An additive problem with coefficients of automorphic functions and related problems

Irina Rezvyakova

Steklov Mathematical Institute, Moscow

The 4th Sino-Russian Conference in Mathematics October, 15-19, 2018 HKU

Additive problem

The additive problem is the question of getting some nontrivial information about the sum

$$S = \sum_{\substack{m_2n_2-m_1n_1=l,\\n_1 \leq N}} \overline{a(n_2)}a(n_1)$$

when $N \to +\infty$, where

• $a(\cdot)$ is an arithmetic function,

2 m_1, m_2, l are positive integers, $(m_1, m_2) = 1$.

In general we may assume that m_1, m_2, I can grow with N, i.e.

$$m_1 m_2 l \leq N^{\delta}$$
 for some $0 < \delta < 1$.

A trivial result

Some trivial result can be obtained by the Cauchy inequality using the estimate for the square mean of the coefficients $a(\cdot)$. Set for simplicity $m_1 = m_2 = l = 1$ to be fixed positive integers. Then

$$|S| \leq \sum_{\substack{n_2-n_1=1,\\n_1 \leq N}} |\overline{a(n_2)}a(n_1)| = \sum_{n \leq N} |\overline{a(n+1)}a(n)| \leq \sum_{n \leq N+1} |a(n)|^2$$

For example,

$$\zeta^{2}(s) = \sum_{n=1}^{+\infty} \frac{d(n)}{n^{s}} \to a(n) = d(n) := \sum_{d_{1}d_{2}=n} 1, \quad S \ll N \log^{3} N,$$

$$\mathbf{2} \ L(s) = \sum_{n=1}^{+\infty} \frac{a(n)}{n^{s}} \to a(n) \ll_{\varepsilon} n^{\varepsilon} \quad S \ll_{\varepsilon} N^{1+2\varepsilon}.$$

The property

$$a(n) \ll_{\varepsilon} n^{\varepsilon}$$

is usually called the Ramanujan conjecture.

Irina Rezvyakova (Moscow)

What is a nontrivial result

If one can estimate from above |S| by

$$S \ll N^{1-\delta}, \quad \delta > 0$$

(or, to prove an asymptotic formula with such error term) then it is said that a *nontrivial* result is obtained.

Direct application

For simplicity, let us put aside the case with nonzero main term. Then the estimate $S \ll N^{1-\delta}$ gives an analytic continuation of the series

$$L(s) = \sum_{n=1}^{+\infty} \frac{\overline{a(n+1)}a(n)}{n^s}$$

to the region $\operatorname{Re} s > 1 - \delta$ by the Abel's partial summation formula

$$\sum_{a < n \leq b} c(n)F(n) = -\mathbb{C}(b)F(b) + \int\limits_{a}^{b} \mathbb{C}(u)dF(u),$$
если $F \in C^1[a,b], \ \mathbb{C}(u) = \sum_{a < n \leq u} c(n).$

Direct application

Let
$$\operatorname{Re} s > 1$$
, $M > 1$, $c(n) = \overline{a(n+1)}a(n)$, $F(u) = u^{-s}$. Then , $\mathbb{C}(u) = O(u^{1-\delta})$ and

$$\sum_{1\leq n\leq M} \frac{\overline{a(n+1)}a(n)}{n^s} = -\mathbb{C}(M)M^{-s} - s\int_1^M \frac{\mathbb{C}(u)}{u^{s+1}}du.$$

Now put $M \to +\infty$ to obtain that

$$L(s) = -s \int_{1}^{+\infty} \frac{\mathbb{C}(u)}{u^{s+1}} du,$$

is analytic in $\operatorname{Re} s > 1 - \delta$.

