A finite dimensional proof of Verlinde formula

Xiaotao Sun

School of Mathematics, Tianjin University

Hong Kong, October 15, 2018

Xiaotao Sun (School of Mathematics, TianjirA finite dimensional proof of Verlinde formula Hong Kong, October 15, 2018 1 / 31

Motivation: Jacobian variety and theta functions

• Let C be a smooth projective curve of genus g,

 $J_C^d = \{ \text{vector bundles } E \text{ of } \operatorname{rk}(E) = 1, \ \deg(E) = d \text{ on } C \}$

• Let \mathcal{E} be a universal line bundle on $C \times J_C^d \xrightarrow{\pi} J_C^d$, and

$$\Theta_{J_C^d} := \det R\pi(\mathcal{E})^{-k} \otimes \det(\mathcal{E}_y)^{k(d+1-g)}$$

• $H^0(J^d_C, \Theta_{J^d_C})$ is the so called space of theta functions of order k

$$\dim H^0(J^d_C, \Theta_{J^d_C}) = k^g$$

• A. Weil (1938) (Généralisation des fonctions abéliennes) suggested to generalize the theory to higher rank r > 1.

Motivation: Moduli spaces and generalized theta functions

(Mumford, Narasimhan-Seshadri): There exist moduli spaces

 $\mathcal{U}_C = \{$ s.s. bundles E of $\operatorname{rk}(E) = r$, $\deg(E) = d$ on $C\}$

and theta line bundles $\Theta_{\mathcal{U}_C}$ on \mathcal{U}_C .

 H⁰(U_C, Θ_{UC}): space of generalized theta functions of order k dim H⁰(U_C, Θ_{UC}) =?

• A formula was predicted by **Conformal Field Theory**, when r = 2,

$$\dim H^0(\mathcal{U}_C, \Theta_{\mathcal{U}_C}) = \left(\frac{k}{2}\right)^g \left(\frac{k+2}{2}\right)^{g-1} \sum_{i=0}^k \frac{(-1)^{id}}{(\sin\frac{(i+1)\pi}{k+2})^{2g-2}}$$

The moduli spaces: $\mathcal{U}_{C,\omega} = \mathcal{U}_C(r, d, \omega)$

- C: projective curve of genus $g \ge 0$ with at most one node
- $\omega = (k, \{\vec{n}(x), \vec{a}(x)\}_{x \in I})$: a finite set $I \subset C$ of smooth points, $\vec{n}(x) := (n_1(x), n_2(x), \cdots, n_{l_x+1}(x))$ $\vec{a}(x) := (a_1(x), a_2(x), \cdots, a_{l_x+1}(x))$

and an integer k > 0 such that

$$0 \le a_1(x) < a_2(x) < \dots < a_{l_x+1}(x) < k.$$

• $U_{C,\omega}$: moduli space of semistable parabolic sheaves of rank r and degree d on C with parabolic structures determined by ω

The moduli spaces: Parabolic sheaves

• A torsion free sheaf E has a parabolic structure of type $\vec{n}(x)$ and weights $\vec{a}(x)$ at a smooth point $x \in C$, we mean a choice of

$$E_x = Q_{l_x+1}(E)_x \twoheadrightarrow \cdots \dashrightarrow \twoheadrightarrow Q_1(E)_x \twoheadrightarrow Q_0(E)_x = 0$$

of fibre E_x with $n_i(x) = \dim(ker\{Q_i(E)_x \twoheadrightarrow Q_{i-1}(E)_x\})$ and a sequence of integers

$$0 \le a_1(x) < a_2(x) < \dots < a_{l_x+1}(x) < k.$$

• For any $F \subset E$, let $Q_i(E)_x^F \subset Q_i(E)_x$ be the image of F,

$$n_i^F = \dim(\ker\{Q_i(E)_x^F \twoheadrightarrow Q_{i-1}(E)_x^F\})$$
$$\operatorname{par}\chi(F) := \chi(F) + \frac{1}{k} \sum_{x \in I} \sum_{i=1}^{l_x+1} a_i(x) n_i^F(x).$$

