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(1) Background materials and Overview;
(2) A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem;

(3) A solution to Yau's conjecture on rationally connected
manifolds;

(4) RC-positivity, rigidity of harmonic maps and holomorphic maps.
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Background materials

X: a compact complex manifold
(E, h) — X: a Hermitian holomorphic vector bundle

There exists a unique connection (called Chern connection) compatible
with the complex structure on (X, E) and also the Hermitian metric h

In local coordinates {z'} on X and local frames {e,} over E, the Chern
curvature tensor RE € T(X, A" T @ End(E)) of (E, h,V) is given by
RE :\/—1Ri}fadzi/\df"®ea®eﬂ,, (0.1)

where R;la — hPR- 5 and
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Background materials: positivity of curvatures

o Let (X,wg) be a compact Hermitian manifold with wy = \/—1g,-]-dz" AdZ.
The curvature tensor of (Tx,wg) is
R _ 82&2_ e Ogg agp?
ikt 0z 97 8z 97

@ (X,w) has positive holomorphic bisectional curvature (HBSC)

,Ju§ 5177 >0

for non-zero &, 7.

@ (X,w) has positive holomorphic sectional curvature (HSC)

Rl T e >0

for non-zero &.
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Background materials: positivity of curvatures Il

@ (X,w) has positive (Chern) Ricci curvature if

7 07 log det(g)
_ K
Ry =& Rija = 0z07

is positive definite. The Ricci curvature represents the first Chern class
c1(X) of the complex manifold X.

@ (X,w) has positive (Chern) scalar curvature if the scalar curvature function

s = g’;RU’ > 0.

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture



Background materials: positivity of line bundles |

(L, h) — X: a Hermitian holomorphic line bundle. The curvature of (L, h)

R' = —/=198log h

o L is called positive (or ample), if there exists a smooth Hermitian metric h
such that B
RY = —\/—=188log h > 0

as a smooth (1,1)-form.

o L is called nef, if for any € > 0 and metric w, there exists a smooth metric
he such that —v/—190log h. > —cw.

o Lis called pseudo-effective, if there exists a possibly singular metric h such
that —v/—100log h > 0 in the sense of current.
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Background materials: positivity of line bundles Il

o Let X be a smooth projective variety. There are many equivalent
definitions for ampleness of a line bundle L. The Nakai-Moishezon-Kleiman
criterion asserts that: a line bundle L is ample if and only if

LdimY-Y>0

for every positive-dimensional irreducible subvariety Y C X.

Similarly, a line bundle L is nef if and only if
L-C>0

for every irreducible curve C C X.

@ A line bundle L is said to be strictly nef, if for any irreducible curve C in X,

L-C>o0.

@ It is easy to see
ample C strictly nef C nef

@ A vector bundle V is said to be ample (resp. nef, strictly nef) if the
tautological line bundle Oy (1) of P(V) — X is ample (resp. nef, strictly
nef).
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Background materials: positivity in algebraic geometry and differential

geometry

o differential geometry: positivity or negativity of
(1) holomorphic bisectional curvature HBSC,
(2) holomorphic sectional curvature HSC,

(3) Ricci curvature,

(4) scalar curvature.
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Background materials: positivity in algebraic geometry and differential

geometry

o differential geometry: positivity or negativity of
(1) holomorphic bisectional curvature HBSC,
(2) holomorphic sectional curvature HSC,

(3) Ricci curvature,
(4) scalar curvature.

@ algebraic geometry: ampleness (resp. nefness, pseudo-effectiveness) of
(1) Tx or Tx;
(2) Kx or K)Zl.
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Background materials: positivity in algebraic geometry and differential

geometry
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(2) holomorphic sectional curvature HSC,

(3) Ricci curvature,
(4) scalar curvature.
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(1) Tx or Tx;
(2) Kx or K)Zl.

@ more positivity in algebraic geometry:
(1) uniruled, i.e. covered by rational curves;
(2) rationally connected, i.e. any two points can be connected by some
rational curve;
(3) Fano, i.e. a(X)>0.
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Background materials: positivity in algebraic geometry and differential

geometry

o differential geometry: positivity or negativity of
(1) holomorphic bisectional curvature HBSC,
(2) holomorphic sectional curvature HSC,

(3) Ricci curvature,
(4) scalar curvature.

@ algebraic geometry: ampleness (resp. nefness, pseudo-effectiveness) of
(1) Tx or Tx;
(2) Kx or K)Zl.

@ more positivity in algebraic geometry:
(1) uniruled, i.e. covered by rational curves;
(2) rationally connected, i.e. any two points can be connected by some
rational curve;
(3) Fano, i.e. a(X)>0.

Relations between geometric positivity and algebraic positivity?
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Background materials: HBSC, tangent bundle

Theorem (Siu-Yau, Mori)

TX ample <= X has a (Kihler) metric with HBSC > 0.
Indeed, X = P".
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Background materials: HBSC, tangent bundle

Theorem (Siu-Yau, Mori)

TX ample <= X has a (Kihler) metric with HBSC > 0.
Indeed, X = P".

@ Siu-Yau's solution to the Frankel conjecture: (X,w) Kahler with
HBSC > 0 = X = P". (analytical method.)
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Background materials: HBSC, tangent bundle

Theorem (Siu-Yau, Mori)

TX ample <= X has a (Kihler) metric with HBSC > 0.
Indeed, X = P".

@ Siu-Yau's solution to the Frankel conjecture: (X,w) Kahler with
HBSC > 0 = X = P". (analytical method.)