Another application

For $L(s) = \sum_{n=1}^{+\infty} \frac{a(n)}{n^s}$, the problem of evaluating the integral

$$\int |L(1/2+it)|^2 dt$$

gives rise to an additive problem with the coefficients a(n), since as in the case of the Riemann zeta-function we can (roughly speaking) use an approximation to L(s) via finite Dirichlet series:

$$L(1/2+it) = \sum_{n \leq A(t)} \frac{a(n)}{n^{1/2+it}} + \dots$$

Additive problem

Exploring the mean-value estimates

If we know the asymptotic formula like

$$\int_{0}^{T} |L(1/2+it)|^2 dt = TP(\log T) + O(H^{1+\varepsilon}), H = T^{1-\delta}$$

then we can get a bound

$$\int_{T}^{T+H} |L(1/2+it)|^2 dt = O(H^{1+\varepsilon})$$

and by the following formula

$$|L(1/2+iT)|^2 \ll \log T \left(1 + \int_{T-H}^{T+H} |L(1/2+it)|^2 dt\right)$$

the estimate

$$L(1/2+it) \ll |t|^{\frac{1-\delta}{2}+\varepsilon}$$

Irina Rezvyakova (Moscow)

Exploring the mean-value estimates

For example, for $\zeta(s)$ we have from the mean-value formula the bound

$$\zeta(1/2+it)\ll |t|^{1/6+arepsilon}$$

which is by now improved not much using the estimates for special exponential sums as (J. Bourgain – N. Watt, 2017)

$$\zeta(1/2+it) \ll |t|^{1/6-0.01...}$$

though the Riemann hypothesis implies the estimate $\zeta(1/2 + it) \ll |t|^{\varepsilon}$.

Exploring the mean-value estimates

Estimates for the number of zeros of analytic functions in certain domains are also very important. By Littlewood's lemma, the mean-value estimate is connected to the number of zeros of L(s) in a rectangle.

Let $L(\sigma + it)$ be analytic and nonzero on rectangle γ with verticies $\sigma_0, \sigma_1, \sigma_1 + iT, \sigma_0 + iT$. Then

$$2\pi \sum_{\rho \in \gamma} dist(\rho) = \int_{0}^{T} \log |L(\sigma_0 + it)| dt - \int_{0}^{T} \log |L(\sigma_1 + it)| dt$$
$$+ \int_{\sigma_0}^{\sigma_1} \arg L(\sigma + iT) d\sigma - \int_{\sigma_0}^{\sigma_1} \arg L(\sigma) d\sigma.$$

But we can write a bound

$$\int_{0}^{T} \log |L(\sigma_0+it)| dt = \frac{1}{2} \int_{0}^{T} \log |L(\sigma_0+it)|^2 dt \leq \frac{T}{2} \log \left(\frac{1}{T} \int_{0}^{T} |L(\sigma_0+it)|^2\right)$$

The Riemann zeta-function

$$\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1} = \sum_{n=1}^{+\infty} \frac{1}{n^s}, \quad \operatorname{Re} s > 1$$

For $\operatorname{Re} s > 1$

$$\zeta^{-1}(s) = \prod_{p} \left(1 - \frac{1}{p^s} \right) = \sum_{n=1}^{+\infty} \frac{\mu(n)}{n^s}, \quad \mu(n) = \begin{cases} 1, & n = 1, \\ 0, & p^2 | n, \\ (-1)^t, & n = p_1 \cdot \ldots \cdot p_t. \end{cases}$$

Therefore, for $\operatorname{Re} s = \sigma > 1$

$$|\zeta^{-1}(s)| < \sum_{n=1}^{+\infty} rac{1}{n^\sigma} < 1 + \int\limits_{1}^{+\infty} rac{du}{u^\sigma} = rac{\sigma}{\sigma-1}$$

and, consequently,

,

$$|\zeta(s)| > \frac{\sigma-1}{\sigma} \neq 0.$$

 $\zeta(s)$ has meromorphic continuation to the whole complex-plane and satisfies the functional equation

$$\xi(s) := s(s-1)\pi^{-s/2}\Gamma(s/2)\zeta(s) = \overline{\xi(1-\overline{s})},$$

where $\xi(0) = \xi(1) = 1$. The Riemann zeta-function has a simple pole at s = 1. $\zeta(s)$ has *trivial zeros* at s = -2, -4, ...*nontrivial zeros* of the Riemann zeta-function are the zeros of $\xi(s)$. They lie in the *critical strip* $0 \le \text{Re } s \le 1$ and symmetric over the real axis and the line Re s = 1/2 (*the critical line*).

