A finite dimensional proof of Verlinde formula

Xiaotao Sun

School of Mathematics, Tianjin University

Hong Kong, October 15, 2018

Motivation: Jacobian variety and theta functions

• Let C be a smooth projective curve of genus q.

 $J_C^d = \{$ vector bundles E of $\text{rk}(E) = 1$, $\deg(E) = d$ on $C\}$

Let ${\mathcal E}$ be a universal line bundle on $C\times J_C^d\stackrel{\pi}{\to} J_C^d$, and

$$
\Theta_{J_C^d}:=\mathrm{det}R\pi(\mathcal{E})^{-k}\otimes \mathrm{det}(\mathcal{E}_y)^{k(d+1-g)}
$$

 $H^0(J_C^d,\Theta_{J_C^d})$ is the so called space of **theta functions of order** k

$$
\dim H^0(J_C^d,\Theta_{J_C^d}) = k^g
$$

• A. Weil (1938) (Généralisation des fonctions abéliennes) suggested to generalize the theory to higher rank $r > 1$ $r > 1$. QQQ

Motivation: Moduli spaces and generalized theta functions

(Mumford, Narasimhan-Seshadri): There exist moduli spaces

 $U_C = \{$ s.s. bundles E of r $k(E) = r$, $deg(E) = d$ on $C\}$

and theta line bundles $\Theta_{\mathcal{U}_C}$ on $\mathcal{U}_C.$

 $H^0(\mathcal{U}_C,\Theta_{\mathcal{U}_C})$: space of **generalized theta functions of order** k $\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = ?$

• A formula was predicted by **Conformal Field Theory**, when $r = 2$,

$$
\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = \left(\frac{k}{2}\right)^g \left(\frac{k+2}{2}\right)^{g-1} \sum_{i=0}^k \frac{(-1)^{id}}{(\sin \frac{(i+1)\pi}{k+2})^{2g-2}}
$$

 QQQ

The moduli spaces: $\mathcal{U}_{C,\,\omega} = \mathcal{U}_C(r,d,\omega)$

- C: projective curve of genus $q \geq 0$ with at most one node
- $\bullet \ \omega = (k, {\{\vec{n}(x), \vec{a}(x)\}}_{x \in I})$: a finite set $I \subset C$ of smooth points, $\vec{n}(x) := (n_1(x), n_2(x), \cdots, n_{l_n+1}(x))$

$$
\vec{a}(x) := (a_1(x), a_2(x), \cdots, a_{l_x+1}(x))
$$

and an integer $k > 0$ such that

$$
0 \le a_1(x) < a_2(x) < \cdots < a_{l_x+1}(x) < k.
$$

 \bullet $\mathcal{U}_{C,\omega}$: moduli space of semistable parabolic sheaves of rank r and degree d on C with parabolic structures determined by ω

The moduli spaces: Parabolic sheaves

• A torsion free sheaf E has a parabolic structure of type $\vec{n}(x)$ and weights $\vec{a}(x)$ at a smooth point $x \in C$, we mean a choice of

$$
E_x = Q_{l_x+1}(E)_x \twoheadrightarrow \cdots \cdots \twoheadrightarrow Q_1(E)_x \twoheadrightarrow Q_0(E)_x = 0
$$

of fibre E_x with $n_i(x) = \dim(ker\{Q_i(E)_x \rightarrow Q_{i-1}(E)_x\})$ and a sequence of integers

$$
0 \le a_1(x) < a_2(x) < \cdots < a_{l_x+1}(x) < k.
$$

For any $F\subset E$, let $Q_i(E)^F_x\subset Q_i(E)_x$ be the image of F ,

$$
n_i^F = \dim(\ker\{Q_i(E)_x^F \to Q_{i-1}(E)_x^F\})
$$

$$
\text{par}\chi(F) := \chi(F) + \frac{1}{k} \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x) n_i^F(x).
$$

The moduli spaces: Semi-stability

 E is called $\mathsf{semistable}$ (resp., $\mathsf{stable})$ for $\frac{\vec{a}}{k}$ if for any nontrivial subsheaf $F \subset E$ such that E/F is torsion free, one has

$$
\text{par}\chi(F) \le \frac{\text{par}\chi(E)}{r} \cdot r(F) \text{ (resp., } <).
$$

• There exists a seminormal projective variety

$$
\mathcal{U}_{C,\,\omega}=\mathcal{U}_C(r,d,\omega)
$$

which is the coarse moduli space of s -equivalence classes of semistable parabolic sheaves E of rank r and $deg(E) = d$ with parabolic structures of type ${\{\vec{n}(x)\}}_{x\in I}$ and weights ${\{\vec{a}(x)\}}_{x\in I}$ at points $\{x\}}_{x\in I}$.

