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1. Introduction

Given q> 2, (n, q) = 1, by n∗ we denote inverse residue to n
modulo q, that is, the solution of the congruence

n∗n ≡ 1 (mod q).

Other notations:
n, 1/n.

For integer a, b, complete Kloosterman sum S(q; a, b) is
defined as

q∑
n=1

(n,q)=1

exp

(
2πi

an∗ + bn

q

)
=

∑
n∈Z∗

q

eq
(
an∗ + bn

)
.

Here, as usual, Z∗q denotes reduced residual system modulo q.
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1. Introduction

Trivial cases: a ≡ 0 (mod q) (or b ≡ 0 (mod q)). Indeed,
one has

S(q; a, 0) =
∑
n∈Z∗

q

eq
(
an∗

)
=

∑
n∈Z∗

q

eq
(
an
)

= cq(a)

– Ramanujan sum,

cq(a) =
ϕ(q)

ϕ
(
q/(q, a)

) µ( q

(a, q)

)
,

ϕ(k) =

k∑
n=1

(n,k)=1

1 − Euler totient function

µ(n) =


1, n = 1,

0, n = p2m, p > 2

(−1)k, n = p1 · · · pk
− Möbius function
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1. Introduction

Incomplete Kloosterman sum:

S(q; a, b;A) =
∑
n∈A

eq
(
an∗ + bn

)
, A ⊂ Z∗q, A 6= Z∗q.

Typical cases:

A = Z∗q
⋂[

1, N
]
, A = Z∗q

⋂[
M,M +N

]
where 1 < N < q.
More “exotic” case:

A = Z∗q
⋂{

p : p6N
}
.
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1. Introduction

Applications:

Circle method (H.D. Kloosterman ect.):

N = ax2
1 + bx2

2 + cx2
3 + dx2

4, xj ∈ N .

Sieve methods (C. Hooly etc.):∑
n6N

d(n2 + a),
∏
n6N

(n2 + 1), . . .

Continued fractions, Farey fractions (H. Heilbronn,
A. Ustinov, D.A. Frolenkov etc.)

q∑
a=1

s(a/q), s(a/q) − length of the expansion to c.f.
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2. Methods of estimates

Main problem: to obtain the inequality

|S(q; a, b;A)| 6 |A|∆,

where ∆ = ∆(q;A) → 0 as q → +∞.

Multiplicativity property : given a, b, q = q1q2 s.t.
(q1, q2) = 1 then

S(q; a, b) = S(q1; a1, b)S(q2; a2, b)

for some a1, a2.

Hence, it is enough to estimate for q = pn, p – prime.

If n> 2, one has for (a, q) = 1:

|S(q; a, b)| 6 d(q)
√
q

The main difficulty: case q = p.
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2. Methods of estimates

H.D. Kloosterman (1926), I.M. Vinogradov (1933),
D.I. Tolev (2010), elementary method:

|S(p; a, b)| 6 31/4p 3/4.

By standard trick and multiplicativity, this gives an estimate for
the incomplete sum to composite modulo q:∣∣∣∣ ∑

n6N

eq(an
∗ + bn)

∣∣∣∣ 6 q 3/4+ε.

The last bound is non-trivial for N > q 3/4+ε.

H. Salie (1932), H. Davenport (1933): 3/4 7→ 2/3.
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2. Methods of estimates

A. Weil (1948): |S(p; a, b)|6 2
√
p and hence∣∣∣∣ ∑

n6N

eq(an
∗ + bn)

∣∣∣∣ 6 q 1/2+ε,

which is non-trivial for N > q 1/2+ε.

A. Weil’s bound is unimprovable: for any δ > 0, there exist
infinitely many triples p, a, b s.t. (p, ab) = 1 and

|S(p; a, b)| > (2− δ)√p.

Of course, this does not mean that there is no non-trivial
bounds for the case N 6

√
q.

But the exponent 1/2 was a barrier for a long time.
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2. Methods of estimates

This barrier was broken in 1955 by A.G. Postnikov for special
case

q = pn, p is prime and n→ +∞.

Strictly speaking, A.G. Postnikov studied character sum∑
M<n6M+N

χ(k),

where χ denotes Dirichlet’s character modulo q = pn. But his
method is also applicable to the short Kloosterman sum∑

M<n6M+N

eq(an
∗ + bn).