The Riemann hypothesis asserts that all nontrivial zeros of $\zeta(s)$ lie on the critical line $\operatorname{Re} s = 1/2$.

(I.M. Vinogradov) There are no zeros of $\zeta(\sigma + it)$ in the region

$$\sigma \geq 1 - O\left((\log t)^{-2/3} (\log \log t)^{-1/3}\right), t \geq 10.$$

Selberg class

In 1989 A. Selberg introduced a class of Dirichlet series L(s) which satisfy the following properties:

Selberg class

• the series
$$L(s) = \sum_{n=1}^{+\infty} \frac{a(n)}{n^s}$$
 are absolutely convergent for $\operatorname{Re} s > 1$,

$$\textbf{ a}(1) = 1, \ \textit{a}(n) \ll_{\varepsilon} \textit{n}^{\varepsilon} \text{ for every } \varepsilon > 0 \text{ and } n > 1, \\$$

• (Euler product)
$$\log L(s) = \sum_{n=1}^{+\infty} \frac{b(n)}{n^s}$$
, where $b(n) = 0$ except when *n* is of the form $n = p^r$ and, also, $b(n) = O(n^{\delta})$ for some $\delta < 1/2$,

(Functional equation) L(s) has a functional equation of the form

$$\Lambda(s) := H_L(s)L(s) = \overline{\Lambda(1-\overline{s})},$$

where
$$H_L(s) = \theta A^s \prod_{j=1}^k \Gamma(\lambda_j s + \mu_j)$$
 and $|\theta| = 1$, $A > 0$, $\lambda_j > 0$, $\operatorname{Re} \mu_j \ge 0$.

Other applications

Degree of an element from Selberg class

Definition

$$d = d_L := 2 \sum_{j=1}^k \lambda_j$$
 is the degree of $L(s)$.

Examples

1
$$d = 1 : \zeta(s), L(s, \chi) = \sum_{n=1}^{+\infty} \frac{\chi(n)}{n^s}.$$

3
$$d = 2: L(s, \psi)$$
, where ψ is the Hecke ideal calss group character for $\mathbb{Q}(\sqrt{-D})$.

Theorem

- (H.E. Richert, 1957) There are no elements in the Selberg class for 0 < d < 1.
- (A. Perelli, J. Kaczorowski, 1999) The Selberg class of degree 1 consists only of ζ(s) and L(s + iA, χ).
- (A. Perelli, J. Kaczorowski, 2002, 2011) The Selberg class for 1 < d < 2 is empty.

Automorphic forms

The Ramanujan conjecture was proved by P. Deligne for a class of L-functions, namely, for $L_f(s) = \sum_{n=1}^{+\infty} \frac{a_f(n)}{n^s}$ attached to a (holomorphic) automorphic cusp form f(z) of integral weight $k \ge 1$ for the group $\Gamma_0(D) = \{\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{D}\}$, and a character χ modulo D (briefly, $f \in S_k(\Gamma_0(D), \chi)$), which is an eigenfunction of all the Hecke operators. To be more precise, f is a holomorphic function on the $\mathbb{H} = \{\operatorname{Im} z > 0\}$ which vanishes at every cusp of $\Gamma_0(D)$ and

$$f(\gamma z) = \chi(\gamma)(cz + d)^k f(z)$$
 for every $\gamma \in \Gamma_0(D)$,
where $\gamma z = \frac{az + b}{cz + d}$, $\chi(\gamma) = \chi(d)$.

$$f(z) = \sum_{n=1}^{+\infty} a_f(n) n^{\frac{k-1}{2}} e^{2\pi i n z}, \quad \text{Re } z > 0.$$