 Ω

 \bullet If C is smooth, then it is normal, with only rational singularities.

Generalized theta functions on $\mathcal{U}_{C,\,\omega}$

• There is an algebraic family of ample line bundles $\Theta_{\mathcal{U}_{C,\omega}}$ on $\mathcal{U}_{C,\omega}$ (the so called Theta line bundles) when

$$
\ell := \frac{k\chi - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x)}{r}
$$

is an integer, where

$$
d_i(x) = a_{i+1}(x) - a_i(x)
$$

$$
r_i(x) = n_1(x) + \cdots + n_i(x).
$$

 ${\rm H}^{0}(\mathcal{U}_{C,\,\omega},\Theta_{\mathcal{U}_{C,\,\omega}})$: The space of generalized theta functions. An explicit formula of

$$
D_g(r, d, \omega) = \dim \mathrm{H}^0(\mathcal{U}_{C,\omega}, \Theta_{\mathcal{U}_{C,\omega}})
$$

 Ω

was predicted by Conformal Field Theory[.](#page-5-0)

Verlinde formula:

$$
D_g(r, d, \omega) = ?
$$

$$
D_g(r, d, \omega) = (-1)^{d(r-1)} \left(\frac{k}{r}\right)^g (r(r+k)^{r-1})^{g-1}
$$

$$
\sum_{\vec{v}} \frac{\exp\left(2\pi i \left(\frac{d}{r} - \frac{|\omega|}{r(r+k)}\right) \sum_{i=1}^r v_i\right) S_{\omega} \left(\exp 2\pi i \frac{\vec{v}}{r+k}\right)}{\prod_{i < j} \left(2\sin \pi \frac{v_i - v_j}{r+k}\right)^{2(g-1)}}
$$

where $\vec{v} = (v_1, v_2, \dots, v_r)$ runs through the integers

$$
0 = v_r < v_{r-1} < \dots < v_2 < v_1 < r + k.
$$

• For given $\omega = (k, {\{\vec{n}(x), \vec{a}(x)\}}_{x \in I})$, let $\lambda_i = k - a_i(x)$

$$
\lambda_x = (\overbrace{\lambda_1, \dots, \lambda_1}^{n_1(x)}, \overbrace{\lambda_2, \dots, \lambda_2}^{n_2(x)}, \dots, \overbrace{\lambda_{l_x+1}, \dots, \lambda_{l_x+1}}^{n_{l_x+1}(x)})
$$
\n• Let $S_{\lambda_x}(z_1, \dots, z_r)$ be Schur polynomial, $|\lambda_x| = \sum_{i} \lambda_i n_i(x)$,
\n
$$
S_{\omega}(z_1, \dots, z_r) = \prod_{x \in I} S_{\lambda_x}(z_1, \dots, z_r), \quad |\omega| = \sum_{i} |\lambda_x|.
$$

 $2Q$

Rational Conformal Field Theory (RCFT)

- Let Λ be a finite set with an involution $\lambda \mapsto \lambda^*$, a RCFT is a functor: $(C, \overrightarrow{p}; \overrightarrow{\lambda}) \mapsto V_C(\overrightarrow{p}; \overrightarrow{\lambda})$ where $\overrightarrow{p}=(p_1,\ldots,p_n)$, $p_i\in C,$ $\overrightarrow{\lambda}=(\lambda_1,\ldots,\lambda_n)$, satisfies axioms:
- **A0:** $V_{\mathbb{P}^1}(\emptyset) = \mathbb{C}$, **A1:** $V_C(\overrightarrow{p}; \overrightarrow{\lambda}) \cong V_C(\overrightarrow{p}; \overrightarrow{\lambda}^*)$

• **A2:** Let
$$
(C, \overrightarrow{p}; \overrightarrow{\lambda}) = (C', \overrightarrow{p}'; \overrightarrow{\lambda}') \sqcup (C'', \overrightarrow{p}''; \overrightarrow{\lambda}'')
$$
. Then

$$
V_C(\overrightarrow{p}; \overrightarrow{\lambda}) = V_{C'}(\overrightarrow{p}'; \overrightarrow{\lambda}') \otimes V_{C''}(\overrightarrow{p}''; \overrightarrow{\lambda}'')
$$