The moduli spaces: Semi-stability

E is called semistable (resp., stable) for ^a/_k if for any nontrivial subsheaf F ⊂ E such that E/F is torsion free, one has

$$\operatorname{par}_{\chi}(F) \leq \frac{\operatorname{par}_{\chi}(E)}{r} \cdot r(F) \text{ (resp., <)}.$$

• There exists a seminormal projective variety

$$\mathcal{U}_{C,\,\omega} = \mathcal{U}_C(r, d, \omega)$$

which is the coarse moduli space of s-equivalence classes of semistable parabolic sheaves E of rank r and $\deg(E) = d$ with parabolic structures of type $\{\vec{n}(x)\}_{x \in I}$ and weights $\{\vec{a}(x)\}_{x \in I}$ at points $\{x\}_{x \in I}$.

• If C is smooth, then it is normal, with only rational singularities.

Generalized theta functions on $\mathcal{U}_{C,\omega}$

• There is an algebraic family of ample line bundles $\Theta_{\mathcal{U}_{C,\omega}}$ on $\mathcal{U}_{C,\omega}$ (the so called Theta line bundles) when

$$\ell := \frac{k\chi - \sum_{x \in I} \sum_{i=1}^{l_x} d_i(x)r_i(x)}{r}$$

is an integer, where

$$d_i(x) = a_{i+1}(x) - a_i(x)$$

 $r_i(x) = n_1(x) + \dots + n_i(x).$

H⁰(U_{C, ω}, Θ<sub>U_{C, ω}): The space of generalized theta functions. An explicit formula of
</sub>

$$D_g(r, d, \omega) = \dim \mathrm{H}^0(\mathcal{U}_{C, \omega}, \Theta_{\mathcal{U}_{C, \omega}})$$

was predicted by Conformal Field Theory.

Verlinde formula:

۲

$$D_g(r, d, \omega) = ?$$

$$D_{g}(r,d,\omega) = (-1)^{d(r-1)} \left(\frac{k}{r}\right)^{g} (r(r+k)^{r-1})^{g-1}$$

$$\sum_{\vec{v}} \frac{\exp\left(2\pi i \left(\frac{d}{r} - \frac{|\omega|}{r(r+k)}\right) \sum_{i=1}^{r} v_{i}\right) S_{\omega} \left(\exp 2\pi i \frac{\vec{v}}{r+k}\right)}{\prod_{i < j} \left(2\sin \pi \frac{v_{i} - v_{j}}{r+k}\right)^{2(g-1)}}$$
where $\vec{v} = (v_{1}, v_{2}, \dots, v_{r})$ runs through the integers
$$0 = v_{r} < v_{r-1} < \dots < v_{2} < v_{1} < r+k.$$
• For given $\omega = (k, \{\vec{n}(x), \vec{a}(x)\}_{x \in I})$, let $\lambda_{i} = k - a_{i}(x)$

$$\lambda_{x} = (\overbrace{\lambda_{1}, \dots, \lambda_{1}}^{n_{1}(x)}, \overbrace{\lambda_{2}, \dots, \lambda_{2}}^{n_{2}(x)}, \dots, \overbrace{\lambda_{l_{x}+1}, \dots, \lambda_{l_{x}+1}}^{n_{l_{x}+1}(x)})$$
• Let $S_{\lambda_{x}}(z_{1}, \dots, z_{r})$ be Schur polynomial, $|\lambda_{x}| = \sum \lambda_{i} n_{i}(x)$,
$$S_{\omega}(z_{1}, \dots, z_{r}) = \prod_{x \in I} S_{\lambda_{x}}(z_{1}, \dots, z_{r}), \quad |\omega| = \sum_{x \in I} |\lambda_{x}|.$$

Xiaotao Sun (School of Mathematics, TianjirA finite dimensional proof of Verlinde formula Hong Kong, October 15, 2018 8 / 31

æ

Rational Conformal Field Theory (RCFT)

- Let Λ be a finite set with an involution $\lambda \mapsto \lambda^*$, a **RCFT** is a functor: $(C, \overrightarrow{p}; \overrightarrow{\lambda}) \mapsto V_C(\overrightarrow{p}; \overrightarrow{\lambda})$ where $\overrightarrow{p} = (p_1, \dots, p_n)$, $p_i \in C$, $\overrightarrow{\lambda} = (\lambda_1, \dots, \lambda_n)$, satisfies axioms:
- A0: $V_{\mathbb{P}^1}(\emptyset) = \mathbb{C}$, A1: $V_C(\overrightarrow{p}; \overrightarrow{\lambda}) \cong V_C(\overrightarrow{p}; \overrightarrow{\lambda}^*)$