@ Mori's solution to the Hartshorne conjecture: TX ample =— X = P".
(characteristic p.)
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Background materials: HBSC, tangent bundle

Further uniformization and structure theorems: there are more than 100
mathematicians who contributes significantly along this line:

@ N.Mok: uniformization theorem for Kihler manifolds with HBSC > 0;

Chau, Chen, Fang, Feng, Gu, Liu, Ni, Tam, Zhang, Zhu and etc..

Zheng (n = 3), Demailly-Peternell-Schneider(general): structure theorem
for projective manifolds with Tx nef.

1

@ There are also generalized structured theorems for K~ nef due to

Campana-Demailly-Peternell, Junyan Cao, A. Horing.
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Background materials: HBSC, tangent bundle

@ Further uniformization and structure theorems: there are more than 100
mathematicians who contributes significantly along this line:

@ N.Mok: uniformization theorem for Kahler manifolds with HBSC > 0;
@ Chau, Chen, Fang, Feng, Gu, Liu, Ni, Tam, Zhang, Zhu and etc..

@ Zheng (n = 3), Demailly-Peternell-Schneider(general): structure theorem
for projective manifolds with Tx nef.

1

@ There are also generalized structured theorems for K~ nef due to

Campana-Demailly-Peternell, Junyan Cao, A. Horing.

@ Recently, by using algebraic methods and analytical methods, we obtain a
generalization of Mori's theorem:

Theorem (Li-Ou-Y., 2018)

Let X be a projective manifold. If Tx is strictly nef, then X = P".
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Background materials: Ricci curvature, Kx and K)?l

It is well-known that the Ricci curvature represents the first Chern class of the
manifold, i.e.

[Ric] = 27 - ai(X) = 27 - a1 (Kx ') = =27 - a1 (Kx).

o Kodaira Embedding theorem: a line bundle L is ample <= L has a
smooth metric with positive curvature.

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture 11/35



Background materials: Ricci curvature, Kx and K)?l

It is well-known that the Ricci curvature represents the first Chern class of the
manifold, i.e.

[Ric] = 27 - ai(X) = 27 - a1 (Kx ') = =27 - a1 (Kx).

o Kodaira Embedding theorem: a line bundle L is ample <= L has a
smooth metric with positive curvature.

o Theorem(Aubin-Yau). Kx is ample <= X has a Kahler metric w with
Ric(w) < 0.

11/35

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture



Background materials: Ricci curvature, Kx and K)?l

It is well-known that the Ricci curvature represents the first Chern class of the
manifold, i.e.

[Ric] = 27 - ai(X) = 27 - a1 (Kx ') = =27 - a1 (Kx).

o Kodaira Embedding theorem: a line bundle L is ample <= L has a
smooth metric with positive curvature.

o Theorem(Aubin-Yau). Kx is ample <= X has a Kahler metric w with
Ric(w) < 0.

o Theorem(Yau). Ky ' is ample <= X has a Kihler metric w with
Ric(w) > 0.

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture



Background materials: Ricci curvature, Kx and K)?l

It is well-known that the Ricci curvature represents the first Chern class of the
manifold, i.e.

[Ric] = 27 - ai(X) = 27 - a1 (Kx ') = =27 - a1 (Kx).

Kodaira Embedding theorem: a line bundle L is ample <= L has a
smooth metric with positive curvature.

o Theorem(Aubin-Yau). Kx is ample <= X has a Kahler metric w with
Ric(w) < 0.
o Theorem(Yau). Ky ' is ample <= X has a Kihler metric w with

Ric(w) > 0.

Theorem(Yau). Kx is flat <= X has a Kihler metric w with Ric(w) = 0.
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Background materials

Conjecture (Campana-Peternell 91")

K;l is strictly nef <— K;l is ample, i.e. X is Fano.
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Background materials

Conjecture (Campana-Peternell 91")

K;l is strictly nef <— K;l is ample, i.e. X is Fano.

@ Verified for: dim X = 2 (Maeda 93') and dim X = 3 (Serrano 95’)
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Background materials

Conjecture (Campana-Peternell 91")

K;l is strictly nef <— K;l is ample, i.e. X is Fano.

@ Verified for: dim X = 2 (Maeda 93') and dim X = 3 (Serrano 95’)

@ We have some progress

Theorem (Li-Ou-Y., 2018)

If N" Tx is strictly nef for some 1 < r < dim X, then X is rationally connected.

In particular, if Ky L s strictly nef, then X is rationally connected.
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Background materials: Yau's conjecture on negative HSC |

holomorphic sectional curvature (HSC)«w Kx or Kx7

Conjecture (Yau, 1970s)

Let X be a compact Kahler manifold. If X has a Kahler metric with HSC < 0,
then X is a projective manifold and Kx is ample.

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture 13 /35



Background materials: Yau's conjecture on negative HSC |

holomorphic sectional curvature (HSC)«w Kx or Kx7

Conjecture (Yau, 1970s)

Let X be a compact Kahler manifold. If X has a Kahler metric with HSC < 0,
then X is a projective manifold and Kx is ample.

@ Breakthrough by Damin Wu and S.T. Yau:

Theorem (Wu-Yau, Invent. Math. 2016)

If (X,w) is a compact projective manifold with HSC < 0, then Kx is ample.
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Background materials: Yau's conjecture on negative HSC |

holomorphic sectional curvature (HSC)«w Kx or Kx7

Conjecture (Yau, 1970s)

Let X be a compact Kahler manifold. If X has a Kahler metric with HSC < 0,
then X is a projective manifold and Kx is ample.

