Steklov Mathematical Institute,

Russian Academy of Sciences

Nikolai Kruzhilin

Holomorphic maps of domains with rich symmetry groups

2018

Reinhardt domains

 $\Omega \subset \mathbb{C}^n$ is a Reinhardt domain if $z = (z_1, \dots, z_n) \in \Omega \implies (e^{i\theta_1}z_1, \dots, e^{i\theta_n}z_n) \in \Omega$ for all real $(\theta_1, \dots, \theta_n)$.

Examples:

$$egin{aligned} ext{a ball } \{z\in\mathbb{C}^n:\sum |z_j|^2<1\},\ ext{a polydisc } \{z\in\mathbb{C}^n:|z_j|<1,j=1,\ldots,n\}. \end{aligned}$$

The diagram of absolute values: $D(\Omega) = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n_{+, \geq} : (x_1, \ldots, x_n) \in \Omega\}.$

The logarithmic diagram: $LD(\Omega) = \{\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n : (e^{\xi_1}, \dots, e^{\xi_n}) \in \Omega\}.$

Tube domains

 $\Omega \subset \mathbb{C}^n$ is a tube domain if $z = (z_1, \dots, z_n) \in \Omega \implies (z_1 + i\theta_1, \dots, z_n + i\theta_n) \in \Omega$ for all real $(\theta_1, \dots, \theta_n)$.

The base: $B(\Omega) = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n : (x_1, \dots, x_n) \in \Omega\}.$

Examples:

a ball $\{z = (x_1 + iy_1, \dots, x_n + iy_n) \in \mathbb{C}^n : \sum_2^n x_j^2 < x_1\},\$ a polydisc $\{z \in \mathbb{C}^n : |x_j| < 1, j = 1, \dots, n\},\$ the future tube $\{z = (x_1 + iy_1, \dots, x_n + iy_n) \in \mathbb{C}^n : x_1 > 0, \sum_2^n x_j^2 < x_1^2\}.$ If Ω is a tube domain with base B, then $\{(e^{z_1}, \ldots, e^{z_n}) : (z_1, \ldots, z_n) \in \Omega\}$ is a Reindardt domain with logarithmic diagram B.

 Ω is a domain of holomorphy $\Leftrightarrow B(\Omega)$ is convex.

 Ω is strictly pseudoconvex $\Leftrightarrow B(\Omega)$ is convex.

A Reinhardt domain $\widetilde{\Omega}$ is a domain of holomorphy $\Leftrightarrow LD(\widetilde{\Omega})$ is convex.

 $\widetilde{\Omega}$ is strictly pseudoconvex away from the coordinate axes $\Leftrightarrow LD(\widetilde{\Omega})$ is strictly convex.

Biholomorphic automorphisms of Reinhardt domains

Ball:

linear fractional transformations; Aut $\Omega = SU(n+1,1)/centre$.

Polydisc: linear fractional transformations; Aut $\Omega = SU(1,1)/Z_2 \times \cdots \times SU(1,1)/Z_2 \times S_n$.

Thullen domains (1927) $\{|z_1|^2 + |z_2|^{2/\alpha} < 1\}, \alpha > 0 \neq 1$: $z'_1 = e^{i\theta_1} \frac{z_1 - a}{1 - \bar{a}z_1},$ $z'_2 = e^{i\theta_1} (1 - |a|^2) \frac{z_2}{(1 - \bar{a}z_1)^{\alpha}}; \theta_j \in \mathbb{R}, |a| < 1.$ 'Exponential domains' $\{z_2 > e^{|z|^2}\}: z'_1 = e^{i\theta_1}(z_1 + b),$ $z'_2 = e^{i\theta_2} z_2 e^{2\bar{b}z_1 + |b|^2}; \theta_j \in \mathbb{R}, b \in \mathbb{C}.$

Remark. Both Thullen domains and 'exponential domains' have spherical boundaries.

n>2

Sunada: bounded Reinhardt domains containing the origin (1978);