A3: For a family $\{C_t, \overrightarrow{p_t}; \overrightarrow{\lambda}\}_{t\in \Delta}$, there are canonical isomorphisms $V_{C_t}(\overrightarrow{p_t}; \overrightarrow{\lambda}) \cong V_{C_0}(\overrightarrow{p_0}; \overrightarrow{\lambda})$

A4: If C_0 has a node x , $\pi^{-1}(x) = \{x_1, x_2\}$, $\pi : \widetilde{C_0} \to C_0$. Then $V_{C_t}(\overrightarrow{p_t}; \overrightarrow{\lambda}) \cong \bigoplus_{\alpha} V_{\widetilde{C_0}}(\overrightarrow{p_0}, x_1, x_2; \overrightarrow{\lambda}, \nu, \nu^*)$ ν

The fusion rules

\n- \n (dim
$$
V_C(\overrightarrow{p}; \overrightarrow{\lambda})
$$
 depends only on $g = g(C)$ and\n
$$
(\lambda_1, \ldots, \lambda_n) := \lambda_1 + \cdots + \lambda_n.
$$
\n
\n- \n (a) $\mathbb{N}^{(\Lambda)} := \{x = \lambda_1 + \cdots + \lambda_n \mid n \geq 0, \lambda_i \in \Lambda\},$ \n
$$
N_g: \mathbb{N}^{(\Lambda)} \to \mathbb{N}, \qquad N_g(x) := \dim_{\mathbb{C}} V_C(\overrightarrow{p}; \overrightarrow{\lambda}).
$$
\n
\n- \n (a) $N_g(x) = \sum_{\lambda \in \Lambda} N_{g-1}(x + \lambda + \lambda^*)$ \n
\n- \n (b) $N_0(0) = 1$ \n
\n- \n (c) $N_0(x) = N_0(x^*) \quad (\forall \, x \in \mathbb{N}^{(\Lambda)})$ \n
\n- \n (d) $N_0(x + y) = \sum_{\lambda \in \Lambda} N_0(x + \lambda) N_0(y + \lambda^*) \quad (\forall \, x, y \in \mathbb{N}^{(\Lambda)})$ \n
\n

 299

活

÷,

The fusion ring $\mathcal F$

Let $\mathcal{F}=\mathbb{Z}^{(\Lambda)}$ be the free abelian group generated by Λ , define

$$
\lambda \cdot \mu = \sum_{\nu \in \Lambda} N_0(\lambda + \mu + \nu^*) \cdot \nu.
$$

• a bilinear form $(\cdot, \cdot) : \mathcal{F} \times \mathcal{F} \to \mathbb{Z}$ such that

$$
(x\cdot z,y)=(x,z^*\cdot y)
$$

 \bullet Λ is an orthonormal basis:

 \bullet F is called the fusion ring associated to the RCFT,

$$
\mathcal{F}_{\mathbb{C}}:=\mathcal{F}\otimes_{\mathbb{Z}}\mathbb{C}.
$$

Formulation of Verlinde formula

• Let $\Sigma = \{ \chi : \mathcal{F} \to \mathbb{C} \}$ be the set of characters of \mathcal{F} . Then

$$
\dim V_C(\overrightarrow{p};\overrightarrow{\lambda}) = \sum_{\chi \in \Sigma} \chi(\lambda_1) \cdots \chi(\lambda_n) \left(\sum_{\lambda \in \Lambda} |\chi(\lambda)|^2\right)^{g-1}
$$

- $\bullet \{ m_x : \mathcal{F}_\mathbb{C} \to \mathcal{F}_\mathbb{C} \, | \, \forall \, x \in \mathcal{F}_\mathbb{C} \, \} \subset \text{End}(\mathcal{F}_\mathbb{C})$ is a commutative subalgebra, let M_x be the matrix of linear operator m_x under the orthonormal basis Λ of $\mathcal{F}_{\mathbb{C}}$;
- There exists a unitary matrix $S = (S_{\lambda\mu})_{\lambda,\mu\in\Lambda}$ such that

$$
S\cdot M_x\cdot S^{-1}
$$

is diagonal for all $x \in \mathcal{F}_{\mathbb{C}}$. Then

$$
\dim V_C(\overrightarrow{p};\overrightarrow{\lambda}) = \sum_{\nu \in \Lambda} \frac{S_{\nu\lambda_1} \cdots S_{\nu\lambda_n}}{S_{\nu 1}^{2g-2+n}}.
$$