Irina Rezvyakova (Moscow)

Automorphic forms

The Hecke operators T_n for n = 1, 2, ... are defined by

$$T_n f(z) = \frac{1}{n} \sum_{ad=n} \chi(a) a^k \sum_{0 \le b < d} f\left(\frac{az+b}{d}\right)$$

Assume that f is an eigenfunction of all the Hecke operators and that a(1) = 1. Then for $L_f(s) = \sum_{n=1}^{+\infty} \frac{a_f(n)}{n^s}$ we have:

Euler product

$$L_f(s) = \prod_p \left(1 - \frac{a_f(p)}{p^s} + \frac{\chi(p)}{p^{2s}}\right)^{-1}$$

with $|a_f(n)| \leq d(n)$.

Automorphic forms

 $L_f(s)$ satisfies the following functional equation

$$\Lambda(s) = \theta \cdot \overline{\Lambda(1-\overline{s})},$$

where $\Lambda(s)$ is an entire function,

$$\Lambda(s) = \left(\frac{2\pi}{\sqrt{D}}\right)^{-s - \frac{k-1}{2}} \Gamma\left(s + \frac{k-1}{2}\right) L_f(s),$$

and $|\theta| = 1$.

Corollary

 $L_f(s)$ is a function from Selberg class of degree 2.

Positive proportion theorem

The estimate for the second moment of L(s) appears in the problems which are quite close to the RH.

Selberg conjectured that for L(s) from class S an analogue of the Riemann hypothesis holds, i.e. all its nontrivial zeros lie on the critical line.

$$N(T) = \sum_{\substack{
ho = \sigma + it, \zeta(
ho) = 0 \ 0 < t \leq T}} 1 \sim rac{T}{2\pi} \ln T.$$

$$N_0(T) = \sum_{\substack{\rho = \frac{1}{2} + it, \zeta(\rho) = 0\\ 0 < t \le T}} 1,$$

G. Hardy, J. Littlewood (1921):

 $N_0(T) \gg T$.

Irina Rezvyakova (Moscow)

Positive proportion theorem

A. Selberg, 1942: a positive proportion of nontrivial zeros of $\zeta(s)$ lie on the critical line $\operatorname{Re} s = \frac{1}{2}$ (the same holds for $L(s, \chi)$).

N. Levinson (1974): more than one-third of zeros of Riemann's zeta-function are on $\sigma = 1/2$.

J.B. Conrey (1989): More than 2/5 of nontrivial zeros of the Riemann zeta-function lie on the critical line.

H.Bui, J.B.Conrey, M.Young and Sh. Feng (2010): More than 41% of the zeros of the zeta function are on the critical line.

Positive proportion theorem

$$\xi^{(k)}(s) = (-1)^k \xi^{(k)}(1-s).$$

If $\xi(s) \neq 0$ for $\operatorname{Re} s > \sigma_0$ ($\sigma_0 \leq 1$), then $\xi^{(k)}(s) \neq 0$ also.

J.B. Conrey (1983):

For $\xi^{(k)}(s)$ the estimate $N_0(T) = 1 - O(k^{-2})$ holds for $k \to +\infty$.

Selberg density theorem

A. Selberg (1946):

Corollary:

almost all nontrivial zeros of $\zeta(\sigma + it)$ lie in the region $|\sigma - 1/2| \leq \frac{\Phi(t)}{\log(|t|+2)}$, where $\Phi(t) \to +\infty$ with $|t| \to +\infty$.

Value-distribution for $\zeta(1/2 + it)$

Let $\varkappa_{a,b}$ be the characteristic function of the interval (a, b). Then

$$\int_{T}^{2T} \varkappa_{a,b} \left(\frac{\log |\zeta(1/2 + it)|}{\sqrt{\pi \log \log T}} \right) dt = T \int_{a}^{b} e^{-\pi u^2} du + o(T).$$

A. Ghosh (1983):

the error term can be bounded as $O(T(\log \log \log T)^{-1/2})$.