What is the reason?
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2. Methods of estimates

Well-known formula for geometric progression:

1

1 + x
= 1− x+ x2 − x3 + . . ., |x| < 1.

p -adic analogue of this formula has the form

(1 + px)∗ ≡
1− px+ (px)2 − (px)3 + . . .+ (−1)n−1(px)n−1(mod pn)

Thus Kloosterman sum becomes the exponential sum with
polynomial and can be treated by methods of H. Weyl or
I.M. Vinogradov.
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2. Methods of estimates

Theorem (I.E. Shparlinski – S.A. Stepanov, 1988). For any
n>n0, q = pn, for any rational function

R(x) =
f(x)

g(x)
≡ f(x)(g(x))∗ (mod q),

where

f(x) = akx
k + . . .+ a1x+ a0,

g(x) = b`x
` + . . .+ b1x+ b0,

the following estimate holds:

S =
∑′

16n6N

eq
(
R(n)

)
�k,` N exp

(
− c

(logN)3

(log q)2

)
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2. Methods of estimates

This bound is non-trivial for very small N , namely, for

N > exp
(
c1(log q)2/3

)
In particular, if N � qε then

S � N1−c0 ε3

This method can be generalized to powerful moduli.
Given q, we define the radical of q as

rad(q) =
∏
p|q

p.

The modulus q is said to be powerful, if its radical is small (in
logarithmic scale) in comparison with q. Simplest case: q = pn.

M.A. Korolev Kloosterman sums over prime numbers



2. Methods of estimates

Theorem (M.K., 2016). Suppose q> q0, d = rad(q),
c1 = 900, c2 = 160−4 and let

max
(
d15, ec1(log q)

2/3)
6 N 6

√
q.

Then, for any a, b, c such that (a, q) = 1, one has∣∣∣∣ ∑
c<n6 c+N

eq(an
∗ + bn)

∣∣∣∣ 6 N exp

(
− c2

(logN)3

(log q)2

)
.

Very recently (Oct. 2018) this result was used by G. Ricotta,
E. Royer and I.E. Shparlinski to establish the
convergence-in-law of Kloosterman paths in Banach space
C0([0, 1],C).
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2. Methods of estimates

In 1993-1996 A.A. Karatsuba invented new originally method of
estimating of very short Kloosterman sums with arbitrary
moduli q. His method is based on “Mean value theorem” ,
that is, the estimate for the number of solutions of the
congruence

x∗1 + · · ·+ x∗k ≡ y∗1 + · · ·+ y∗k(mod q)

where
X < x1, . . . , yk 6 2X, X2k−1 � q.

This theorem shows (roughly speaking) that the most part of
the solutions are “trivial”, that is, yj are the permutations of xj .
A.A. Karatsuba constructed first examples of subsets A ⊂ Z∗q
such that |A| � qε and Kloosterman sum Sq(A; a, b) has
non-trivial estimate.
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2. Methods of estimates

In particular, his method leads to the solution of one problem of
P. Erdös and R.L. Graham (1980):

Given ε > 0; then there exists k = k(ε) such that the
congruence

x∗1 + · · ·+ x∗k ≡ a(mod q)

has at least one solution 16xj 6 qε for any a ∈ Zq

This was done by I.E. Shparlinski (2002) with k ∼ 4 ε−3

(improved by A.A. Glibichuk (2006) to: k ∼ 8 ε−2).

Hypothesis (A.A. Karatsuba): k � ε−1.
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2. Methods of estimates

Further development of Karatsuba’s method leads to the
estimates of very short Kloosterman sums with prime moduli
q = p (A.A. Karatsuba, M.K., J. Bourgain and
M.Z. Garaev).

For example, one can show that∣∣∣∣ ∑
16n6N

eq(an
∗ + bn)

∣∣∣∣ � ND−3/4,

D =
logN

(log q)2/3(log log q)1/3
.

This bound is non-trivial for

N > ec(log q)
2/3(log log q)1/3

, c > 0

If n runs through very short segment 16n6N , (n, q) = 1
then an∗ + bn is uniformly distributed modulo q.
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3. Kloosterman sums with primes

Suppose that A is the set of primes. Then the corresponding
sum has the form

Wq(N) =
∑
p6N
p-q

eq(ap
∗ + bp)

One more reason why these sums are interesting:

Using General Riemann Hypothesis for all L(s, χ),
χmod q, one can obtain a non-trivial estimate for Wq(N)

only for the case X > q1+ε,

i.e. for quite long sum.
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3. Kloosterman sums with primes

More convenient is the sum

Tq(N) =
∑
n6N

(n,q)=1

Λ(n)eq(an
∗ + bn).

Here Λ(n) is von Mangoldt function, that is

Λ(n) =

{
log p, if n = pk, p is prime, k> 1

0, otherwise.∑
p6x

1 ∼
x

log x
,

∑
n6x

Λ(n) ∼ x

M.A. Korolev Kloosterman sums over prime numbers



3. Kloosterman sums with primes

Theorem (E. Fouvry, P. Michel, 1998). Given ε > 0, let
q> q0(ε) be prime number, (a, q) = 1. Then, there exists
δ = δ(ε) such that

Tq(N) �ε Nq
−δ for q 3/4+ε 6N 6 q.