@ Breakthrough by Damin Wu and S.T. Yau:

Theorem (Wu-Yau, Invent. Math. 2016)

If (X,w) is a compact projective manifold with HSC < 0, then Kx is ample.

o ldeas of their proof:
1. Schwarz Lemma: X has HSC < 0 = X has no rational curve;
2. Mori: Projective manifold X + no rational curve = Kx nef.
3. Yau: Monge-Ampere equation method = KXx is big, i.e. ¢{(Kx) > 0;
4. Kxbig and X has no rational curve = Kx ample.
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Background materials: Yau's conjecture on negative HSC |

@ Using Wu-Yau's idea and by passing Mori's theory:

Theorem (Tosatti-Y., JDG 2017)

If (X,w) is a compact Kahler manifold with HSC < 0, then Kx is nef.
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Background materials: Yau's conjecture on negative HSC |

@ Using Wu-Yau's idea and by passing Mori's theory:

Theorem (Tosatti-Y., JDG 2017)

If (X,w) is a compact Kahler manifold with HSC < 0, then Kx is nef.

@ Note that Generic torus has HSC < 0 but they are not projective manifold.
Hence, Mori's theory can not apply in our situation.
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Background materials: Yau's conjecture on negative HSC |

@ Using Wu-Yau's idea and by passing Mori's theory:

Theorem (Tosatti-Y., JDG 2017)

If (X,w) is a compact Kéhler manifold with HSC < 0, then Kx is nef.

@ Note that Generic torus has HSC < 0 but they are not projective manifold.
Hence, Mori's theory can not apply in our situation.

@ As an application, Yau's conjecture is settled down in full generality by solving
Monge-Ampere equation.

If (X,w) is a compact Kihler manifold.
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Background materials: Yau's conjecture on negative HSC |

@ Using Wu-Yau's idea and by passing Mori's theory:

Theorem (Tosatti-Y., JDG 2017)

If (X,w) is a compact Kéhler manifold with HSC < 0, then Kx is nef.

@ Note that Generic torus has HSC < 0 but they are not projective manifold.
Hence, Mori's theory can not apply in our situation.

@ As an application, Yau's conjecture is settled down in full generality by solving
Monge-Ampere equation.

If (X,w) is a compact Kihler manifold.
(1) (Tosatti-Y.)If HSC < 0, then X is projective and Kx is ample.
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Background materials: Yau's conjecture on negative HSC |

@ Using Wu-Yau's idea and by passing Mori's theory:

Theorem (Tosatti-Y., JDG 2017)

If (X,w) is a compact Kéhler manifold with HSC < 0, then Kx is nef.

@ Note that Generic torus has HSC < 0 but they are not projective manifold.
Hence, Mori's theory can not apply in our situation.

@ As an application, Yau's conjecture is settled down in full generality by solving
Monge-Ampere equation.

If (X,w) is a compact Kihler manifold.
(1) (Tosatti-Y.)If HSC < 0, then X is projective and Kx is ample.

(2) (Wu-Yau,, Diverio-Trapani) If HSC is quasi-negative, then X is
projective and Kx is ample.
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Background materials: Yau's conjecture on negative HSC |

@ Using Wu-Yau's idea and by passing Mori's theory:

Theorem (Tosatti-Y., JDG 2017)

If (X,w) is a compact Kéhler manifold with HSC < 0, then Kx is nef.

@ Note that Generic torus has HSC < 0 but they are not projective manifold.
Hence, Mori's theory can not apply in our situation.

@ As an application, Yau's conjecture is settled down in full generality by solving
Monge-Ampere equation.

If (X,w) is a compact Kihler manifold.
(1) (Tosatti-Y.)If HSC < 0, then X is projective and Kx is ample.

(2) (Wu-Yau,, Diverio-Trapani) If HSC is quasi-negative, then X is
projective and Kx is ample.

@ Further works: Zheng-Y., Heier, Lu, Wong, Zheng, Nomura and etc..
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Background materials: Yau's conjecture on negative HSC |

@ Using Wu-Yau's idea and by passing Mori's theory:

Theorem (Tosatti-Y., JDG 2017)

If (X,w) is a compact Kéhler manifold with HSC < 0, then Kx is nef.

@ Note that Generic torus has HSC < 0 but they are not projective manifold.
Hence, Mori's theory can not apply in our situation.

@ As an application, Yau's conjecture is settled down in full generality by solving
Monge-Ampere equation.

If (X,w) is a compact Kihler manifold.
(1) (Tosatti-Y.)If HSC < 0, then X is projective and Kx is ample.

(2) (Wu-Yau,, Diverio-Trapani) If HSC is quasi-negative, then X is
projective and Kx is ample.

@ Further works: Zheng-Y., Heier, Lu, Wong, Zheng, Nomura and etc..
@ By using similar ideas

Theorem (Chen-Y., Math. Ann. 2018)

Let X be a compact Kahler manifold. If X is homotopic to a compact Riemannian
manifold with negative sectional curvature,

= X is a projective manifold and Kx is ample.
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Background materials: Yau's conjecture on positive HSC Il

In his “Problem section”, Yau proposed the following conjecture (Problem 47):

Conjecture (Yau, 1982)

Let X be a compact Kahler manifold. If X has a Kahler metric with HSC > 0,
then X is a projective manifold and X is rationally connected, i.e. any two
points can be connected by some rational curve.
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In his “Problem section”, Yau proposed the following conjecture (Problem 47):

Conjecture (Yau, 1982)

Let X be a compact Kahler manifold. If X has a Kahler metric with HSC > 0,
then X is a projective manifold and X is rationally connected, i.e. any two
points can be connected by some rational curve.