• Let
$$
E_{\tau} = \mathbb{C}/\{1, \tau\}
$$
 ($\tau \in \mathbb{H}$), $\gamma \in SL_2(\mathbb{Z})$. Then

$$
E_{\tau} \cong E_{\gamma \cdot \tau}.
$$

• The axiom A3 and axiom A4 give a unitary action of $SL_2(\mathbb{Z})$ on

$$
V_E(\emptyset) \cong \bigoplus_{\lambda \in \Lambda} V_{\mathbb{P}^1}(p_1, p_2, \lambda, \lambda^*) \cong \mathcal{F}_{\mathbb{C}}
$$

- The unitary action of $\text{SL}_2(\mathbb{Z})$ on $\mathcal{F}_{\mathbb{C}}$ can usually written explicitly;
- Verlinde conjecture (Nuclear Physics B300 (1988), 360–376): Let $S = (S_{\lambda\mu})_{\lambda,\mu\in\Lambda}$ be the matrix of modular transformation $\tau \mapsto -1/\tau$ (under orthonormal basis Λ of $\mathcal{F}_{\mathbb{C}}$). Then

$$
S\cdot M_x\cdot S^{-1}
$$

 200

is diagonal for all $x \in \mathcal{F}_{\mathbb{C}}$.

Tsuchiya-Ueno-Yamada (1989): WZW model

- Wess-Zumino-Witten (WZW) model is associated to a simple complex Lie algebra g and integer $k > 0$.
- Given a simple Lie algebra g and integer $k > 0$, let P_k be the set of dominant weight of level $\leq k, \; V_{\overrightarrow{\lambda}}:=V_{\lambda_1}\otimes\cdots\otimes V_{\lambda_n}$ $(\lambda_i\in P_k)$ and

$$
V_C(\overrightarrow{p};\overrightarrow{\lambda}) := \mathrm{Hom}_{\mathfrak{g} \otimes A_C}(\mathcal{H}_k,V_{\overrightarrow{\lambda}}), \quad A_C = \mathcal{O}_C(C - \{q\})
$$

where \mathcal{H}_k is the basic representation of level k of affine Lie algebra $\hat{\mathfrak{g}}$, and $\mathfrak{g} \otimes A_C \hookrightarrow \mathfrak{g} \otimes \mathbb{C}((z)) \subset \widehat{\mathfrak{g}}$ is a Lie subalgebra of $\widehat{\mathfrak{g}}$.

- $\sf Tsuchiya-Ueno-Yamada~(1989):~Function:~~(C, \overrightarrow{p}; \overrightarrow{\lambda}) \mapsto V_C(\overrightarrow{p}; \overrightarrow{\lambda})$ satisfies the axioms A0 to A4.
- The dimension $N_g(\overrightarrow{\lambda})=\dim V_C(\overrightarrow{p};\overrightarrow{\lambda})$ of the "spaces of conformal blocks" is computable. 200

WZW model and generalized theta functions

• Beauville- Laszlo (1994): For $g = \mathfrak{sl}_r(\mathbb{C})$, we have

$$
V_C(\emptyset) \cong H^0(\mathcal{SU}_C(r), \Theta^k_{\mathcal{U}_C})
$$

- Faltings (1994): It is true for arbitrary simple Lie algebra g, if $SU_{\mathbb{C}}(r)$ is replaced by "moduli spaces of G-bundles on \mathbb{C}^n , where G is the algebraic group with Lie algebra g.
- **Pauly** (1996): For $\mathfrak{g} = \mathfrak{sl}_r(\mathbb{C}), V_C(\overrightarrow{p}; \overrightarrow{\lambda}) \cong H^0(\mathcal{U}_C(r), \Theta^k_{\mathcal{U}_C}),$ where $U_C(r)$ is the moduli spaces of parabolic bundles on C.
- **Beauville**: As soon as the Verlinde formula became known to mathematicians, it became a **challenge** for them to give a rigorous proof, so a wealth of proofs have appeared.

