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Holomorphic Functions

If z = x + iy§for any holomorphic function

f(z) = u(x, y) + iv(x, y)

by using the Cauchy-Riemann equation we have

f ′(z) = ux + ivx = vy − iuy .
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Considering f as a holomorphic function from U to V , where U,V ⊂ C are
domains, then

Df =

(
ux uy

vx vy

)
=

(
ux −vx

vx ux

)
.

If f ′(z) , 0, then u2
x + v2

x , 0, Lengths are not usually preserved, but
angles are. The action of the derivative at z0 is multiplication by f ′(z0).



Conversely, suppose that f : U → V is continuous, and continuously
differentiable, and the derivative Df is invertible, has positive determinant
and preserves angles.

Write f(z) = (u(x, y), v(x, y)). The Jacobi determinant

|Df | =

∣∣∣∣∣∣ux uy

vx vy

∣∣∣∣∣∣ > 0;

If angles are to be preserved then this must be of the form

Df =

(
ux uy

vx vy

)
=

(
r cos θ −r sin θ
r sin θ r cos θ

)
.



So the Cauchy-Riemann equations

ux = vy

vx = −uy ,

are satisfied, and hence f is holomorphic, except possibly at finitely many
points. But since the function f is continuous, any singularities are
removable and f is holomorphic on the domain U.

Therefore, we deduce that:

� A local holomorphic homeomorphism preserves angles.

� A holomorphic function maps each infinitesimal circle to an infinitesimal
circle.
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Riemann mapping theorem

Let Ω ( C be a simply-connected domain of the complex plane with at

least 2 boundary points, and z0 ∈ Ω. Then there is a unique conformal

map f : {|z| < 1} → Ω such that f(0) = z0 and f ′(0) > 0.

� Extended via/covering theory0to handle Riemann surfaces in full
generality.

� A core topic in mathematics.

� Application in physics, engineering, visualization.
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Measurable Riemann Mapping

The usual classical form of writing a Riemannian metric in the plane is

Edx2 + 2Fdxdy + Gdy2

where E,F ,G are real-valued functions of (x, y), and the symmetric
matrix (

E F
F G

)
is positive definite. For this we need

E + G > 0, EG − F2 > 0.

The length of a curve (x(t), y(t)), where t ∈ I is

L =

∫
I

√
E(

dx
dt

)2 + 2F(
dx
dt

)(
dy
dt

) + G(
dy
dt

)2
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To introduce quasiconformal mappings, we write the metric
Edx2 + 2Fdxdy + Gdy2 in another form:

Edx2 + 2Fdxdy + Gdy2 = λ(z)|dz + µdz̄|2, z = x + yi,

where λ > 0 and |µ| < 1.
The function µ is called the Beltrami differential (of the Riemannian
metric).



Measurable Riemann Mapping Theorem (Gauss, Morrey,

Ahlfors-Bers)

Suppose that µ ∈ L∞(Ĉ) and ||µ||∞ < 1§Then there exists a unique

homeomorphism f : Ĉ→ Ĉ such that f fixes 0, 1 and ∞. It is differentiable

a.e., with partial derivatives locally ∂z f , ∂z̄ f ∈ L2§and

∂z̄ f = µ(z) · ∂z f .

That is, for some function λ(z) > 0,

f ∗(λ0(w)|dw |2) = λ(z)|dz + µdz̄|2,

where λ0(w)|dw |2 is the spherical metric in Ĉ.



Such a homeomorphism f is quasi-conformal. Its maximal dilatation is

K [f ] =
1 + ||µ||∞
1 − ||µ||∞

.

In the case that the mapping f : Ĉ→ Ĉ is smooth, we consider the
tangent map

f∗ : Tp(Ĉ) = R2 → Tf (p)(Ĉ) = R2.

This is a linear transformation. It maps a unit circle to an ellipse. Then

Kf ,p =
R
r
,

where R is the longest axis, and r is the shortest axis. Therefore

K [f ] = sup
p∈Ĉ

Kf ,p .



Circle Packing
The circle is arguably the most studied object in all of mathematics.

Recall that for any simply connected domain of the complex plane with at
least 2 boundary points, we have the following classical Riemann
mapping.
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To introduce the discrete Riemann mapping, now we introduce the
notation of circle packing.

A finite circle packing P on the Riemann sphere Ĉ is a configuration of
circles with specified patterns of tangency.

The contact graph GP = (V ,E) of such a circle packing P is a graph
whose vertices correspond to the circles in the packing, and an edge
appears in GP if and only if the corresponding circles are tangent to each
other.
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The following are circle packings and their contact graph. Please see
some of the illustrations from the web-page of Prof. K. Stenphenson.

 

 



The following is a regular hexagonal packing of the complex plane C.

 



 



In fact, if the contact graph of P0 is a triangulation of the Riemann sphere,
then we have the following Koebe-Andreev-Thurston Theorem.

Theorem

For every triangulation G of the Riemann sphere, there is a circle packing

P with graph (isomorphic to) G.

Moreover, P is unique up to Möbius transformation.
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Discrete Riemann Mapping
For any domain D ⊂ C with at least 2 boundary points, lay down a regular
hexagonal packing of circles in C, say each of radius 1/n.

By using the boundary component ∂D like a cookie-cutter, we obtain a
circle packing which consists of all the circles intersecting the closed
region D̄.

1





By using the results of Thurston, we obtain a circle packing of the
Riemann sphere.