• A2: Let
$$(C, \overrightarrow{p}; \overrightarrow{\lambda}) = (C', \overrightarrow{p}'; \overrightarrow{\lambda}') \sqcup (C'', \overrightarrow{p}''; \overrightarrow{\lambda}'')$$
. Then
 $V_C(\overrightarrow{p}; \overrightarrow{\lambda}) = V_{C'}(\overrightarrow{p}'; \overrightarrow{\lambda}') \otimes V_{C''}(\overrightarrow{p}''; \overrightarrow{\lambda}'')$

• A3: For a family $\{C_t, \overrightarrow{p_t}; \overrightarrow{\lambda}\}_{t \in \triangle}$, there are canonical isomorphisms $V_{C_t}(\overrightarrow{p_t}; \overrightarrow{\lambda}) \cong V_{C_0}(\overrightarrow{p_0}; \overrightarrow{\lambda})$

• A4: If C_0 has a node x, $\pi^{-1}(x) = \{x_1, x_2\}$, $\pi : \widetilde{C_0} \to C_0$. Then $V_{C_t}(\overrightarrow{p_t}; \overrightarrow{\lambda}) \cong \bigoplus_{\nu} V_{\widetilde{C_0}}(\overrightarrow{p_0}, x_1, x_2; \overrightarrow{\lambda}, \nu, \nu^*)$

The fusion rules

æ

The fusion ring ${\cal F}$

• Let $\mathcal{F} = \mathbb{Z}^{(\Lambda)}$ be the free abelian group generated by Λ , define

$$\lambda \cdot \mu = \sum_{\nu \in \Lambda} N_0(\lambda + \mu + \nu^*) \cdot \nu.$$

 \bullet a bilinear form $(\cdot, \cdot): \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{Z}$ such that

$$(x\cdot z,y)=(x,z^*\cdot y)$$

Λ is an orthonormal basis;

• \mathcal{F} is called the **fusion ring** associated to the **RCFT**,

$$\mathcal{F}_{\mathbb{C}} := \mathcal{F} \otimes_{\mathbb{Z}} \mathbb{C}.$$

Formulation of Verlinde formula

• Let $\Sigma = \{ \chi : \mathcal{F} \to \mathbb{C} \}$ be the set of characters of \mathcal{F} . Then

$$\dim V_C(\overrightarrow{p}; \overrightarrow{\lambda}) = \sum_{\chi \in \Sigma} \chi(\lambda_1) \cdots \chi(\lambda_n) \left(\sum_{\lambda \in \Lambda} |\chi(\lambda)|^2 \right)^{g-1}$$

- { m_x : F_C → F_C | ∀x ∈ F_C } ⊂ End(F_C) is a commutative subalgebra, let M_x be the matrix of linear operator m_x under the orthonormal basis Λ of F_C;
- There exists a unitary matrix $S=(S_{\lambda\mu})_{\lambda,\mu\in\Lambda}$ such that

$$S \cdot M_x \cdot S^{-1}$$

is diagonal for all $x \in \mathcal{F}_{\mathbb{C}}$. Then

$$\dim V_C(\overrightarrow{p}; \overrightarrow{\lambda}) = \sum_{\nu \in \Lambda} \frac{S_{\nu\lambda_1} \cdots S_{\nu\lambda_n}}{S_{\nu 1}^{2g-2+n}}.$$

• Let
$$E_{\tau} = \mathbb{C}/\{1, \tau\}$$
 $(\tau \in \mathbb{H})$, $\gamma \in \mathrm{SL}_2(\mathbb{Z})$. Then
 $E_{\tau} \cong E_{\gamma \cdot \tau}$.

