(x) = 0} (h-k)$$

over all x in $\{|x| < r\}$, where h = h(x) is the *multiplicity* of the zeros of 1/f(x), and k = k(x) is the *multiplicity* of zeros of $\Delta_{\omega}(1/f)(x)$.

Varying-step Nevanlinna Deficiency

• We have

$$0 \leq \Theta_{\Delta_\omega}(a) = 1 - arprojlim_{r o \infty} rac{\widetilde{N}_{\Delta_\omega}(r, \, a)}{T(r, \, f)} \leq 1$$

- Let f(z) be a meromorphic function of finite order σ , we call $a \in \widehat{\mathbb{C}}$ to be a *Picard exceptional value for a varying-steps* difference operator with infinite period if $\widetilde{N}_{\Delta\omega}(r, 1/(f a)) = O(1)$
- If a is a Picard-value for a varying-steps difference operator with infinite periods, then Θ_{Δω}(a) = 1,

Varying-step Nevanlinna Deficiency

We have

$$0 \leq \Theta_{\Delta_\omega}(a) = 1 - ert ec{\lim}_{r o \infty} rac{\widetilde{N}_{\Delta_\omega}(r, a)}{\mathcal{T}(r, f)} \leq 1$$

- Let f(z) be a meromorphic function of finite order σ , we call $a \in \widehat{\mathbb{C}}$ to be a *Picard exceptional value for a varying-steps* difference operator with infinite period if $\widetilde{N}_{\Delta\omega}(r, 1/(f-a)) = O(1)$
- If a is a Picard-value for a varying-steps difference operator with infinite periods, then Θ_{Δω}(a) = 1,

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Difference Picard theorem with infinite periods

Theorem (C.-Luo (2017))

Let f(z) be a meromorphic function of finite order σ . Suppose f has three Picard exceptional values with respect to a varying-steps difference operator Δ_{ω} with infinite period. Then f(z) is a constant.

Proximity function with vanishing periods

Theorem (C.-Luo (2017))

Let f(z) be a meromorphic function in \mathbb{C} and r = |z| be fixed. We have

$$\lim_{\eta\to 0} m_{\eta} \left(r, \frac{f(z+\eta)}{f(z)} \right) = 0.$$
(9)

Moreover, if we further assume $0 < |\eta| < \alpha_1(r)$, where

$$\alpha_1(r) = \min\left\{\log^{-\frac{1}{2}}r, 1/(n(r+1))^2\right\}, \ n(r) = n(r, f) + n(r, 1/f).$$
(10)

Then

$$\lim_{r \to \infty} m_{\eta} \left(r, \, \frac{f(z+\eta)}{f(z)} \right) = 0. \tag{11}$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 のへぐ

Difference Picard theorem with vanishing periods

Definition

We call $a \in \widehat{\mathbb{C}}$ is a Picard exceptional value for varying-steps difference operator with vanishing period of f(z) if there is a sequence $\eta_n \to 0$ as $n \to \infty$ such that $\widetilde{N}_{\Delta \eta_n}(r, 1/(f - a)) = O(1)$.

Theorem ((C.-Luo (2017))

Let f(z) be a meromorphic function having three Picard exceptional values for varying-steps difference operator Δ_{η} with vanishing period. Then f(z) is a constant.

Re-formulation of logarithmic derivative lemma

We give an alternative derivation of Nevanlinna's original logarithmic derivative lemma for finite order meromorphic function

 $m(r, \frac{f'}{f}) = O(\log r)$

for all $r \to \infty$ via a formal limiting process:

$$m\left(r, \frac{1}{\eta}\left(\frac{f(z+\eta)}{f(z)}-1\right)\right) \longrightarrow m\left(r, \frac{f'}{f}\right), \qquad \eta \to 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Limits

Theorem (C.- Luo (2017))

Let f(z) be a meromorphic function of finite order σ , then

$$\lim_{r \to \infty} \lim_{\eta \to 0} m_{\eta} \left(r, \frac{1}{\eta} \left(\frac{f(z+\eta)}{f(z)} - 1 \right) \right) = O(\log r), \quad \text{when} \quad \sigma \ge 1;$$
(12)
$$\lim_{r \to \infty} \lim_{\eta \to 0} m_{\eta} \left(r, \frac{1}{\eta} \left(\frac{f(z+\eta)}{f(z)} - 1 \right) \right) = O(1), \quad \text{when} \quad \sigma < 1. \quad (13)$$

These results can be considered as Nevanlinna's original estimate for finite order meromorphic functions.

Thank you for your attention !!

References

- M. J. Ablowitz and R. G. Halburd and B. Herbst, "On the extension of the Painlevé property to difference equations" *Trans. Amer. Math. Soc.* 13 (2000), 889–905.
- K.-H. Cheng and Y. M. Chiang, "Nevanlinna theory based on Wilson divided difference operator", Ann. Acad. Sci. Fenn. Math. 42, (2017), 175-209.
- 3. Y. M. Chiang and S. J. Feng, "On the Nevanlinna characteristic of $f(z + \eta)$ and difference equations in the complex plane", *The Ramanujan J.* **16** (2008), 105–129
- 4. Y. M. Chiang and S. J. Feng, "Nevanlinna theory based on Askey-Wilson divided difference operator", *Adv. Math.* **329**, (2018), 217-272.
- 5. Y. M. Chiang and X. Luo, "Difference Nevanlinna theories with vanishing and infinite periods", Michigan Math. J., **66**, (3), (2017), 451-480.
- R. G. Halburd and R. J. Korhonen, "Difference analogue of the lemma on the logarithmic derivative with applications to difference equations" *J. Math. Anal. Appl.* **314** (2006) 477–487.
- 7. R. G. Halburd and R. J. Korhonen, "Nevanlinna theory for the difference operator", Ann. Acad. Sci. Fenn. Math. **31** (2006) 463–478
- R. G. Halburd and R. J. Korhonen, "Finite-order meromorphic solutions and the discrete Painlevé equations" Proc. Lond. Math. Soc. (3) 94 (2007), 443–474.
- 9. A. Ramani and B. Grammaticos and J. Hietarinta, "Discrete versions of the Painlevé equations", *Phys. Rev. Lett.* **67** (1991), 1829–1832.
- A. P. Veselov, "Growth and integrability in the dynamics of mappings", Comm. Math. Phys., 145 (1992), 181-193.