Therefore, we obtain a map between the unit disk and the given domain.
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Letting n → ∞, Thurston conjectured that fn → f . It is the Riemann
mapping.

Rodin & Sullivan proved this result.

Rodin-Sullivan Theorem

Assume that the classical conformal mapping f : D→ Ω and the discrete

conformal mappings fn : D→ Ω are defined and normalized as described

above. Then the mapping fn converges uniformly on compact subset of D

to f as n → +∞.
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He-Schramm C∞ convergence Theorem

The discrete functions fn : D→ Ω converge in C∞(D) to the classical

conformal mapping f : D→ Ω.



Rigidity Constants sn

The rigidity constants sn plays an important role in the previous results.

An n-generations hexagonal circle packing H′n is defined to be a circle
packing combinatorially equivalent to the n-generations regular
hexagonal packing Hn.

The following is H1:
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Let ck ∈ Hn, k = 1, 2, · · · , 6, be the 1st generation circles tangent to the
center circle c0 and let c′1, c

′
2, · · · , c

′
6 be the corresponding 1st generation

circles in H′n.
We define

sn = sup
{(H′n ,c′0)}

max
1≤k≤6

(
radius(c′k )

radius(c′0)
− 1

)
,

where {(H′n, c
′
0)} runs over all n-generations hexagonal circle packings in

C. That is, they are combinatorially equivalent to Hn.

The main known results about the rigidity constants sn are summarized
in the following results.
Theorem ( Rodin-Sullivan). sn → 0 as n → ∞.

Theorem ( He). sn ≤ C/n for some constant C independent of n.

Theorem ( Doyle-He-Rodin).

sn =
2 3√2Γ2(1/3)

3Γ(2/3)

1
n

+ o
(
1
n

)
.

.
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We have

Theorem ( He-L).

sn =
2 3√2Γ2(1/3)

3Γ(2/3)

1
n

+ O
(

1
n2

)
.



Global Convergence
Suppose Ω is öJordan domain. By using the bycentric coordinates, we
can construct an approximation map fε .

Theorem (He)

The circle packing solutions fε converge globally uniformly to the

Riemann mapping f : D→ Ω.

Furthermore, we suppose that Ω is a bounded and simply connected
plane region with boundary ∂Ω ∈ C∞. We can modify the approximation
map fε .

Theorem (In preparation)

For the discrete conformal mappings fn : D→ Ω, we have

|fn(z) − f(z)| = O
(

1
√

n

)
, ∀z ∈ Dn,

where Dn ⊂ D and d(∂D,Dn) ≤
1
n .
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Idea of the previous proofs

Ring Lemma (Rodin-Sullivan)

There is a constant r depending only on n such that if n circles surround

the unit disk (i.e., they form a cycle externally tangent to the unit disk),

then each circle has radius at least r .
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Proof.
Fix n. There is a uniform lower bound for the radius of the largest outer
circle c1 (namely, that which occurs when all n outer circles are equal).

A circle c2 adjacent to c1 also has a uniform lower bound for its radius
because if c2 were extremely small then a chain of n − 1 circles starting
from c2 could not escape from the crevasse between c1 and the unit
circle.

Repeat this reasoning for the circle c3 adjacent to c2, and so on.
�



Lemma

Consider the rectangles R = [0,m] × [0, 1] and R ′ = [0,m′] × [0, 1]. Also

we assume 1/C < m, m′ < C for some C > 1. Let f : R → R ′ be a

K-quasiconformal mapping with maximal dilatation K, which maps the

corners of R to the corresponding corners of R ′.

If there exists an integer n ≥ 1 such that the Beltrami differential µ = µf

satisfies "
R
|µ(z)|dxdy ≤ O(1/n),

then |m −m′| ≤ O(1/n).



Proof.
Let Jf be the Jacobian of f . For any y ∈ [0, 1], then

m′ =
∫ m

0

∂f(x, y)

∂x
dx ≤

∫ m

0

∣∣∣∣∣∣∂f(x, y)

∂x

∣∣∣∣∣∣ dx ≤
∫ m

0
K1/2

f J1/2
f dx.

Squaring both sides of (??) and by applying the Schwartz inequality gives

(m′)2 ≤

(∫ 1

0

∫ m

0
K1/2

f J1/2
f dxdy

)2

≤

∫ 1

0

∫ m

0
Kf dxdy ·

∫ 1

0

∫ m

0
Jf dxdy

= m′
∫ 1

0

∫ m

0
Kf dxdy.



Since Kf (z) − 1 =
2|µ(z)|

1 − |µ(z)|
≤ C1|µ(z)|, we have

m′ ≤
∫ 1

0

∫ m

0
[1 + (Kf − 1)]dxdy ≤ m + O(1/n).

Similarly, by considering the rectangles [0, 1] × [0, 1
m ] and [0, 1] × [0, 1

m′ ],

1/m′ ≤ 1/m + O(1/n).

It follows by (??) and (??) that |m −m′| ≤ O(1/n). �



Lemma

Let f map D conformally onto the Jordan domain Omega with with

smooth boundary. Then f ′ has a continuous extension to D and,

∀ζ, z ∈ D,
f(ζ) − f(z)

ζ − z
→ f ′(z) , 0, ζ → z.

Furthermore, f (n) has a continuous extension to D, where n = 1, 2, · · · .



Thanks for your attention!