 $\bullet\,$ The axiom A3 and axiom A4 give a unitary action of ${\rm SL}_2({\mathbb Z})$ on

$$V_E(\emptyset) \cong \bigoplus_{\lambda \in \Lambda} V_{\mathbb{P}^1}(p_1, p_2, \lambda, \lambda^*) \cong \mathcal{F}_{\mathbb{C}}$$

- The unitary action of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathcal{F}_\mathbb{C}$ can usually written explicitly;
- Verlinde conjecture (Nuclear Physics B300 (1988), 360–376): Let $S = (S_{\lambda\mu})_{\lambda,\mu\in\Lambda}$ be the matrix of modular transformation $\tau \mapsto -1/\tau$ (under orthonormal basis Λ of $\mathcal{F}_{\mathbb{C}}$). Then

$$S \cdot M_x \cdot S^{-1}$$

is diagonal for all $x \in \mathcal{F}_{\mathbb{C}}$.

Tsuchiya-Ueno-Yamada (1989): WZW model

- Wess-Zumino-Witten (WZW) model is associated to a simple complex Lie algebra g and integer k > 0.
- Given a simple Lie algebra g and integer k > 0, let P_k be the set of dominant weight of level ≤ k, V₁ := V_{λ1} ⊗ · · · ⊗ V_{λn} (λ_i ∈ P_k) and

$$V_C(\overrightarrow{p}; \overrightarrow{\lambda}) := \operatorname{Hom}_{\mathfrak{g} \otimes A_C}(\mathcal{H}_k, V_{\overrightarrow{\lambda}}), \quad A_C = \mathcal{O}_C(C - \{q\})$$

where \mathcal{H}_k is the basic representation of level k of affine Lie algebra $\hat{\mathfrak{g}}$, and $\mathfrak{g} \otimes A_C \hookrightarrow \mathfrak{g} \otimes \mathbb{C}((z)) \subset \hat{\mathfrak{g}}$ is a Lie subalgebra of $\hat{\mathfrak{g}}$.

- Tsuchiya-Ueno-Yamada (1989): Functor: $(C, \overrightarrow{p}; \overrightarrow{\lambda}) \mapsto V_C(\overrightarrow{p}; \overrightarrow{\lambda})$ satisfies the **axioms A0 to A4**.
- The dimension $N_g(\vec{\lambda}) = \dim V_C(\vec{p}; \vec{\lambda})$ of the "spaces of conformal blocks" is **computable**.

WZW model and generalized theta functions

• Beauville- Laszlo (1994): For $\mathfrak{g} = \mathfrak{sl}_r(\mathbb{C})$, we have

$$V_C(\emptyset) \cong H^0(\mathcal{SU}_C(r), \Theta^k_{\mathcal{U}_C})$$

- Faltings (1994): It is true for arbitrary simple Lie algebra g, if SU_C(r) is replaced by "moduli spaces of G-bundles on C", where G is the algebraic group with Lie algebra g.
- Pauly (1996): For $\mathfrak{g} = \mathfrak{sl}_r(\mathbb{C})$, $V_C(\overrightarrow{p}; \overrightarrow{\lambda}) \cong H^0(\mathcal{U}_C(r), \Theta^k_{\mathcal{U}_C})$, where $\mathcal{U}_C(r)$ is the moduli spaces of parabolic bundles on C.
- **Beauville**: As soon as the Verlinde formula became known to mathematicians, it became a **challenge** for them to give a rigorous proof, so a wealth of proofs have appeared.

Finite-dimensional proofs

- Beauville: The basic distinction between the proofs using standard algebraic geometry, which up to now work only in the case r = 2, and proofs that use infinite-dimensional algebraic geometry to mimic the heuristic approach of the physicists-these work for all r.
- Compute $\chi(\Theta_{\mathcal{U}_{C}}^{k})$: Bertram-Szenes, Zagier, Donaldson-Witten.
- Thaddeus (1994): Stable pairs, linear systems and Verlinde formula (Invent. Math. 117, 317-353).
- Narasimhan-Ramadas (1993): Factorization of generalized theta functions (Invent. Math. 114, 565-623).
- Beauville: ...which up to now work only in the case r = 2 and an extension to higher rank seems out of reach.