 200

Finite-dimensional proofs

- Beauville: The basic distinction between the proofs using standard algebraic geometry, which up to now work only in the case $r = 2$, and proofs that use infinite-dimensional algebraic geometry to mimic the heuristic approach of the physicists-these work for all r .
- Compute $\chi(\Theta_{\mathcal{U}_C}^k)$: Bertram-Szenes, Zagier, Donaldson-Witten.
- Thaddeus (1994): Stable pairs, linear systems and Verlinde formula (Invent. Math. 117, 317-353).
- Narasimhan-Ramadas (1993): Factorization of generalized theta functions (Invent. Math. 114, 565-623).
- Beauville: ...which up to now work only in the case $r = 2$ and an extension to higher rank seems out of r[ea](#page-14-0)[ch](#page-16-0)[.](#page-14-0)

Degeneration method

- Degenerate $C_t \rightsquigarrow C_0 = X$ to a curve X with one node $x_0 \in X$.
- Need to prove: $\dim H^0(\mathcal{U}_{C_t,\omega_t}, \Theta_{\mathcal{U}_{C_t,\omega_t}}) = \dim H^0(\mathcal{U}_{X,\omega}, \Theta_{\mathcal{U}_{X,\omega}}).$
- Let $\pi : \widetilde{X} \to X$ be the normalization, $\pi^{-1}(x_0) = \{x_1, x_2\}.$

Theorem 1 (Sun, 2000-2003)

$$
H^{0}(\mathcal{U}_{X,\omega}, \Theta_{\mathcal{U}_{X,\omega}}) \cong \bigoplus_{\mu} H^{0}(\mathcal{U}_{\widetilde{X},\omega^{\mu}}, \Theta_{\mathcal{U}_{\widetilde{X},\omega^{\mu}}})
$$

$$
H^{0}(\mathcal{U}_{X_{1}\cup X_{2},\omega_{1}\cup\omega_{2}}, \Theta_{\mathcal{U}_{X_{1}\cup X_{2},\omega_{1}\cup\omega_{2}}})
$$

$$
\cong \bigoplus_{\mu} H^{0}(\mathcal{U}_{X_{1},\omega_{1}^{\mu}}, \Theta_{\mathcal{U}_{X_{1},\omega_{1}^{\mu}}}) \otimes H^{0}(\mathcal{U}_{X_{2},\omega_{2}^{\mu}}, \Theta_{\mathcal{U}_{X_{2},\omega_{2}^{\mu}}})
$$

$$
\text{where } \mu = (\mu_{1}, \cdots, \mu_{r}) \text{ runs through } 0 \leq \mu_{r} \leq \cdots \leq \mu_{1} < k.
$$

Vanishing Theorem

Theorem 2 (Sun, 2000)

• If
$$
g(C_t) \geq 2
$$
, then $H^1(\mathcal{U}_{C_t,\omega_t}, \Theta_{\mathcal{U}_{C_t,\omega_t}}) = 0$.

• If
$$
g(X) \ge 3
$$
, then $H^1(\mathcal{U}_{X,\omega}, \Theta_{\mathcal{U}_{X,\omega}}) = 0$.

 $\mathcal{U}_{C, \omega} = \mathcal{R}_\omega^{ss} /\!/ G$, $\; \mathcal{R}_\omega^{ss} \subset \mathcal{R}$ is the set of GIT semistable points.

•
$$
H^1(\mathcal{U}_{C,\omega}, \Theta_{\mathcal{U}_{C,\omega}}) = H^1(\mathcal{R}^{ss}_{\omega}, \Theta_{\omega})^{inv.} = H^1(\mathcal{R}, \Theta_{\omega})^{inv.}
$$

 $\Theta_{\omega} = \omega_{\mathcal{R}} \otimes \Theta_{\omega'},\ H^{1}(\mathcal{R},\Theta_{\omega})^{inv.} = H^{1}(\mathcal{R}^{ss}_{\omega'},\omega_{\mathcal{R}} \otimes \Theta_{\omega'})^{inv.}.$

$$
\bullet \ \ H^1(\mathcal{U}_{C,\omega},\Theta_{\mathcal{U}_{C,\omega}})=H^1(\mathcal{U}_{C,\omega'},\Theta_{\mathcal{U}_{C,\omega'}}\otimes (\varphi_*\omega_{\mathcal{R}^{ss}_{\omega'}})^{inv.}) \ \ \text{where}
$$

$$
\varphi: \mathcal{R}^{ss}_{\omega'} \to \mathcal{U}_{C,\omega'}
$$

D.