Theorem (M.Z. Garaev, 2010). Under the same conditions, if
b = 0 then

Tq(N) �ε

(
N 15/16 + N 2/3q 1/4

)
qε.

For example, if N � q then Tq(N)� N1−1/16+ε.

Theorem (E. Fouvry, I.E. Shparlinski, 2011). If b = 0, then
previous estimate is valid for any composite q and

q 3/4+ε 6N 6 q 4/3−ε.
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3. Kloosterman sums with primes

Applications:

In 1987, P. Erdös, A.M. Odlyzko and A. Sarközy,
considered the congruence

p1p2 ≡ a(mod q) in primes p1, p2 6N .

Question: does this congruence have solutions for any
a ∈ Z∗q for q1−c 6N 6 q?

Modification: the congruence

p1(p2 + p3) ≡ a(mod q) in primes pj 6N .

is solvable in primes for

c = 1
39

J.B.Fridlander, P.Kurlberg, I.E.Shparlinski, 2007

c = 1
17

M.Z. Garaev, 2010
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3. Kloosterman sums with primes

Theorem (J. Bourgain, 2005): Given ε > 0, q> q0(ε) is prime;
then there exists η = η(ε) such that

Tq(N) � Nq−η for q 1/2+ε 6N 6 q

Theorem (R. Baker, 2012): Suppose that squarefull part of q
is 6 q 1/4, then

Tq(N) � Nq−η for q 1/2+ε 6N 6 q and η =
ε4

2000
.

Squarefool part v of q is defined by the unique representation
q = uv, where (u, v) = 1, u is squarefree, v is squarefool, that
is,

v = pα1

1 · · · p
αr

r , αj > 2.
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4. Methods of estimating

I.M. Vinogradov’s identity in the form of R.C. Vaughan:
for any V 6

√
N , one has∑

n6N

Λ(n)Φ(n) = S1 − S2 − S3 + S4,

S1 =
∑
k6V

µ(k)
∑

n6Nk−1

(logn)Φ(kn),

S2 =
∑
k6V 2

ak
∑

n6Nk−1

Φ(kn) =
∑
k6V

+
∑

V <k6V 2

,

S3 =
∑

V <k6NV −1

bk
∑

V <n6Nk−1

Λ(n)Φ(kn) = O(V ),

S4 =
∑
n6V

Λ(n)Φ(n).

Here |ak|, |bk|6max {τ (k), log k}.
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4. Methods of estimating

We set Φ(n) = eq(an
∗ + bn).

By A. Weil’s bound, the sums with k6V contributes at most
V q1/2+ε. The rest sums reduce to bilinear forms of the type

S(X,Y ) =
∑

X<x6 2X

∑
Y <y6 2Y

AxByeq(a(xy)∗ + bxy),

Here Ax, By � qδ for any fixed δ > 0, XY 6N , X >V and

X 6V 2 for S2 and X 6NV −1 for S3.
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4. Methods of estimating

Suppose first that b ≡ 0 (mod q) (this case in more simple).

By standard technic (“Hölder in. + Hölder in. + Cauchy
in.”) one gets:

|S(X,Y )|2ks � (XY )2ks ·
qIk(X)Is(Y )

(XY )ks
.

Here Ir(Z) is the number of solutions of the congruence

x∗1 + · · ·+ x∗r ≡ x
∗
r+1 + · · ·+ x∗2r(mod q)

with Z < xj 6 2Z.
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4. Methods of estimating

The appearance of Ir(X) is quite natural:( ∑
X<x6 2X

eq(ax
∗)

)k
=

=
∑

x1,...,xk

eq(a(x∗1 + . . .+ x∗k)) =

=

q∑
λ=1

jk(λ)eq(aλ),

where jk(λ) is the number of solutions of

x∗1 + . . .+ x∗k ≡ λ (mod q).

Moreover,
q∑

λ=1

j2k(λ) = Ik(X)
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5. New estimates

Then we choose parameters k, s and use different estimates for
Ik, Is. This leads to the results.

There are very good estimates for the case when q is prime.
In particular, we have the estimate of A.A. Karatsuba -
J. Bourgain - M.Z. Garaev (1995; 2014):

Ik(X) � Nk

(
1 +

N2k−1

q

)
(log q)c

Using this, we get

Theorem 1 (M.K., 2018): Given ε > 0, prime q> q0(ε) > 0,
for q 1/2+ε 6N 6 q we have for b = 0:∑

n6N

Λ(n)eq(an
∗) � Nq−η, η =

ε2

20
.