Degeneration method

- Degenerate $C_t \rightsquigarrow C_0 = X$ to a curve X with one node $x_0 \in X$.
- Need to prove: $\dim H^0(\mathcal{U}_{C_t,\omega_t}, \Theta_{\mathcal{U}_{C_t,\omega_t}}) = \dim H^0(\mathcal{U}_{X,\omega}, \Theta_{\mathcal{U}_{X,\omega}}).$
- Let $\pi: \widetilde{X} \to X$ be the normalization, $\pi^{-1}(x_0) = \{x_1, x_2\}.$

Theorem 1 (Sun, 2000-2003)

$$H^{0}(\mathcal{U}_{X,\omega},\Theta_{\mathcal{U}_{X,\omega}})\cong\bigoplus_{\mu}H^{0}(\mathcal{U}_{\widetilde{X},\omega^{\mu}},\Theta_{\mathcal{U}_{\widetilde{X},\omega^{\mu}}})$$

$$H^{0}(\mathcal{U}_{X_{1}\cup X_{2},\omega_{1}\cup\omega_{2}},\Theta_{\mathcal{U}_{X_{1}\cup X_{2},\omega_{1}\cup\omega_{2}}})$$

$$\cong \bigoplus_{\mu} H^{0}(\mathcal{U}_{X_{1},\omega_{1}^{\mu}},\Theta_{\mathcal{U}_{X_{1},\omega_{1}^{\mu}}})\otimes H^{0}(\mathcal{U}_{X_{2},\omega_{2}^{\mu}},\Theta_{\mathcal{U}_{X_{2},\omega_{2}^{\mu}}})$$

where $\mu = (\mu_1, \cdots, \mu_r)$ runs through $0 \le \mu_r \le \cdots \le \mu_1 < k$.

Vanishing Theorem

Theorem 2 (Sun, 2000)

• If
$$g(C_t) \ge 2$$
, then $H^1(\mathcal{U}_{C_t,\omega_t}, \Theta_{\mathcal{U}_{C_t,\omega_t}}) = 0$.

• If
$$g(X) \geq 3$$
, then $H^1(\mathcal{U}_{X,\omega}, \Theta_{\mathcal{U}_{X,\omega}}) = 0$.

• $\mathcal{U}_{C,\omega} = \mathcal{R}^{ss}_{\omega} / / G$, $\mathcal{R}^{ss}_{\omega} \subset \mathcal{R}$ is the set of GIT semistable points.

•
$$H^1(\mathcal{U}_{C,\omega},\Theta_{\mathcal{U}_{C,\omega}}) = H^1(\mathcal{R}^{ss}_{\omega},\Theta_{\omega})^{inv.} = H^1(\mathcal{R},\Theta_{\omega})^{inv.}$$

• $\Theta_{\omega} = \omega_{\mathcal{R}} \otimes \Theta_{\omega'}, \ H^1(\mathcal{R}, \Theta_{\omega})^{inv.} = H^1(\mathcal{R}^{ss}_{\omega'}, \omega_{\mathcal{R}} \otimes \Theta_{\omega'})^{inv.}.$

•
$$H^1(\mathcal{U}_{C,\omega},\Theta_{\mathcal{U}_{C,\omega}}) = H^1(\mathcal{U}_{C,\omega'},\Theta_{\mathcal{U}_{C,\omega'}}\otimes(\varphi_*\omega_{\mathcal{R}^{ss}_{\omega'}})^{inv.})$$
 where

$$\varphi: \mathcal{R}^{ss}_{\omega'} \to \mathcal{U}_{C,\omega'}$$

A B M A B M

3

Proposition 1 (Sun, 2000)

For any $\omega = (r,d,I,\{\vec{n}(x),\vec{a}(x)\}_{x\in I},k)$, we have

- (1) $\operatorname{codim}(\mathcal{R}^{ss}_{\omega} \setminus \mathcal{R}^{s}_{\omega}) \ge (r-1)(g-1) + \frac{|\mathbf{I}|}{k},$
- (2) $\operatorname{codim}(\mathcal{R} \setminus \mathcal{R}^{ss}_{\omega}) > (r-1)(g-1) + \frac{|\mathbf{I}|}{k}.$
 - $H^1(\mathcal{R}^{ss}_{\omega}, \Theta_{\omega})^{inv.} = H^1(\mathcal{R}, \Theta_{\omega})^{inv.}$ (It may hold unconditionally if \mathcal{R} is projective with only rational singularity by C. Teleman).