IK BIKK BIK

 QQ

Proposition 1 (Sun, 2000)

For any $\omega = (r, d, I, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k)$, we have

- (1) codim $(\mathcal{R}_{\omega}^{ss} \setminus \mathcal{R}_{\omega}^s) \geq (r-1)(g-1) + \frac{|I|}{k}$
- (2) codim $(\mathcal{R}\setminus\mathcal{R}_{\omega}^{ss})$ > $(r-1)(g-1) + \frac{|\mathbf{I}|}{k}$.
	- $H^1(\mathcal{R}^{ss}_\omega,\Theta_\omega)^{inv.}=H^1(\mathcal{R},\Theta_\omega)^{inv.}$ (It may hold unconditionally if $\mathcal R$ is projective with only rational singularity by C. Teleman).

•
$$
H^1(\mathcal{R}, \omega_{\mathcal{R}} \otimes \Theta_{\omega'})^{inv.} = H^1(\mathcal{R}_{\omega'}^{ss}, \omega_{\mathcal{R}} \otimes \Theta_{\omega'})^{inv.}
$$
 if

$$
\operatorname{codim}(\mathcal{R} \setminus \mathcal{R}_{\omega'}^{ss}) > 2.
$$

• (F. Knop):
$$
\omega_{\mathcal{U}_{C,\omega'}} = (\varphi_* \omega_{\mathcal{R}^{ss}_{\omega'}})^{inv.}
$$
 if $\text{codim}(\mathcal{R}^{ss}_{\omega'} \setminus \mathcal{R}^s_{\omega'}) \geq 2$.

 200

Theorem 3 (Sun–Zhou, 2016)

For any positive integers c_1 , c_2 and partitions $I = I_1 \cup I_2$, $q = q_1 + q_2$ such that $\ell_j = \frac{c_j \ell}{c_1+c_2}$ $\frac{c_3 c}{c_1+c_2}$ $(j = 2)$ are integers, we have

$$
D_g(r, d, \omega) = \sum_{\mu} D_{g-1}(r, d, \omega^{\mu})
$$

$$
D_g(r, d, \omega) = \sum_{\mu} D_{g_1}(r, d_1^{\mu}, \omega_1^{\mu}) \cdot D_{g_2}(r, d_2^{\mu}, \omega_2^{\mu})
$$

where $\mu = (\mu_1, \dots, \mu_r)$ runs through $0 \leq \mu_r \leq \dots \leq \mu_1 < k$ and

$$
\omega^{\mu} = (k, {\{\vec{n}(x),\vec{a}(x)\}}_{x \in I \cup {\{x_1,x_2\}}}), \ \omega^{\mu}_j = (k, {\{\vec{n}(x),\vec{a}(x)\}}_{x \in I_j \cup {\{x_j\}}})
$$

with $\vec{n}(x_j)$, $\vec{a}(x_j)$ and d_j^{μ} $_j^\mu$ $(j=1,\,2)$ determined by $\mu.$

 QQQ

Globally F-regular varieties

• Let M be a variety over a perfect field k of $char(k) = p > 0$, $F \cdot M \rightarrow M$

be the (absolute) Frobenius map and $F^e: M \to M$ be the e-th iterate of Frobenius map.

• When M is normal, for any (weil) divisor $D \in Div(M)$,

 $\mathcal{O}_M(D)(V) = \{ f \in K(M) \mid div_V(f) + D|_V \geq 0 \}, \quad \forall V \subset M$

is a reflexive subsheaf of constant sheaf $K = k(M)$

Definition 1

A normal variety M over a perfect field is called stably Frobenius D-split if

$$
\mathcal{O}_M \to F^e_* \mathcal{O}_M(D)
$$

is split for some $e > 0$.

Globally F-regular varieties: Projective case

Definition 2

A normal variety M over a perfect field is called globally F-regular if M is stably Frobenius D-split for any effective divisor D.

Proposition 2

Let M be a projective variety over a perfect field. Then the following statements are equivalent.

- (1) M is normal and is stably Frobenius D-split for any effective D;
- (2) M is stably Frobenius D-split for any effective Cartier D;
- (3) For any ample line bundle \mathcal{L} , the section ring of M

$$
R(M,\mathcal{L}) = \bigoplus_{n=0}^{\infty} H^0(M,\mathcal{L}^n)
$$

is strongly F-regular.

Definition 3

A variety M over a field of characteristic zero is said to be of globally F-regular type if its "**modulo** p **reduction of** M' are globally F-regular for a dense set of p.

Proposition 3 (K. E. Smith)

Let M be a projective variety over a field of characteristic zero. If M is of globally F-regular type, then we have

- (1) M is normal, Cohen-Macaulay with rational singularities. If M is $\mathbb Q$ -Gorenstein, then M has log terminal singularities.
- (2) For any nef line bundle $\mathcal L$ on M , we have $H^{i}(M, \mathcal L) = 0$ when $i > 0$. In particular, $H^i(M, \mathcal{O}_M)=0$ whenever $i>0$.