K.-M. Tsang (1984):

the error term can be bounded as
$$O\left(T\frac{(\log \log \log T)^2}{\sqrt{\log \log T}}\right)$$

Selberg's theorem for degree 2 L-functions

J.L. Hafner, 1983: Let $L(s, f) = \sum_{n=1}^{+\infty} \frac{a(n)}{n^s}$ be an *L*-function attached to a holomorphic cusp form $f(z) = \sum_{n=1}^{+\infty} a(n)n^{\frac{k-1}{2}}e^{2\pi i n z}$ of an even integral weight *k* for the full modular group with trivial character which is an eigenfunction of all the Hecke operators. Then a positive proportion of nontrivial zeros of L(s, f) lie on the critical line.

I. Rezvyakova:

the same statement holds true for $f \in S_k(\Gamma_0(D), \chi)$, $k \ge 1$.

Density theorem for degree 2 L-functions

Selberg's density theorem holds for $L_f(s)$, where $f \in S_k(\Gamma_0(D), \chi)$.

Therefore, the value-distribution result holds for $L_f(1/2 + it)$:

Other applications

Value-distribution result for $L_f(1/2 + it)$

$$\int_{T}^{2T} \varkappa_{a,b} \left(\frac{\log |L_f(1/2 + it)|}{\sqrt{\pi \log \log T}} \right) dt = T \int_{a}^{b} e^{-\pi u^2} du + o(T),$$

and (in case of independent $L_{f_1}(s)$ and $L_{f_2}(s)$)

$$\int_{T}^{2T} \varkappa_{a,b} \left(\frac{\log |L_{f_1}(1/2 + it)| - \log |L_{f_2}(1/2 + it)|}{\sqrt{2\pi \log \log T}} \right) dt$$
$$= T \int_{a}^{b} e^{-\pi u^2} du + o(T).$$

Idea of detecting zeros of a continuous function Let F(t) be a real-valued function. Let's define

$$J(t) = \int_{t}^{t+H} |F(u)| du, \qquad I(t) = \left| \int_{t}^{t+H} F(u) du \right|.$$

If J(t) > I(t) then F changes its sign on (t, t + H).

Set $E = \{t \in (T, 2T) : J(t) > I(t)\}$. Then it is easy to show that F has $\gg \mu(E)H^{-1}$ zeros on (T, 2T).

For L-functions we want to establish that

 $\mu(E) \gg T$ for $H \asymp (\log T)^{-1}$.

Define

$$M(t) = \int_{t}^{t+H} (F(u)-1) \, du.$$

Then

$$J(t) = \int_{t}^{t+H} |F(u)| du \ge H - |M(t)|.$$

We want to show that for a subset of positive measure on (T, 2T) (and $H \simeq \log^{-1} T$)

|M(t)| < H/3, |I(t)| < H/3.

Ideas of the proof

Scheme of the proof of Selberg's positive proportion theorem

Suppose that we have proved the estimates

$$\int_{T}^{2T} |I(t)|^2 dt = O\left(T\frac{H}{\ln T}\right), \int_{T}^{2T} |M(t)|^2 dt = O\left(T\frac{H}{\log T}\right).$$

Then

$$|I(t)| \leq rac{H}{3}$$
 and $|M(t)| \leq rac{H}{3}$

outside the subset of measure $O\left(\frac{T}{H\log T}\right)$. Choosing $H = \frac{A}{\log T}$, we get $\mu E \gg T$.

To associate with L(1/2 + it) a real-valued function, we recall the functional equation

$$\Lambda(s) = heta \overline{\Lambda(1 - \overline{s})}$$

and take $F(t) = \theta^{-1/2} \Lambda(1/2 + it)$, for example. The second moment gives rise to the series

$$D_{m_1,m_2}(s,l) = \sum_{n=1}^{+\infty} \frac{a(n)a(\frac{m_1n+l}{m_2})}{(m_1n+\frac{l}{2})^s}$$

which we can continue to the left of the line $\operatorname{Re} s = 1$ using the nontrivial estimates in additive problem.