•
$$H^1(\mathcal{R}, \omega_{\mathcal{R}} \otimes \Theta_{\omega'})^{inv.} = H^1(\mathcal{R}^{ss}_{\omega'}, \omega_{\mathcal{R}} \otimes \Theta_{\omega'})^{inv.}$$
 if
 $\operatorname{codim}(\mathcal{R} \setminus \mathcal{R}^{ss}_{\omega'}) > 2.$

• (F. Knop):
$$\omega_{\mathcal{U}_{C,\omega'}} = (\varphi_* \omega_{\mathcal{R}^{ss}_{\omega'}})^{inv.}$$
 if $\operatorname{codim}(\mathcal{R}^{ss}_{\omega'} \setminus \mathcal{R}^s_{\omega'}) \ge 2.$

Theorem 3 (Sun-Zhou, 2016)

For any positive integers c_1 , c_2 and partitions $I = I_1 \cup I_2$, $g = g_1 + g_2$ such that $\ell_j = \frac{c_j \ell}{c_1 + c_2}$ (j =, 2) are integers, we have

$$D_g(r, d, \omega) = \sum_{\mu} D_{g-1}(r, d, \omega^{\mu})$$

$$D_g(r, d, \omega) = \sum_{\mu} D_{g_1}(r, d_1^{\mu}, \omega_1^{\mu}) \cdot D_{g_2}(r, d_2^{\mu}, \omega_2^{\mu})$$

where $\mu = (\mu_1, \cdots, \mu_r)$ runs through $0 \le \mu_r \le \cdots \le \mu_1 < k$ and

$$\omega^{\mu} = (k, \{\vec{n}(x), \, \vec{a}(x)\}_{x \in I \cup \{x_1, \, x_2\}}), \,\, \omega^{\mu}_j = (k, \{\vec{n}(x), \, \vec{a}(x)\}_{x \in I_j \cup \{x_j\}})$$

with $\vec{n}(x_j)$, $\vec{a}(x_j)$ and d_j^{μ} (j = 1, 2) determined by μ .

Globally F-regular varieties

• Let M be a variety over a perfect field k of char(k)=p>0, $F:M\rightarrow M$

be the (absolute) Frobenius map and $F^e: M \to M$ be the e-th iterate of Frobenius map.

- When M is normal, for any (weil) divisor $D \in Div(M)$, $\mathcal{O}_M(D)(V) = \{ f \in K(M) | div_V(f) + D|_V \ge 0 \}, \quad \forall V \subset M$
 - is a reflexive subsheaf of constant sheaf K = k(M)

Definition 1

A normal variety M over a perfect field is called stably Frobenius D-split if

$$\mathcal{O}_M \to F^e_*\mathcal{O}_M(D)$$

is split for some e > 0.

Globally F-regular varieties: Projective case

Definition 2

A normal variety M over a perfect field is called globally F-regular if M is stably Frobenius D-split for any effective divisor D.

Proposition 2

Let M be a projective variety over a perfect field. Then the following statements are equivalent.

- (1) M is normal and is stably Frobenius D-split for any effective D;
- (2) M is stably Frobenius D-split for any effective Cartier D;
- (3) For any ample line bundle \mathcal{L} , the section ring of M

$$R(M,\mathcal{L}) = \bigoplus_{n=0}^{\infty} H^0(M,\mathcal{L}^n)$$

is strongly F-regular.

Definition 3

A variety M over a field of characteristic zero is said to be of globally F-regular type if its "modulo p reduction of M" are globally F-regular for a dense set of p.

Proposition 3 (K. E. Smith)

Let M be a projective variety over a field of characteristic zero. If M is of globally F-regular type, then we have

- (1) M is normal, Cohen-Macaulay with rational singularities. If M is \mathbb{Q} -Gorenstein, then M has log terminal singularities.
- (2) For any nef line bundle \mathcal{L} on M, we have $H^i(M, \mathcal{L}) = 0$ when i > 0. In particular, $H^i(M, \mathcal{O}_M) = 0$ whenever i > 0.

