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Reinhardt domains

QCC*isa Reinhardt domain if .
2= (21y.+.120) €EQ = (€922,...,e¥2,) € Q

for all real (01,...,6x).

Examples:

aball {z € C™: ) |z|% < 1},
a polydisc {z € C" : |z;| < 1,5 =1,...,n}.

The diagram of absolute values:
D) ={x = (x1,...,xp) € R% ¢ (T1y.+.yn) € Q.

The logarithmic diagram:
LD(Q) = {& = (&1,...,&,) ER™: (ef1,...,e87) € Q}.



Tube domains

Q2 C C™ is a tube domain if
Z2=(21y:0092n) €EQ = (21 +101,...,2, +10,) € Q
for all real (61,...,0y).

The base:
B(Q) ={zx = (x1,..-y&n) ER": (x1,...,x,) € Q}.

Examples:

aball {z = (1 +iy1,...,Tn +iyn) € C" : 17 2 < 21},
a polydisc {z € C" : |z;| < 1,5 =1,...,n},

the future tube

{z=(x1+ Y1, Tpn +1yy) €EC" : x1 > O,Z;m? < z2}.



If © is a tube domain with base B, then
{(e**,...,e*) : (z1,...,2n) € Q} is a Reindardt domain with
logarithmic diagram B.

Q is a domain of holomorphy < B(f) is convex.

Q is strictly pseudoconvex < B(f) is convex.

A Reinhardt domain €2 is a domain of holomorphy <> LD(S2) is
convex.

Qs strictly pseudoconvex away from the coordinate axes < LD((NZ)
is strictly convex.



Biholomorphic automorphisms of Reinhardt
domains

Ball:
linear fractional transformations; Aut 2 = SU (n 4 1, 1) /centre.
Polydisc:

linear fractional transformations;

AutQ =SU1,1)/Z; X --- x SU(1,1)/Z3 X S,

Thullen domains (1927) {|2z1]|? + |22|?*/* <1}, @ > 0 # 1 :
¢t _ 107 z1—a

Zl =e€ l1—azy’

zé = ei@l(]_ — |a|2)(1—¢zi7r;1)°‘;0j eER,|a| < 1.

‘Exponential domains’ {zz > el*°} zh = €% (21 + b),

zh = €102 2, e2b=1+1b/7, 0; e R,b e C.

Remark. Both Thullen domains and ‘exponential domains’ have
spherical boundaries.



n>2
Sunada: bounded Reinhardt domains containing the origin (1978);

K. and Shimizu: bounded or Kobayashi-hyperbolic Reinhardt
domains (1988-89).

‘Monomial maps’

’r K11 Kin
zy = A1z .20t
7 __ K11 Kin.,
z, = Apzi't . zZ0t
Ki1...Kin
Kij € Z, det e = #+1.
Kn1Knn

Aut Q is generated by its identity component and monomial
biholomorphisms of €.

Corollary 1. If Q does not intersect coordinate hyperplanes then it
has only monomial biholomorphisms.



Proposition If Q is a Kobayashi hyperbolic Reinhardt domain,
then the rotations (e¥12y,...,e%"2,) form a mazimal abelian
subgroup of Aut €.

monom

Corollary 2. If Q; & Qa, then Q1 =2 Q.

Theorem. (Soldatkin, 2002) Two Reinhardt domains in C? are
biholomorphically equivalent if and only if there exists a monomial
biholomorphism between them.



Biholomorphic maps between tube domains

Tube domains in C2? with nonaffine automorphisms:

a ball {3 < z1};

a bidisc {|z1,2] < 1};

(i) {x2 > e} =2 {x2 > —logsin(x1)};

(ii) {he®™ > x3 > e, h > 1} =2 {—logsin(x1) + logh > x5 >
—logsin(z1)};

(iii) {e®* > z2} = {x1 < — logsin(x1)}.

Theorem. (K., Soldatkin, 2006) If two tube domains in C% are
biholomorphically equivalent then either their bases are affinely
equivalent or, after affine transformations, their bases belong to one of
the following five lists of domains: (1), (ii), (iii),

(iv) {1 >0,z >0} 2{0< 1 <myxz2 >0} 2 {0 < 1 <
w0 < xy < T},

(V) {1 >0} ={0 <@y <7}



Kobayashi pseudodistance

Let © be a connected complex manifold. We say that two points

a,b € Q are connected by a holomorphic disc if there exist two points
wi,wz € A = {Jw| < 1} and a holomorphic map ¢ : A — € such
that ¢(w1) = a and p(wz) = b. We call the distance between w,
and w, measured with respect to the Poincaré metric in A the
distance between a and b along ¢(A).