Ideas of the proof

The idea of the proof for density theorem

The main inequlaity one should prove is the following

$$N := \int_{\sigma}^{1} (N(x, 2T) - N(x, T)) dx \ll T^{1-a(\sigma-1/2)}.$$

By the lemma of Littlewood:

$$N = \frac{1}{2\pi} \int_{T}^{2T} (\log |F(\sigma + it)| - \log |F(3 + it)|) dt + \frac{1}{2\pi} \int_{\sigma}^{3} (\arg |F(\sigma + 2iT)| - \arg |F(3 + iT)|) d\sigma.$$

By the inequality $\log x \leq \frac{1}{2}(x^2-1)$, our task is to estimate

$$\int_{\tau}^{2\tau} (|F(\sigma+it)|^2-1) dt \ll T^{1-\mathsf{a}(\sigma-1/2)}.$$

Irina Rezvyakova (Moscow)

Ideas of the proof

The idea of the proof for density theorem

Using Selberg's idea, for $\operatorname{Re} s > 1$ we can find Dirichlet polynomial $\eta(s)$ (which approximates $L^{-1}(s)$) such that

$$F(s) = L(s)\eta(s) = 1 + \sum_{n>T^{a_1}} \frac{\cdots}{n^s},$$

An easy integration on the line $\sigma=3/2$ gives

$$\int_{T}^{2T} (|F(\sigma+it)|^2-1)dt \ll T^{1-a(\sigma-1/2)}$$

Combining with the estimate on the line $\sigma=1/2,$ Gabriel's theorem gives us necessary bound

$$\int_{T}^{2T} (|F(\sigma+it)|^2-1) dt \ll T^{1-a(\sigma-1/2)}.$$

Irina Rezvyakova (Moscow)

Distribution theorem

A. Selberg proved how accurate is the approximation

$$\log \zeta(1/2 + it) = \sum_{p \le y} \frac{1}{p^{1/2 + it}} + r_y(t)?$$

The result is

$$\int_{T}^{2T} |r_y(t)|^{2k} dt \ll T(Ak)^k, \int_{T}^{2T} |\operatorname{Re} \sum_{p \leq y} \frac{1}{p^{1/2+it}}|^{2k} dt \asymp T(\log \log y)^k$$

Here the dencity theorem is used, and all the steps of the proof are similar to general L-function with Euler product.

Distribution theorem

The distribution theorem can be proved now by the method of characteristic functions and the Esseen inequality

$$\sup_{x} |G_{1}(x) - G_{2}(x)| \ll \int_{T}^{2T} \left| \frac{g_{1}(t) - g_{2}(t)}{t} \right| dt + \sup_{x} |G_{2}'|,$$

using for the characteristic function

$$g(t) = rac{1}{T} \int\limits_{T}^{2T} e^{it\omega_T(x)} dx, ext{ where } \omega_T(x) = rac{\log \zeta(1/2 + it)}{\sqrt{\log \log T}},$$

the formula

$$e^{ix} = \sum_{j=0}^{N-1} \frac{(ix)^j}{j!} + O\left(\frac{|x|^N}{N!}\right).$$

All the previous theorems allows us to understand better the RH. If we consider general linear combination of L-functions from Selberg class that still satisfy a functional equation of Riemann type, then an analogue of RH is not true for them.

Examples

- (Davenport-Heilbronn function) $g(s) = \varkappa_1 L(s, \chi_1) + \overline{\varkappa_1} L(s, \overline{\chi_1})$, where $\varkappa_1 \in \mathbb{C}$, χ_1 is the Dirichlet character mod 5, $\chi_1(2) = i$.
- (The Epstein zeta-function) $\zeta(s, Q)$, cprresponding to positive definite form $Q(m, n) = am^2 + bmn + cn^2$ with integer coefficients of the fundamental discriminant -D and the class number h = h(-D) > 1.