@ Recently, | confirmed this conjecture by introducing a new concept called
“RC-positivity":

Theorem (Y., Camb. J. Math., 2018)

Let (X,w) be a compact Kahler manifold with HSC > 0,
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Background materials: Yau's conjecture on positive HSC Il

In his “Problem section”, Yau proposed the following conjecture (Problem 47):

Conjecture (Yau, 1982)

Let X be a compact Kahler manifold. If X has a Kahler metric with HSC > 0,
then X is a projective manifold and X is rationally connected, i.e. any two
points can be connected by some rational curve.

@ Recently, | confirmed this conjecture by introducing a new concept called
“RC-positivity":

Theorem (Y., Camb. J. Math., 2018)

Let (X,w) be a compact Kahler manifold with HSC > 0,

= X is a projective manifold and X is rationally connected.

@ Note that the Hirzebruch surface P(O & O(10)) has HSC > 0, but the
anticanonical bundle K;l is not nef and so K;l is not ample.
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Background materials: canonical line bundle and uniruled manifolds

Let X be a projective manifold.

Theorem (Siu-Yau, 1980)

Let (X,w) be a compact Kihler manifold with positive holomorphic bisectional
curvature, then X contains a rational curve. Indeed, X = P".
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Let X be a projective manifold.

Theorem (Siu-Yau, 1980)

Let (X,w) be a compact Kihler manifold with positive holomorphic bisectional
curvature, then X contains a rational curve. Indeed, X = P".

Theorem (Mori, 1982)

If the canonical bundle Kx is not nef, then X contains a rational curve.
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Background materials: canonical line bundle and uniruled manifolds

Let X be a projective manifold.

Theorem (Siu-Yau, 1980)

Let (X,w) be a compact Kihler manifold with positive holomorphic bisectional
curvature, then X contains a rational curve. Indeed, X = P".

Theorem (Mori, 1982)

If the canonical bundle Kx is not nef, then X contains a rational curve.

@ The following fundamental result is the key in characterizing uniruled
manifold.

Theorem (Boucksom-Demailly-Paun-Peternell, 2012)

X is uniruled if (and only if) Kx is not pseudo-effective
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RC-positivity and uniruled manifolds

@ A line bundle L is called RC-positive if it has a smooth metric h such that
its Ricci curvature

Ric(L, h) = —/—190 log h

has at least one positive eigenvalue everywhere.
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RC-positivity and uniruled manifolds

@ A line bundle L is called RC-positive if it has a smooth metric h such that
its Ricci curvature

Ric(L, h) = —v/—100log h
has at least one positive eigenvalue everywhere.
@ By using algebraic geometry and transcendental method (e.g. Calabi-Yau

theorem), we obtain a differential geometric characterization of uniruled
manifold (which was also a conjecture of Yau)

Theorem (Y., Compositio. Math. 2018)

The following statements are equivalent for algebraic manifold X.
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RC-positivity and uniruled manifolds

@ A line bundle L is called RC-positive if it has a smooth metric h such that
its Ricci curvature

Ric(L, h) = —v/—100log h
has at least one positive eigenvalue everywhere.
@ By using algebraic geometry and transcendental method (e.g. Calabi-Yau

theorem), we obtain a differential geometric characterization of uniruled
manifold (which was also a conjecture of Yau)

Theorem (Y., Compositio. Math. 2018)

The following statements are equivalent for algebraic manifold X.
(1) X is uniruled, i.e. covered by rational curves;
(2) a(X) is RC-positive,
i.e. there exists a Hermitian metric w such that

Ric(w) has at least one positive eigenvalue at each point.
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RC-positivity and rationally connected manifolds.

@ RC-positive vector bundles.

Definition

A Hermitian holomorphic vector bundle (E, h) over a complex manifold X is
called RC-positive, if at point g € X, and for each nonzero vector v € E,, there

exists some nonzero vector u € T¢X such that

RE(u,d,v,V) > 0. (0.2)

RC positivity and Yau's rational connectedness conjecture 18 /35
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RC-positivity and rationally connected manifolds.

@ RC-positive vector bundles.

Definition

A Hermitian holomorphic vector bundle (E, h) over a complex manifold X is
called RC-positive, if at point g € X, and for each nonzero vector v € E,, there
exists some nonzero vector u € T¢X such that

RE(u,d,v,V) > 0. (0.2)

@ There is a slightly stronger notion called "“uniformly RC-positivity”

Definition

A Hermitian holomorphic vector bundle (E, h) over a complex manifold X is
called uniformly RC-positive, if at any point g € X, there exists some vector
u € T¢X such that for each nonzero vector v € E4, one has

Rf(u,d,v,v) > 0. (0.3)
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RC-positivity and rationally connected manifolds.

@ RC-positive vector bundles.

Definition

A Hermitian holomorphic vector bundle (E, h) over a complex manifold X is
called RC-positive, if at point g € X, and for each nonzero vector v € E,, there
exists some nonzero vector u € T¢X such that

RE(u,d,v,V) > 0. (0.2)

@ There is a slightly stronger notion called "“uniformly RC-positivity”

Definition

A Hermitian holomorphic vector bundle (E, h) over a complex manifold X is
called uniformly RC-positive, if at any point g € X, there exists some vector
u € T¢X such that for each nonzero vector v € E4, one has

Rf(u,d,v,v) > 0. (0.3)

e For a Hermitian line bundle (L, h),

RC-positive <= uniformly RC-positive
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RC-positivity and rationally connected manifolds.

@ Examples of RC-positive tangent bundles.
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RC-positivity and rationally connected manifolds.