3

Definition 4

Let C be a smooth projective curve, $\omega = (k, \{\vec{n}(x), \vec{a}(x)\}_{x \in I})$ and

$$\det: \mathcal{U}_{C,\,\omega} \to J^d_C, \quad E \mapsto \det(E).$$

For any $L \in J_C^d$, the fiber $\mathcal{U}_{C,\omega}^L := \det^{-1}(L)$ is called moduli spaces of semi-stable parabolic bundles with fixed determinant, which is normal with at most rational singularities.

Theorem 4 (Sun-Zhou, 2016)

For any data ω , the moduli spaces $\mathcal{U}_{C,\omega}^L$ is of globally F-regular type.

Corollary 1

For any ample line bundle \mathcal{L} on $\mathcal{U}_{C,\omega}$, we have $H^i(\mathcal{U}_{C,\omega},\mathcal{L}) = 0, \forall i > 0$.

< 回 > < 三 > < 三 >

Definition 5

Let $\pi: \widetilde{X} \to X$ be the normalization of X, $\pi^{-1}(x_0) = \{x_1, x_2\}$. A generalized parabolic sheaf (GPS) (E, Q) consist:

- A parabolic sheaf E determined by $\omega = (r, d, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k)$,
- A r-dimensional quotient $E_{x_1} \oplus E_{x_2} \xrightarrow{q} Q \to 0$.
- (E,Q) is semi-stable if $\forall E' \subset E$, E/E' torsion free outside $\{x_1, x_2\}$

$$pardeg(E') - dim(Q^{E'}) \le rk(E') \frac{pardeg(E) - dim(Q)}{r}$$

Normalization of $\mathcal{U}_{X,\omega}$: The moduli space \mathcal{P}

- P = { semi-stable GPS (E, Q) = (E, E_{x1} ⊕ E_{x2} → Q → 0) }, which is called moduli space of GPS (generalized parabolic sheaf).
- $\phi: \mathcal{P} \to \mathcal{U}_{X,\omega}$ is defined by $\phi(E,Q) = F$, where F is given by

$$0 \to F \to \pi_* E \to_{x_0} Q \to 0$$

• $\phi : \mathcal{P} \to \mathcal{U}_{X,\omega}$ is the normalization of $\mathcal{U}_{X,\omega}$ such that $\phi^* : \mathrm{H}^1(\mathcal{U}_X, \Theta_{\mathcal{U}_X}) \hookrightarrow \mathrm{H}^1(\mathcal{P}, \Theta_{\mathcal{P}}).$

 \bullet There exist a flat morphism $Det: \mathcal{P} \rightarrow J^d_{\widetilde{X}}$, let

$$\mathcal{P}^L = Det^{-1}(L).$$

Theorem 5 (Sun-Zhou, 2016)

The moduli space \mathcal{P}^L of semi-stable generalized parabolic sheaves with fixed determinant L is of globally F-regular type.

Corollary 2

 $H^i(\mathcal{P}^L,\mathcal{L})=0$ for any i>0 and nef line bundles \mathcal{L} on \mathcal{P}^L and

$$H^i(\mathcal{P}, \Theta_{\mathcal{P}}) = 0 \quad \forall \ i > 0.$$

Corollary 3

Let X be a projective curve with at most one node and $U_{X,\omega}$ be the moduli space of parabolic sheaves on X with any given data ω . Then

$$H^1(\mathcal{U}_{X,\omega},\Theta_{\mathcal{U}_{X,\omega}})=0.$$

Sketch of Proof: When |I| is large enough

• Recall
$$\widetilde{\mathcal{R}}'_I := \widetilde{\mathcal{R}}' = \operatorname{Grass}_r(\widetilde{\mathcal{F}}_{x_1} \oplus \widetilde{\mathcal{F}}_{x_2}) \to \widetilde{\mathcal{R}}_I = \times_{x \in I} Flag_{\vec{n}(x)}(\widetilde{\mathcal{F}}_x),$$

 $\mathcal{P}^L = \widetilde{\mathcal{R}}^{ss}_{I,\omega} / / SL(V)$ is determined by $\omega = (r, d, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k).$

Proposition 4 (Sun, 2000)

There is ω_c such that $\mathcal{P}_{\omega_c}^L = \widetilde{\mathcal{R}}_{I,\omega_c}^{ss} / / SL(V)$ is a Fano variety with only rational singularities (thus F-split type) if $(r-1)(g-1) + \frac{|I|}{2r} \ge 2$.

Proposition 5 (Sun, 2000)

For any
$$\omega = (r, d, I, \{\vec{n}(x), \vec{a}(x)\}_{x \in I}, k)$$
, we have
(1) $\operatorname{codim}(\widetilde{\mathcal{R}}'_{I} \setminus \widetilde{\mathcal{R}}'^{ss}_{I,\omega}) > (r-1)(g-1) + \frac{|I|}{k}$,
(2) $\operatorname{codim}(\widetilde{\mathcal{R}}'^{ss}_{I,\omega} \setminus \{\mathcal{D}^{f}_{1} \cup \mathcal{D}^{f}_{2}\}\widetilde{\mathcal{R}}'^{s}_{I,\omega}) \ge (r-1)(g-1) + \frac{|I|}{k}$

• Let
$$\widetilde{U} = \mathcal{R}_{I,\omega}^{\prime ss} \cap \widetilde{\mathcal{R}}_{I,\omega_c}^{\prime ss}$$
, then $codim(\widetilde{\mathcal{R}}_{I,\omega}^{\prime ss} \setminus \widetilde{U}) \geq 2$.

Sketch of Proof: Increase the number |I|

• Add extra parabolic points $x \in J \subset \widetilde{X}$, the projection

$$p_I: \widetilde{\mathcal{R}}'_{I\cup J} \to \widetilde{\mathcal{R}}'_I$$

is SL(V)-invariant. Choose |J| such that $(r-1)(g-1) + \frac{|I \cup J|}{k+2r} \ge 2$.

• Choose the canonical weight ω_c on $\widetilde{\mathcal{R}}'_{I\cup J}$, consider

$$p_I^{-1}(\widetilde{\mathcal{R}}_{I,\omega}^{\prime ss}) \supset \widetilde{U} = p_I^{-1}(\widetilde{\mathcal{R}}_{I,\omega}^{\prime ss}) \cap \widetilde{\mathcal{R}}_{I\cup J,\omega_c}^{\prime ss} \to \mathcal{P}_{\omega_c}^L.$$

Then $p_I^{-1}(\widetilde{\mathcal{R}}'^{ss}_{I,\omega}) \setminus \widetilde{U} = p_I^{-1}(\widetilde{\mathcal{R}}'^{ss}_{I,\omega}) \cap (\widetilde{\mathcal{R}}'_{I\cup J,\omega_c} \setminus \widetilde{\mathcal{R}}'^{ss}_{I\cup J,\omega_c})$ has codimension at least $(r-1)(g-1) + \frac{|I\cup J|}{2r} \geq 2$.

• Let $U \subset \mathcal{P}^{L}_{\omega_{c}}$ be the image of \widetilde{U} , then p_{I} induces a morphism $f: U \to \mathcal{P}^{L}$ such that $f_{*}(\mathcal{O}_{U}) = \mathcal{O}_{\mathcal{P}^{L}}$.

Problem and discussions

Definition 6

Let X be a scheme and $Y \subset X$ a closed sub-scheme. The pair (X, Y) is called of compatible Frobenius split type if

- X is of Frobenius split type
- For almost p, there is a F-split $\varphi: F_*\mathcal{O}_{X_p} \to \mathcal{O}_{X_p}$ such that

$$\varphi(F_*\mathcal{I}_{Y_p})\subset \mathcal{I}_{Y_p}.$$

Problem 1

Are the pairs $(\mathcal{P}, \mathcal{D}_j(a))$ (j = 1, 2), $(\mathcal{D}_1(a), \mathcal{D}_1(a) \cap \mathcal{D}_2 \cup \mathcal{D}_1(a-1))$ of compatible Frobenius split type ?

• If the answer of above problem is Yes, then, for any ample line bundle $\mathcal L$ on $\mathcal U_X$,

$$H^i(\mathcal{U}_X,\mathcal{L})=0 \quad \forall \ i>0.$$

Thanks !

2

(日) (周) (三) (三)