H. Davenport, H. Heilbronn (1936) and S.M. Voronin (1976)

For $\sigma > \frac{1}{2}$ let $N(\sigma, T)$ be the number of zeros of $\zeta(s, Q)$ in the region $\operatorname{Re} s > \sigma$, $0 < \operatorname{Im} s \leq T$. Then

 $N(\sigma, T) \asymp T.$

Similar result holds for Davenport-Heilbronn function.

Though, if N(T) is the number of zeros of $\zeta(s, Q)$ in the region $0 < \text{Im } s \leq T$, then as in the case of the Riemann zeta-function

 $N(T) \asymp T \log T$.

There is a

Hypothesis

Almost all nontrivial zeros of such linear combinations lie on the critical line.

E. Bombieri, D. Hejhal (1987):

Assuming GRH for $L(s, \psi)$ (where ψ is the ideal class group character for $\mathbb{Q}(\sqrt{-D})$) and pair correlation conjecture for the ordinates of zeros of $L(s, \psi)$, it is true that almost all zeros of $\zeta(s, Q)$ lie on the critical line.

Finally, if $N_0(T, L)$ is the number of L-function on $\{\frac{1}{2} + it, T < t \leq 2T\}$ then

For Davenport-Heilbronn function

A. Selberg, 1998-99: $N_0(T,g) \gg T \log T$.

I. Rezvyakova:

Positive proportion of nontrivial zeros of $\zeta(s, Q)$ lie on the critical line.

Additive problem for modular forms

Additive problem

$$S = \sum_{m_2n_2-m_1n_1=l,n_1\leq N} \overline{a(m)}a(n), \quad m_1m_2l\leq N^{\delta}.$$

Additive problem for modular forms

$$\sum_{m-n=l,n\leq N}\overline{a(m)}a(n)\ll R.$$

History:

A. Good (1982): $R \ll N^{2/3+\varepsilon}$ (holomorphic modular forms). T. Meurmann (1987): $R \ll N^{2/3+\varepsilon}$ (Maass forms). H. Iwaniec, J.B. Conrey (2001): $R \ll N^{8/9+\varepsilon}$ cusp forms for congruence groups.

The case am-bn = I:

J.L. Hafner (1983-87): both cases (implicit result).V. Blomer, G. Harcos, P. Sarnak, P. Michel. E. Kowalski, J. Vanderkam (2001-2007): congruence subgroups.

Additive problem

Theorem

Let $N \gg 1$, $(m_1, m_2) = 1$, $m_1^9 m_2^{11} \le N^2$, $l \le N^{11/13}$. For any $\varepsilon > 0$ the following estimate holds:

$$S = O_{\varepsilon} \left(N^{\frac{5}{6} + \frac{1}{78} + \varepsilon} m_1^{9/13} m_2^{-2/13} \right),$$

Circle method

Theorem

Let
$$\delta(k) = \begin{cases} 1, & \text{if } k = 0, \\ 0, & \text{else.} \end{cases}$$

Then

$$\delta(k) = \sum_{q \le Q < a^* \le q+Q} \int_0^{\frac{1}{qa^*}} 2\cos(2\pi k(a/q - \alpha)) d\alpha$$
where $aa^* = 1(\mod q), \ Q \ge 1$.

The idea of the circle method contains in the following formula:

$$\delta(k) = \int_0^1 e^{2\pi i k x} dx.$$

Estimate via spectral methods

For $f \in S_k(\Gamma_0(D), \chi_0)$ and k > 2

$$S = \sum_{1/2 < s_j < 1} c_j(l, m_1, m_2) N^{s_j} + O(N^{2/3 + \varepsilon})$$

Therefore, we have $s_j \le 11/13$ (as well as the lower bound for $\lambda_j = s_j(1 - s_j) \ge 22/169$), but this result is worse than the result of A. Selberg (1965):

 $\lambda_j \geq 3/16.$

By the latest bound of H. Kim – P. Sarnak (2002):

$$s_j < 2/3.$$