@ Examples of RC-positive tangent bundles.
e Fano manifolds;

manifolds with positive second Chern-Ricci curvature;

Hopf manifolds S* x §2"*1;

e complex manifolds with HSC > 0;

products of manifolds with TM >gc 0.
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RC-positivity and rationally connected manifolds.

@ Examples of RC-positive tangent bundles.

e Fano manifolds;

manifolds with positive second Chern-Ricci curvature;

Hopf manifolds S* x §2"*1;

e complex manifolds with HSC > 0;

products of manifolds with TM >gc 0.

@ Examples of uniformly RC-positive tangent bundles.
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RC-positivity and rationally connected manifolds.

@ Examples of RC-positive tangent bundles.

e Fano manifolds;

manifolds with positive second Chern-Ricci curvature;

Hopf manifolds St x §2"*1;

e complex manifolds with HSC > 0;

products of manifolds with TM >gc 0.

@ Examples of uniformly RC-positive tangent bundles.

e Kahler manifolds with HSC > 0;

Fano manifolds with HSC > 0 (Mok);

Hopf manifolds St x §2"*1;

products of manifolds with TM >yrc 0.
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RC-positivity and rationally connected manifolds.

o First result

Theorem (Y., 2018)

If a compact Kahler manifold X has uniformly RC-positive tangent bundle,
then X is projective and rationally connected.
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RC-positivity and rationally connected manifolds.

o First result

Theorem (Y., 2018)

If a compact Kahler manifold X has uniformly RC-positive tangent bundle,
then X is projective and rationally connected.

@ We also have a conjecture.

Let X be a projective manifold. We expect the equivalence:
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RC-positivity and rationally connected manifolds.

o First result

Theorem (Y., 2018)

If a compact Kahler manifold X has uniformly RC-positive tangent bundle,
then X is projective and rationally connected.

@ We also have a conjecture.

Let X be a projective manifold. We expect the equivalence:

(1) X is rationally connected;
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RC-positivity and rationally connected manifolds.

o First result

Theorem (Y., 2018)

If a compact Kahler manifold X has uniformly RC-positive tangent bundle,
then X is projective and rationally connected.

@ We also have a conjecture.

Let X be a projective manifold. We expect the equivalence:

(1) X is rationally connected;

(2) Tx is uniformly RC-positive.
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RC-positivity and rationally connected manifolds.

o First result

Theorem (Y., 2018)

If a compact Kahler manifold X has uniformly RC-positive tangent bundle,
then X is projective and rationally connected.

@ We also have a conjecture.

Let X be a projective manifold. We expect the equivalence:

(1) X is rationally connected;

(2) Tx is uniformly RC-positive.

@ Here, we have proved (2) = (1).
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RC-positivity and rationally connected manifolds.

o First result

Theorem (Y., 2018)

If a compact Kahler manifold X has uniformly RC-positive tangent bundle,
then X is projective and rationally connected.

@ We also have a conjecture.

Let X be a projective manifold. We expect the equivalence:

(1) X is rationally connected;

(2) Tx is uniformly RC-positive.

@ Here, we have proved (2) = (1).
@ For (1) = (2), we have some progress

Let X be a rationally connected manifold. Then the tautological line bundle
Ot (1) is uniformly RC-positive (e.g. there exists RC-positive Finsler metric
on X).
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Key techniques

Geometry of vector bundles, and using techniques in non-Kahler
geometry/functional analysis/0-estimate to investigate problems in
algebraic geometry!
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

o Let's recall the Cartan-Serre-Grothendieck-Kodaira theorem

Theorem (Cartan-Serre-Grothendieck, Kodaira)

Let X be a projective manifold with dim¢ X = n. Then the following
statements are equivalent
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

o Let's recall the Cartan-Serre-Grothendieck-Kodaira theorem

Theorem (Cartan-Serre-Grothendieck, Kodaira)

Let X be a projective manifold with dim¢ X = n. Then the following
statements are equivalent

(1) If a line bundle L satisfies: for any coherent sheaf F on X there
exists a positive mg = mo(F) such that

H (X, F® L") =0 for m>my and q=1,--,n.
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

o Let's recall the Cartan-Serre-Grothendieck-Kodaira theorem

Theorem (Cartan-Serre-Grothendieck, Kodaira)

Let X be a projective manifold with dim¢ X = n. Then the following
statements are equivalent

(1) If a line bundle L satisfies: for any coherent sheaf F on X there
exists a positive mg = mo(F) such that

H (X, F® L") =0 for m>my and q=1,--,n.

(2) L is ample;

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture 22 /35



A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

o Let's recall the Cartan-Serre-Grothendieck-Kodaira theorem

Theorem (Cartan-Serre-Grothendieck, Kodaira)

Let X be a projective manifold with dim¢ X = n. Then the following
statements are equivalent

(1) If a line bundle L satisfies: for any coherent sheaf F on X there
exists a positive mg = mo(F) such that

H (X, F® L") =0 for m>my and q=1,--,n.

(2) L is ample;

(3) L is positive, i.e. Ric(L) has n positive eigenvalues.
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

@ We obtain the following equivalence on general complex manifolds

Let X be a compact complex manifold. The following are equivalent:
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

@ We obtain the following equivalence on general complex manifolds

Let X be a compact complex manifold. The following are equivalent:

(1) L= is not pseudo-effective;

(2) L is RC-positive, i.e. Ric(L) has (at least) 1 positive eigenvalue.
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

@ We obtain the following equivalence on general complex manifolds

Let X be a compact complex manifold. The following are equivalent:

(1) L= is not pseudo-effective;

(2) L is RC-positive, i.e. Ric(L) has (at least) 1 positive eigenvalue.