This improves slightly the results of J.Bourgain and
R. Baker (where η � ε4).
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5. New estimates

Next, if k = 2 then we have an estimate of
D.R. Heath-Brown (1978): for arbitrary q, the number of
solutions of

x∗1 + x∗2 ≡ x
∗
3 + x∗4 (mod q), X < xj 6 2X,

is

�ε X
2

(
X 3/2

√
q

+ 1

)
q ε

In particular, if X � 3
√
q then I2(X)� X2qε.
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5. New estimates

Using this, we get:

Theorem 2 (M.K., 2017). Given ε, arbitrary composite
q> q0(ε), then∑

n6N

Λ(n)eq(an
∗) � N(q 7/10N−1)5/37q ε

for any q 7/10+ε 6N 6 q.
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5. New estimates

Theorem 3 (M.K., 2018). Given ε, arbitrary composite
q> q0(ε), then ∑

n6N

Λ(n)eq(an
∗) � N∆qε,

where

∆ �


(q 5/8N−1)1/5, for q 5/8 6N 6 q 85/96,

(q 1/16N2/5)−1/8, for q 85/96 6N 6 q 107/96,

(Nq−7/4)1/10, for q 107/96 6N 6 q 7/4.

This bound is non-trivial for q5/8+ε 6N 6 q7/4−ε.
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5. New estimates

Case b 6≡ 0(mod q) (more complicated).
In this case, one has

|S(X,Y )|8 � (XY )8 ·
qY I2(X) · J2(Y )

(XY )4
,

where I2(X) is defined as above, and J2(Y ) denotes the
number of solutions of

y∗1 + y∗2 ≡ y∗3 + y∗4 (mod q)

y1 + y2 ≡ y3 + y4 (mod q)

Y < yj 6 2Y.

Lemma (M.K., 2018). For any composite q, any Y 6 q, one
has

Jq(Y ) � 2ω(q)τ3(q)Y 2 � Y 2qε.

(ω(q) denotes the number of distinct prime divisors of q).
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5. New estimates

Theorem 4 (M.K., 2018). Given ε > 0, any composite
q> q0(ε), one has∑

n6N

Λ(n)eq(an
∗ + bn) � Nqε ∆,

where

∆ �
{

(q 3/4N−1)1/7, for q3/4 6N 6 q7/8,
(q 2/3N−1)3/35, for q7/8 6N 6 q.

This bound is non-trivial for q3/4+ε 6N 6 q1−ε.
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6. Applications

1. Suppose q is prime. Then the congruence

p1(p1 + p2 + p3) ≡ a (mod q)

has solutions in primes 1 < pj 6N for any a ∈ Zq if

q1−1/38+ε 6N 6 q.

2. Suppose that k> 3, ε > 0, q> q0(k, ε) is prime and
g(x) ≡ x+ 1

x
≡ x+ x∗(mod q). Then the congruence

g(p1) + · · ·+ g(pk) ≡ a (mod q)

has solutions in primes 1 < pj 6N for any a, if

qck+ε 6N 6 q, where

ck =
2k + 31

3k + 29
for 36 k6 9, ck =

3k + 22

4(k + 5)
for k> 10.
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6. Applications

2a. Given 0 < ε < 0.01, q> q0(ε), and let q 3/4+ε 6N 6 q.
Then the congruence

g(p1) + · · ·+ g(pk) ≡ a (mod q)

has solutions 1 < pj 6N for any a ∈ Zq, if

k >

[
7

4 ε

]
+ 1.
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6. Applications

3. Suppose X → +∞. Then, for any fixed N > 0,∑
X<pj 6 2X

τ (p1p2 + p1p3 + p2p3) =

= 2Aπ3
1(X)

(
lnX +B + γ + ln (2

√
3)
)
−

−
AX3

(lnX)3

N∑
ν=0

Cν

(lnX)ν
+ ON

(
π3
1(X)

(lnX)N+1

)
where γ is Euler constant,

A =
∏
p

(
1 −

1

p(p− 1)2

)
, B =

∑
p

ln p

p(p− 1)2 − 1
,

and Cν are some explicit constants, π1(X) = π(2X)− π(X).
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6. Applications

If
d|(p1p2 + p1p3 + p2p3) and (d, p1p2p3) = 1

then
p∗1 + p∗2 + p∗3 ≡ 0 (mod d).

Also, one deep result of E.Fouvry and I.E. Shparlinski
(2011) was used (a kind of E. Bombieri - A.I. Vinogradov
theorem).
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7. The end

THANK YOU FOR ATTENTION!
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