→ 何 ト → ヨ ト → ヨ ト

4 D F

 Ω

÷

Moduli spaces: globally F-regular type

Definition 4

Let C be a smooth projective curve, $\omega = (k, {\{\vec{n}(x), \vec{a}(x)\}}_{x \in I})$ and

$$
\det: \mathcal{U}_{C,\,\omega} \to J^d_C, \quad E \mapsto \det(E).
$$

For any $L\in J^d_C$, the fiber $\mathcal{U}^L_{C,\,\omega}:=\det^{-1}(L)$ is called **moduli spaces of** semi-stable parabolic bundles with fixed determinant, which is normal with at most rational singularities.

Theorem 4 (Sun-Zhou, 2016)

For any data ω , the moduli spaces $\mathcal{U}^L_{C,\,\omega}$ is ${\mathbf o}{\mathbf f}$ globally F-regular type.

Corollary 1

For any ample line bundle $\mathcal L$ on $\mathcal U_{C,\,\omega}$, we have $H^i(\mathcal U_{C,\,\omega},\mathcal L)=0, \,\,\forall\,\,i>0.$

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

4 D F

Definition 5

Let $\pi : \tilde{X} \to X$ be the normalization of X, $\pi^{-1}(x_0) = \{x_1, x_2\}$. A generalized parabolic sheaf (GPS) (E, Q) consist:

A parabolic sheaf E determined by $\omega = (r, d, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k)$,

A r -dimensional quotient $E_{x_1}\oplus E_{x_2}\stackrel{q}{\to} Q\to 0.$

 (E,Q) is semi-stable if $\forall E' \subset E$, E/E' torsion free outside $\{x_1,x_2\}$

$$
pardeg(E') - dim(Q^{E'}) \leq rk(E')\frac{pardeg(E) - dim(Q)}{r}
$$

 200

Normalization of $\mathcal{U}_{X,\omega}$: The moduli space $\mathcal P$

- $\bullet \mathcal{P} = \{\text{semi-stable GPS } (E, Q) = (E, E_{x_1} \oplus E_{x_2} \rightarrow Q \rightarrow 0) \},$ which is called **moduli space of GPS** (generalized parabolic sheaf).
- $\phi : \mathcal{P} \to \mathcal{U}_{X,\omega}$ is defined by $\phi(E,Q) = F$, where F is given by

$$
0 \to F \to \pi_* E \to_{x_0} Q \to 0
$$

 $\bullet \phi : \mathcal{P} \to \mathcal{U}_{X,\omega}$ is the normalization of $\mathcal{U}_{X,\omega}$ such that $\phi^*: H^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) \hookrightarrow H^1(\mathcal{P}, \Theta_{\mathcal{P}}).$

There exist a flat morphism $Det: \mathcal{P} \rightarrow J_{\widehat{\mathbf{v}}}^d$ $\frac{d}{\tilde{X}}$, let

$$
\mathcal{P}^L = Det^{-1}(L).
$$

 200

Theorem 5 (Sun-Zhou, 2016)

The moduli space \mathcal{P}^L of semi-stable generalized parabolic sheaves with fixed determinant L is of globally F -regular type.

Corollary 2

 $H^i({\cal P}^L,{\cal L})=0$ for any $i>0$ and nef line bundles ${\cal L}$ on ${\cal P}^L$ and

$$
H^i(\mathcal{P}, \Theta_{\mathcal{P}}) = 0 \quad \forall \ i > 0.
$$

Corollary 3

Let X be a projective curve with at most one node and $U_{X,\omega}$ be the moduli space of parabolic sheaves on X with any given data ω . Then

$$
H^1(\mathcal{U}_{X,\omega},\Theta_{\mathcal{U}_{X,\omega}})=0.
$$

 QQ

Sketch of Proof: When $|I|$ is large enough

• Recall
$$
\widetilde{\mathcal{R}}'_I := \widetilde{\mathcal{R}}' = \text{Grass}_r(\widetilde{\mathcal{F}}_{x_1} \oplus \widetilde{\mathcal{F}}_{x_2}) \to \widetilde{\mathcal{R}}_I = \times_{x \in I} Flag_{\vec{n}(x)}(\widetilde{\mathcal{F}}_x),
$$