@ Application: a weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

Let X be a projective manifold with dim¢c X = n. The following are equivalent
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

@ We obtain the following equivalence on general complex manifolds

Let X be a compact complex manifold. The following are equivalent:

(1) L= is not pseudo-effective;

(2) L is RC-positive, i.e. Ric(L) has (at least) 1 positive eigenvalue.

@ Application: a weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

Let X be a projective manifold with dim¢c X = n. The following are equivalent

(1) for any coherent sheaf F on X there exists mg = mo(F):
H" (X,F®L®™) =0 for m> mo.

(2) L' is not pseudo-effective;
(3) L is RC-positive.
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

@ We obtain the following equivalence on general complex manifolds

Let X be a compact complex manifold. The following are equivalent:

(1) L= is not pseudo-effective;

(2) L is RC-positive, i.e. Ric(L) has (at least) 1 positive eigenvalue.

@ Application: a weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

Let X be a projective manifold with dim¢c X = n. The following are equivalent

(1) for any coherent sheaf F on X there exists mg = mo(F):
H" (X,F®L®™) =0 for m> mo.

(2) L' is not pseudo-effective;
(3) L is RC-positive.

@ Andreotti-Grauert (1964'): (3) = (1). Demailly-Peternell-Schneider, Demailly,
Turtaro, Ottem, Matsumura and etc..
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A weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

@ We obtain the following equivalence on general complex manifolds

Let X be a compact complex manifold. The following are equivalent:

(1) L= is not pseudo-effective;

(2) L is RC-positive, i.e. Ric(L) has (at least) 1 positive eigenvalue.

@ Application: a weak dual of Cartan-Serre-Grothendieck-Kodaira theorem

Let X be a projective manifold with dim¢c X = n. The following are equivalent

(1) for any coherent sheaf F on X there exists mg = mo(F):

H" (X,F®L®™) =0 for m> mo.

(2) L' is not pseudo-effective;
(3) L is RC-positive.

@ Andreotti-Grauert (1964'): (3) = (1). Demailly-Peternell-Schneider, Demailly,
Turtaro, Ottem, Matsumura and etc..

@ |deas of the proof: using non-K&hler geometry/functional analysis/non-linear
PDE/Siu’s non-vanishing theorem.
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A proof of Yau's conjecture for HSC > 0

“

Conjecture (Problem 47 of Yau's

Let X be a compact Kahler manifold. If X has a Kdhler metric with HSC > 0,
then X is a projective and rationally connected manifold.
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A proof of Yau's conjecture for HSC > 0

“

Conjecture (Problem 47 of Yau's

Let X be a compact Kahler manifold. If X has a Kdhler metric with HSC > 0,
then X is a projective and rationally connected manifold.

If a compact Kahler manifold (X,w) has HSC > 0, then A° Tx is RC-positive
and Hg’O(X) =0 for every 1 < p < dim X. In particular, X is projective and
rationally connected.
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A proof of Yau's conjecture for HSC > 0

@ The proof is based on a “minimum prinicple”:

Lemma

Let (X,w) be a compact Kihler manifold. Let ey € TqX be a unit vector which
minimizes the holomorphic sectional curvature H of w at point q, then

2R(elaéla va) > (1 + |<er1>|2) R(elvélaelvél) (04)

for every unit vector W € ToX.
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A proof of Yau's conjecture for HSC > 0

We sketched the proof of Yau's conjecture as follows:
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A proof of Yau's conjecture for HSC > 0

We sketched the proof of Yau's conjecture as follows:

(1) Minimal principle for HSC > 0 implies AP Tx are RC positive for all
1< p<dimX;
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A proof of Yau's conjecture for HSC > 0

We sketched the proof of Yau's conjecture as follows:

(1) Minimal principle for HSC > 0 implies AP Tx are RC positive for all
1< p<dimX;

(2) Minimal principle for HSC > 0 implies H*>°(X) = 0;
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A proof of Yau's conjecture for HSC > 0

We sketched the proof of Yau's conjecture as follows:

(1) Minimal principle for HSC > 0 implies AP Tx are RC positive for all
1< p<dimX;

(2) Minimal principle for HSC > 0 implies H*>°(X) = 0;

(3) Ké'hlerJrH%’O(X) =0 = X is projective.
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A proof of Yau's conjecture for HSC > 0

We sketched the proof of Yau's conjecture as follows:

(1) Minimal principle for HSC > 0 implies AP Tx are RC positive for all
1< p<dimX;

(2) Minimal principle for HSC > 0 implies H*>°(X) = 0;
(3) Ké'hlerJrH%’O(X) =0 = X is projective.

(4) RC positivity implies vanishing theorem
H°(X,Sym®‘Q} @ A®) =0,

for any vector bundle A.
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A proof of Yau's conjecture for HSC > 0

We sketched the proof of Yau's conjecture as follows:

(1) Minimal principle for HSC > 0 implies AP Tx are RC positive for all
1< p<dimX;

(2) Minimal principle for HSC > 0 implies H*>°(X) = 0;
(3) Ké'hlerJrH%’O(X) =0 = X is projective.

(4) RC positivity implies vanishing theorem
H°(X, Sym®‘Q% @ A®¥) =0,
for any vector bundle A.

(5) Vanishing theorem + X projective = any invertible sheaf L of
Q% = (A’ Tx)* is not pseudo-effective (1 < p < dim¢ X)
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A proof of Yau's conjecture for HSC > 0

We sketched the proof of Yau's conjecture as follows:

(1) Minimal principle for HSC > 0 implies AP Tx are RC positive for all
1< p<dimX;

(2) Minimal principle for HSC > 0 implies H*>°(X) = 0;
(3) Ké'hlerJrH%’O(X) =0 = X is projective.