K. and Shimizu: bounded or Kobayashi-hyperbolic Reinhardt domains (1988-89).

'Monomial maps'

$$egin{aligned} & z_1' = \lambda_1 z_1^{\kappa_{11}} \dots z_n^{\kappa_{1n}}, \ & \dots & \ & z_n' = \lambda_n z_1^{\kappa_{11}} \dots z_n^{\kappa_{1n}}; \ & \kappa_{ij} \in \mathbb{Z}, \ \det egin{pmatrix} \kappa_{11} \dots \kappa_{1n} \ & \dots & \ & \kappa_{n1} \kappa_{nn} \end{pmatrix} = \pm 1. \end{aligned}$$

Aut Ω is generated by its identity component and monomial biholomorphisms of Ω .

Corollary 1. If Ω does not intersect coordinate hyperplanes then it has only monomial biholomorphisms.

Proposition If Ω is a Kobayashi hyperbolic Reinhardt domain, then the rotations $(e^{i\theta_1}z_1, \ldots, e^{i\theta_n}z_n)$ form a maximal abelian subgroup of Aut Ω .

Corollary 2. If $\Omega_1 \cong \Omega_2$, then $\Omega_1 \stackrel{monom}{\cong} \Omega_2$.

Theorem. (Soldatkin, 2002) Two Reinhardt domains in \mathbb{C}^2 are biholomorphically equivalent if and only if there exists a monomial biholomorphism between them.

Biholomorphic maps between tube domains

Tube domains in \mathbb{C}^2 with nonaffine automorphisms:

a ball
$$\{x_2^2 < x_1\}$$
;
a bidisc $\{|x_{1,2}| < 1\}$;
(i) $\{x_2 > e^{x_1}\} \cong \{x_2 > -\log \sin(x_1)\}$;
(ii) $\{he^{x_1} > x_2 > e^{x_1}, h > 1\} \cong \{-\log \sin(x_1) + \log h > x_2 > -\log \sin(x_1)\}$;
(iii) $\{e^{x_1} > x_2\} \cong \{x_1 < -\log \sin(x_1)\}$.

Theorem. (K., Soldatkin, 2006) If two tube domains in \mathbb{C}^2 are biholomorphically equivalent then either their bases are affinely equivalent or, after affine transformations, their bases belong to one of the following five lists of domains: (i), (ii), (iii), (iv) $\{x_1 > 0, x_2 > 0\} \cong \{0 < x_1 < \pi, x_2 > 0\} \cong \{0 < x_1 < \pi, 0 < x_2 < \pi\},$ (v) $\{x_1 > 0\} \cong \{0 < x_1 < \pi\}$

Kobayashi pseudodistance

Let Ω be a connected complex manifold. We say that two points $a, b \in \Omega$ are connected by a holomorphic disc if there exist two points $w_1, w_2 \in \Delta = \{|w| < 1\}$ and a holomorphic map $\varphi : \Delta \to \Omega$ such that $\varphi(w_1) = a$ and $\varphi(w_2) = b$. We call the distance between w_1 and w_2 measured with respect to the Poincaré metric in Δ the distance between a and b along $\varphi(\Delta)$.

We say that $a, b \in \Omega$ are connected by a string of holomorphic discs if there exists a string of points $Z_0 = a, \ldots, Z_k = b$ such that every pair Z_j, Z_{j+1} is connected by a holomorphic disc. We sum the distances between all pairs of Z_j and Z_{j+1} along the corresponding discs and call this the distance between a and b along the string.

The Kobayashi pseudodistance between a and b is the infimum of the distances between a and b along all strings of holomorphic discs connecting them.

The Kobayashi pseudodistance is a biholomorphic invariant, which decreases under holomorphic maps.

A complex manifold is said to be *Kobayashi-hyperbolic* if the invariant Kobayashi pseudometric is a metric.

Problem. Characterize the bases of Kobayashi-hyperbolic tube domains.

The answer is unknown even for n = 2.