\n
$$
\mathcal{P}^L = \widetilde{\mathcal{R}}_{I,\omega}^{ss} // SL(V) \text{ is determined by } \omega = (r, d, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k).
$$

Proposition 4 (Sun, 2000)

There is ω_c such that $\mathcal{P}^L_{\omega_c} = \mathcal{R}^{ss}_{I,\omega_c}//SL(V)$ is a Fano variety with only rational singularities (thus F-split type) if $(r-1)(g-1)+\frac{|I|}{2r}\geq 2.$

Proposition 5 (Sun, 2000)

For any
$$
\omega = (r, d, I, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k)
$$
, we have
\n(1) $\operatorname{codim}(\widetilde{\mathcal{R}}'_I \setminus \widetilde{\mathcal{R}}'^{ss}_{I,\omega}) > (r-1)(g-1) + \frac{|I|}{k},$
\n(2) $\operatorname{codim}(\widetilde{\mathcal{R}}'^{ss}_{I,\omega} \setminus \{\mathcal{D}_1^f \cup \mathcal{D}_2^f\}\widetilde{\mathcal{R}}'^{s}_{I,\omega}) \ge (r-1)(g-1) + \frac{|I|}{k}$

• Let
$$
\widetilde{U} = \mathcal{R}^{\prime ss}_{I,\omega} \cap \widetilde{\mathcal{R}}^{\prime ss}_{I,\omega_c}
$$
, then $codim(\widetilde{\mathcal{R}}^{\prime ss}_{I,\omega} \setminus \widetilde{U}) \geq 2$.

.

 QQ

Sketch of Proof: Increase the number $|I|$

• Add extra parabolic points $x \in J \subset \widetilde{X}$, the projection

$$
p_I:\widetilde{\mathcal R}'_{I\cup J}\to\widetilde{\mathcal R}'_I
$$

is $\text{SL}(V)$ -invariant. Choose $|J|$ such that $(r-1)(g-1) + \frac{|I \cup J|}{k+2r} \geq 2$.

Choose the canonical weight ω_c on $\mathcal{R}'_{I\cup J}$, consider

$$
p_I^{-1}(\widetilde{\mathcal{R}}^{ss}_{I,\omega}) \supset \widetilde{U} = p_I^{-1}(\widetilde{\mathcal{R}}^{ss}_{I,\omega}) \cap \widetilde{\mathcal{R}}'^{ss}_{I \cup J, \omega_c} \to \mathcal{P}^L_{\omega_c}.
$$

Then p_I^{-1} $I_I^{-1}(\widetilde{\mathcal{R}}_{I,\,\omega}^{\prime ss})\setminus \widetilde{U}=p_I^{-1}$ $I_I^{-1}(\widetilde{\mathcal R}_{I,\,\omega}^{\prime ss})\cap (\widetilde{\mathcal R}_{I\cup J,\,\omega_c}^{\prime}\setminus \widetilde{\mathcal R}_{I\cup J,\,\omega_c}^{\prime ss})$ has codimension at least $(r-1)(g-1) + \frac{|I \cup J|}{2r} \geq 2$.

Let $U \subset \mathcal{P}_{\omega_c}^L$ be the image of U , then p_I induces a morphism $f: U \to \mathcal{P}^L$ such that $f_*(\mathcal{O}_U) = \mathcal{O}_{\mathcal{D}^L}$.

Problem and discussions

Definition 6

Let X be a scheme and $Y \subset X$ a closed sub-scheme. The pair (X, Y) is called of **compatible Frobenius split type** if

- \bullet X is of Frobenius split type
- For almost p , there is a F-split $\varphi:F_*\mathcal{O}_{X_p}\to \mathcal{O}_{X_p}$ such that

$$
\varphi(F_*\mathcal{I}_{Y_p}) \subset \mathcal{I}_{Y_p}.
$$

Problem 1

Are the pairs $(\mathcal{P}, \mathcal{D}_i(a))$ $(j = 1, 2)$, $(\mathcal{D}_1(a), \mathcal{D}_1(a) \cap \mathcal{D}_2 \cup \mathcal{D}_1(a-1))$ of compatible Frobenius split type ?

• If the answer of above problem is Yes, then, for any ample line bundle \mathcal{L} on \mathcal{U}_X .

$$
H^i(\mathcal{U}_X,\mathcal{L})=0 \quad \forall \ i>0.
$$

 200

Thanks !

不自主

4 母 8 4

重

正々 メラメ

 299