(4) RC positivity implies vanishing theorem
H°(X, Sym®‘Q% @ A®¥) =0,
for any vector bundle A.

(5) Vanishing theorem + X projective = any invertible sheaf L of
Q% = (A’ Tx)* is not pseudo-effective (1 < p < dim¢ X)

(6) A criterion of Campana-Demailly-Peternal implies X is rationally
connected.
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A proof of Yau's conjecture for HSC > 0

Let X be a compact Kahler manifold. If there exist Hermitian metrics w and h:
tr, RN e [(X, End(Tx)) is positive definite,

then X is projective and rationally connected.
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A proof of Yau's conjecture for HSC > 0

Let X be a compact Kahler manifold. If there exist Hermitian metrics w and h:
tr, RN e [(X, End(Tx)) is positive definite,

then X is projective and rationally connected.

e This is a generalization of the classical result of Kollar-Miyaoka-Mori and
Campana that Fano manifolds are rationally connected.
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A proof of Yau's conjecture for HSC > 0

Let X be a compact Kahler manifold. If there exist Hermitian metrics w and h:
tr, RN e [(X, End(Tx)) is positive definite,

then X is projective and rationally connected.

e This is a generalization of the classical result of Kollar-Miyaoka-Mori and
Campana that Fano manifolds are rationally connected.
o

Let X be a compact Kahler manifold. If (Tx,[w]) is poly-stale with positive
slope, then X is projective and rationally connected.

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture 27 /35



A proof of Yau's conjecture for HSC > 0

Let X be a compact Kahler manifold. If there exist Hermitian metrics w and h:
tr, RN e [(X, End(Tx)) is positive definite,

then X is projective and rationally connected.

e This is a generalization of the classical result of Kollar-Miyaoka-Mori and
Campana that Fano manifolds are rationally connected.
o

Let X be a compact Kahler manifold. If (Tx,[w]) is poly-stale with positive
slope, then X is projective and rationally connected.

Problem

The following statements are equivalent on a projective manifold X.
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A proof of Yau's conjecture for HSC > 0

Let X be a compact Kahler manifold. If there exist Hermitian metrics w and h:
tr, RN e [(X, End(Tx)) is positive definite,

then X is projective and rationally connected.

e This is a generalization of the classical result of Kollar-Miyaoka-Mori and
Campana that Fano manifolds are rationally connected.
o

Let X be a compact Kahler manifold. If (Tx,[w]) is poly-stale with positive
slope, then X is projective and rationally connected.

Problem

The following statements are equivalent on a projective manifold X.

(1) X is rationally connected;
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A proof of Yau's conjecture for HSC > 0

Let X be a compact Kahler manifold. If there exist Hermitian metrics w and h:
tr, RN e [(X, End(Tx)) is positive definite,

then X is projective and rationally connected.

e This is a generalization of the classical result of Kollar-Miyaoka-Mori and
Campana that Fano manifolds are rationally connected.
o

Let X be a compact Kahler manifold. If (Tx,[w]) is poly-stale with positive
slope, then X is projective and rationally connected.

Problem

The following statements are equivalent on a projective manifold X.
(1) X is rationally connected;

(2) there exists a Hermitian metric w with Ric®(w) > 0.
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RC-positivity and rigidity of holomorphic maps.

@ The following rigidity theorem is well-known

Theorem (Yau)

Let f : M — N be a holomorphic map between two complex manifolds. If

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ The following rigidity theorem is well-known

Theorem (Yau)

Let f : M — N be a holomorphic map between two complex manifolds. If
(1) If M is compact and Ric(M,ws) > 0;

Then f is constant.

Xiaokui Yang (Chinese Academy of Sciences) RC positivity and Yau's rational connectedness conjecture



RC-positivity and rigidity of holomorphic maps.

@ The following rigidity theorem is well-known

Theorem (Yau)

Let f : M — N be a holomorphic map between two complex manifolds. If
(1) If M is compact and Ric(M,ws) > 0;
(2) HBSC(N,wg) < 0.

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ The following rigidity theorem is well-known

Theorem (Yau)

Let f : M — N be a holomorphic map between two complex manifolds. If
(1) If M is compact and Ric(M,ws) > 0;
(2) HBSC(N,wg) < 0.

Then f is constant.

@ By using maximum principle

tro, (V=100u) > (h"7R5,5) W0 (gfifl )~ Ry (07 fi]) (W7ELEE).

where _
u=|0f? = g:h"" i

is the energy density of the map f: (M, h) — (N, g).
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RC-positivity and rigidity of holomorphic maps.

Theorem (Y., 2018)

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

Theorem (Y., 2018)

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) the tautological line bundle Oty (—1) is RC-positive;

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

Theorem (Y., 2018)

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) the tautological line bundle Oty (—1) is RC-positive;
(2) O (1) is nef.
Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

Theorem (Y., 2018)

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) the tautological line bundle Oty (—1) is RC-positive;
(2) O (1) is nef.
Then f is constant.

@ We introduce the generalized 0-energy density on the projective bundle
P(Twm) — M is defined as

By setting 7 = > hsW"W", we obtain the complex Hessian estimate:

5 5 IR FL A E LW W dz A dZ°
V—-100% > (\/—7100 Iog,}’f”).@_r ijkeTaT3mu (s
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RC-positivity and rigidity of holomorphic maps.