Proper maps between Reinhardt domains

A map $f: \Omega_1 \to \Omega_2$ is proper if for each compact subset K of Ω_2 the inverse image $f^{-1}(K)$ is also compact.

A classical result due to Remmert: a holomorphic map f is proper \Leftrightarrow f is a branched finite covering map of Ω_2 .

Theorem (Isaev, K., 2006): A description of proper holomorphic maps between pairs of bounded Reinhardt domains in \mathbb{C}^2 . *Exceptional case*: Ω_1 and Ω_2 have piecewise Levi-flat boundaries and Ω_1 is foliated by complex (one-dimensional) annuli.

Corollary 1. If there exists a proper holomorphic $f : \Omega_1 \to \Omega_2$, and the case is not exceptional, then there exists a proper monomial map $g : \Omega_1 \to \Omega_2$. In particular, $LD(\Omega_1)$ and $LD(\Omega_2)$ are affinely equivalent.

Corollary 2. If there exists a proper holomorphic $f : \Omega_1 \to \Omega_2$, and the case is not exceptional, then $f = g_1 \circ F \circ g_2$, where the g_j are monomial proper maps and F is a non-monomial biholomorphism of an intermediate domain. The first steps of the proof consist in

1. going to the envelopes of holomorphy.

Kerner: a proper map between Riemann domains over Stein manifolds extends to a proper map between their envelopes of holomorphy.

2. Extending to the boundary

Barrett: a proper map between bounded pseudoconvex Reinhardt domains extends to a neighbourhood of the boundary of the source domain (away from the coordinate axes).

After that we obtain a correspondence between pieces of the boundaries of Ω_1 and Ω_2 , which are real hypersurfaces with large abelian local groups of CR-symmetries.

However, if the multiplicity of the branched cover is > 1, this gives us also a correspondence between different pieces of the boundary of Ω_1 , from which we can make similar conclusions. That is, if we could extend a proper holomorphic map to the boundary of Ω_1 , then we would not need the Reinhardt structure in

 Ω_{2} to analyse the structure of f.

Let Ω be a bounded Reinhardt domain of dimension 2, M be a complex 2-dimensional manifold, and let $f: \Omega \to M$ be proper holomorphic.

Generalized Kerner's Theorem. Let Ω_1 be a Riemann domain over an *n*-dimensional Stein manifold S and Ω_2 be an *n*-dimensional complex manifold. Let $f: \Omega_1 \to \Omega_2$ be proper holomorphic. Let $\widehat{\Omega}_1 \supset \Omega_1$ be the envelope of holomorphy. Then there exists a Stein space $\widehat{\Omega}_2 \supset \Omega_2$ that is the envelope of holomorphy of Ω_2 and a proper holomorphic map $\widehat{f}: \widehat{\Omega}_1 \to \widehat{\Omega}_2$ such that $\widehat{f}|_{\Omega_1} = f$.

If Ω_1 is Reinhardt, then $\widehat{\Omega}_1$ is too. Thus we can assume that Ω and M are Stein.

For each $z \in \Omega$ set $F_z = \{w \in \Omega : f(w) = f(z)\}$. Then $F = \bigcup F_z$ is an analytic subset of $\Omega \times \Omega$. F is the graph of a proper holomorphic correspondence.

 ${\pmb F}$ extends to $\partial {\pmb \Omega}$ outside an analytic subset just as in Barrett's theorem.

Theorem. Under the above assumptions one of the following holds. 1. f is the quotient map by a finite group of rotations (so that M is a Reinhardt domain).

2. *f* is the quotient map by a finite group of monomial transformations of order 2, 3, 4, or 6 which are distinct from rotations.

3. f is a composition of a monomial proper map and a quotient map as in case 2.

4. **f** is a composition of a monomial proper map onto a Thullen or an exponential domain Ω' and a quotient map of Ω' by a finite subgroup of automorphisms.

5. $\boldsymbol{\Omega}$ is piecewise Levi-flat.