We say that a,b € € are connected by a string of holomorphic discs
if there exists a string of points Zg = a, ..., Zx = b such that every
pair Z;, Z;41 is connected by a holomorphic disc. We sum the
distances between all pairs of Z; and Z;11 along the corresponding
discs and call this the distance between a and b along the string.

The Kobayashi pseudodistance between a and b is the infimum of the
distances between a and b along all strings of holomorphic discs
connecting them.

The Kobayashi pseudodistance is a biholomorphic invariant, which
decreases under holomorphic maps.

A complex manifold is said to be Kobayashi-hyperbolic if the invariant
Kobayashi pseudometric is a metric.



Problem. Characterize the bases of Kobayashi-hyperbolic tube
domains.

The answer is unknown even for n = 2.



Proper maps between Reinhardt domains

A map f: Q7 — Q5 is proper if for each compact subset K of 4
the inverse image f~!(K) is also compact.

A classical result due to Remmert: a holomorphic map f is proper <
[ is a branched finite covering map of Q.

Theorem (Isaev, K., 2006): A description of proper holomorphic
maps between pairs of bounded Reinhardt domains in C2.
Ezceptional case: €21 and €25 have piecewise Levi-flat boundaries and
Q4 is foliated by complex (one-dimensional) annuli.

Corollary 1. If there exists a proper holomorphic f : 1 — Qa,
and the case is not exceptional, then there exists a proper monomial
map g : Q1 — Q2. In particular, LD (1) and LD(Q2) are affinely
equivalent.

Corollary 2. If there exists a proper holomorphic f : 1 — Qa,
and the case is not exceptional, then f = g1 o F o g2, where the g;
are monomial proper maps and F' is a non-monomial biholomorphism
of an intermediate domain.



The first steps of the proof consist in
1. going to the envelopes of holomorphy.

Kerner: a proper map between Riemann domains over Stein manifolds
extends to a proper map between their envelopes of holomorphy.

2. Extending to the boundary

Barrett: a proper map between bounded pseudoconver Reinhardt
domains extends to a meighbourhood of the boundary of the source
domain (away from the coordinate axes).

After that we obtain a correspondence between pieces of the
boundaries of €21 and 25, which are real hypersurfaces with large
abelian local groups of C R-symmetries.

However, if the multiplicity of the branched cover is > 1, this gives us
also a correspondence between different pieces of the boundary of €1,
from which we can make similar conclusions.

That is, if we could extend a proper holomorphic map to the
boundary of €1, then we would not need the Reinhardt structure in
5 to analyse the structure of f.



Let © be a bounded Reinhardt domain of dimension 2, M be a
complex 2-dimensional manifold, and let f : & — M be proper
holomorphic.

Generalized Kerner’s Theorem. Let £2; be a Riemann domain
over an n-dimensional Stein manifold S and 5 be an n-dimensional
complex manifold. Let f : 23 — €2 be proper holomorphic. Let
Q1D Ql be the envelope of holomorphy. Then there exists a Stein
space Qg D 2 that is the envelope of holomorphy of €22 and a
proper holomorphic map f Ql — Qz such that f|Q1 =7

If ©Q4 is Reinhardt, then ﬁl is too. Thus we can assume that €2 and
M are Stein.

For each z € 2 set F, = {w € Q: f(w) = f(z)}. Then F = UF,
is an analytic subset of €2 X €.
F is the graph of a proper holomorphic correspondence.

F extends to 92 outside an analytic subset just as in Barrett’s
theorem.



Theorem. Under the above assumptions one of the following holds.
1. f is the quotient map by a finite group of rotations (so that M is a
Reinhardt domain).

2. f is the quotient map by a finite group of monomial
transformations of order 2, 3, 4, or 6 which are distinct from
rotations.

3. f is a composition of a monomial proper map and a quotient map
as in case 2.

4. f is a composition of a monomial proper map onto a Thullen or an
ezponential domain Q' and a quotient map of Q' by a finite subgroup
of automorphisms.

5. Q is piecewise Levi-flat.