@ In particular,

Let f : M — N be a holomorphic map between two complex manifolds. If

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ In particular,

Let f : M — N be a holomorphic map between two complex manifolds. If

(1) If M is compact and Ty is RC-positive;

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ In particular,

Let f : M — N be a holomorphic map between two complex manifolds. If

(1) If M is compact and Ty is RC-positive;
(2) HBSC(N,wp) < 0.

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ In particular,

Let f : M — N be a holomorphic map between two complex manifolds. If

(1) If M is compact and Ty is RC-positive;
(2) HBSC(N,wp) < 0.

Then f is constant.

@ Recall that, there are many Kahler and non-Kahler complex manifolds
with RC-positive tangent bundles

complex manifolds with HSC > 0;

Fano manifolds;

manifolds with positive second Chern-Ricci curvature;
Hopf manifolds S x $2"*1;

products of complex manifolds with RC-positive tangent
bundles.
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RC-positivity and rigidity of holomorphic maps.

By using the Hessian estimate

VIR FL AR FE W W dz* A dZ°
% )

V—100% > (\/?185 log ﬁ"l) -

we can also show

Let f : (M, h) — (N, g) be a holomorphic map between two Hermitian
manifolds. Suppose M is compact. If

(1) (M, h) has HSC > 0 (resp. HSC >0 );
(2) (N,g) has HSC < 0 (resp. HSC < 0 ),

then f is a constant map.
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RC-positivity and rigidity of harmonic and pluri-harmonic maps.

@ Recall that: a smooth map f from a complex manifold M to a Kahler (or
Riemannian) manifold N is pluri-harmonic if and only if for any
holomorphic curve i: C — M, the composition f o i is harmonic.

Let f : M — (N, g) be a pluri-harmonic map from a compact complex manifold
M to a Riemannian manifold or a Kihler manifold (N, g)

Then f is constant.
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RC-positivity and rigidity of harmonic and pluri-harmonic maps.

@ Recall that: a smooth map f from a complex manifold M to a Kahler (or
Riemannian) manifold N is pluri-harmonic if and only if for any
holomorphic curve i: C — M, the composition f o i is harmonic.

Let f : M — (N, g) be a pluri-harmonic map from a compact complex manifold
M to a Riemannian manifold or a Kihler manifold (N, g)

(1) If M is compact and Oty (—1) is RC-positive;

Then f is constant.
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RC-positivity and rigidity of harmonic and pluri-harmonic maps.

@ Recall that: a smooth map f from a complex manifold M to a Kahler (or
Riemannian) manifold N is pluri-harmonic if and only if for any
holomorphic curve i: C — M, the composition f o i is harmonic.

Let f : M — (N, g) be a pluri-harmonic map from a compact complex manifold
M to a Riemannian manifold or a Kihler manifold (N, g)

(1) If M is compact and Oty (—1) is RC-positive;

(2) (N, g) has non-positive Riemannian sectional curvature,

Then f is constant.
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RC-positivity and rigidity of harmonic and pluri-harmonic maps.

@ Recall that: a smooth map f from a complex manifold M to a Kahler (or
Riemannian) manifold N is pluri-harmonic if and only if for any
holomorphic curve i: C — M, the composition f o i is harmonic.

Let f : M — (N, g) be a pluri-harmonic map from a compact complex manifold
M to a Riemannian manifold or a Kihler manifold (N, g)

(1) If M is compact and Oty (—1) is RC-positive;

(2) (N, g) has non-positive Riemannian sectional curvature,

Then f is constant.

@ Moreover, we have

Let f : (M, h) — (N, g) be a harmonic map from a compact Kahler manifold
(M, h) to a Riemannian manifold (N, g).

Then f is constant.
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RC-positivity and rigidity of harmonic and pluri-harmonic maps.

@ Recall that: a smooth map f from a complex manifold M to a Kahler (or
Riemannian) manifold N is pluri-harmonic if and only if for any
holomorphic curve i: C — M, the composition f o i is harmonic.

Let f : M — (N, g) be a pluri-harmonic map from a compact complex manifold
M to a Riemannian manifold or a Kihler manifold (N, g)

(1) If M is compact and Oty (—1) is RC-positive;

(2) (N, g) has non-positive Riemannian sectional curvature,

Then f is constant.

@ Moreover, we have

Let f : (M, h) — (N, g) be a harmonic map from a compact Kahler manifold
(M, h) to a Riemannian manifold (N, g).

(1) If Oty (—1) is RC-positive;

(2) (N, g) has non-positive complex sectional curvature,

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ By using rational connectedness, we also have

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ By using rational connectedness, we also have

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) M a Kahler manifold with uniformly RC-positive Ty;
(2) N is Kobayashi hyperbolic or HSC < 0.

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ By using rational connectedness, we also have

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) M a Kahler manifold with uniformly RC-positive Ty;
(2) N is Kobayashi hyperbolic or HSC < 0.

Then f is constant.

@ In particular

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

Then f is constant.
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RC-positivity and rigidity of holomorphic maps.

@ By using rational connectedness, we also have

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) M a Kahler manifold with uniformly RC-positive Ty;
(2) N is Kobayashi hyperbolic or HSC < 0.

Then f is constant.

@ In particular

Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) M has a Kahler metric with HSC > 0;
(2) N is Kobayashi hyperbolic or HSC < 0.

Then f is constant.
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Let f : M — N be a holomorphic map between two compact complex
manifolds. If

(1) Org(—1) is RC-positive;
(2) N is Kobayashi hyperbolic.

Then f is constant.
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Thank you!

i Yang (Chinese Academy of Sciences) y and Yau'’s rational connectedness conject:



