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Motivation: Jacobian variety and theta functions

Let C be a smooth projective curve of genus g,

JdC = {vector bundles E of rk(E) = 1, deg(E) = d on C}

Let E be a universal line bundle on C × JdC
π−→ JdC , and

ΘJdC
:= detRπ(E)−k ⊗ det(Ey)k(d+1−g)

H0(JdC ,ΘJdC
) is the so called space of theta functions of order k

dimH0(JdC ,ΘJdC
) = kg

A. Weil (1938) (Généralisation des fonctions abéliennes) suggested to
generalize the theory to higher rank r > 1.
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Motivation: Moduli spaces and generalized theta functions

(Mumford, Narasimhan-Seshadri): There exist moduli spaces

UC = {s.s. bundles E of rk(E) = r, deg(E) = d on C}

and theta line bundles ΘUC on UC .

H0(UC ,ΘUC ): space of generalized theta functions of order k

dimH0(UC ,ΘUC ) =?

A formula was predicted by Conformal Field Theory, when r = 2,

dimH0(UC ,ΘUC ) =

(
k

2

)g (k + 2

2

)g−1 k∑
i=0

(−1)id

(sin (i+1)π
k+2 )2g−2
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The moduli spaces: UC,ω = UC(r, d, ω)

C: projective curve of genus g ≥ 0 with at most one node

ω = (k, {~n(x),~a(x)}x∈I): a finite set I ⊂ C of smooth points,

~n(x) := (n1(x), n2(x), · · · , nlx+1(x))

~a(x) := (a1(x), a2(x), · · · , alx+1(x))

and an integer k > 0 such that

0 ≤ a1(x) < a2(x) < · · · < alx+1(x) < k.

UC,ω: moduli space of semistable parabolic sheaves of rank r and
degree d on C with parabolic structures determined by ω
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The moduli spaces: Parabolic sheaves

A torsion free sheaf E has a parabolic structure of type ~n(x) and
weights ~a(x) at a smooth point x ∈ C, we mean a choice of

Ex = Qlx+1(E)x � · · · · · ·� Q1(E)x � Q0(E)x = 0

of fibre Ex with ni(x) = dim(ker{Qi(E)x � Qi−1(E)x}) and a
sequence of integers

0 ≤ a1(x) < a2(x) < · · · < alx+1(x) < k.

For any F ⊂ E, let Qi(E)Fx ⊂ Qi(E)x be the image of F ,

nFi = dim(ker{Qi(E)Fx � Qi−1(E)Fx })

parχ(F ) := χ(F ) +
1

k

∑
x∈I

lx+1∑
i=1

ai(x)nFi (x).
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The moduli spaces: Semi-stability

E is called semistable (resp., stable) for ~a
k if for any nontrivial

subsheaf F ⊂ E such that E/F is torsion free, one has

parχ(F ) ≤ parχ(E)

r
· r(F ) (resp., <).

There exists a seminormal projective variety

UC,ω = UC(r, d, ω)

which is the coarse moduli space of s-equivalence classes of semistable
parabolic sheaves E of rank r and deg(E) = d with parabolic
structures of type {~n(x)}x∈I and weights {~a(x)}x∈I at points {x}x∈I .

If C is smooth, then it is normal, with only rational singularities.
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Generalized theta functions on UC,ω

There is an algebraic family of ample line bundles ΘUC, ω on UC,ω
(the so called Theta line bundles) when

` :=
kχ−

∑
x∈I
∑lx

i=1 di(x)ri(x)

r

is an integer, where

di(x) = ai+1(x)− ai(x)

ri(x) = n1(x) + · · ·+ ni(x).

H0(UC,ω,ΘUC, ω): The space of generalized theta functions. An
explicit formula of

Dg(r, d, ω) = dim H0(UC,ω,ΘUC, ω)

was predicted by Conformal Field Theory.
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Verlinde formula: Dg(r, d, ω) =?

Dg(r, d, ω) = (−1)d(r−1)

(
k

r

)g
(r(r + k)r−1)g−1

∑
~v

exp
(

2πi
(
d
r −

|ω|
r(r+k)

)∑r
i=1 vi

)
Sω

(
exp 2πi ~v

r+k

)
∏
i<j

(
2 sin π

vi−vj
r+k

)2(g−1)

where ~v = (v1, v2, . . . , vr) runs through the integers

0 = vr < vr−1 < · · · < v2 < v1 < r + k.

For given ω = (k, {~n(x),~a(x)}x∈I), let λi = k − ai(x)

λx = (

n1(x)︷ ︸︸ ︷
λ1, . . . , λ1 ,

n2(x)︷ ︸︸ ︷
λ2, . . . , λ2 , . . . ,

nlx+1(x)︷ ︸︸ ︷
λlx+1, . . . , λlx+1 )

Let Sλx(z1, ..., zr) be Schur polynomial, |λx| =
∑
λini(x),

Sω(z1, ..., zr) =
∏
x∈I

Sλx(z1, ..., zr), |ω| =
∑
x∈I
|λx|.
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Rational Conformal Field Theory (RCFT)

Let Λ be a finite set with an involution λ 7→ λ∗, a RCFT is a functor:

(C,−→p ;
−→
λ ) 7→ VC(−→p ;

−→
λ )

where −→p = (p1, . . . , pn), pi ∈ C,
−→
λ = (λ1, . . . , λn), satisfies axioms:

A0: VP1(∅) = C, A1: VC(−→p ;
−→
λ ) ∼= VC(−→p ;

−→
λ ∗)

A2: Let (C,−→p ;
−→
λ ) = (C ′,−→p ′;

−→
λ ′) t (C ′′,−→p ′′;

−→
λ ′′). Then

VC(−→p ;
−→
λ ) = VC′(−→p ′;

−→
λ ′)⊗ VC′′(−→p ′′;

−→
λ ′′)

A3: For a family {Ct,−→pt ;
−→
λ }t∈4, there are canonical isomorphisms

VCt(
−→pt ;
−→
λ ) ∼= VC0(−→p0;

−→
λ )

A4: If C0 has a node x, π−1(x) = {x1, x2}, π : C̃0 → C0. Then

VCt(
−→pt ;
−→
λ ) ∼=

⊕
ν

V
C̃0

(−→p0, x1, x2;
−→
λ , ν, ν∗)

Xiaotao Sun (School of Mathematics, Tianjin University)A finite dimensional proof of Verlinde formula Hong Kong, October 15, 2018 9 / 31



The fusion rules

dimVC(−→p ;
−→
λ ) depends only on g = g(C) and

(λ1, ..., λn) := λ1 + · · ·+ λn.

N(Λ) := {x = λ1 + · · ·+ λn |n ≥ 0, λi ∈ Λ },

Ng : N(Λ) → N, Ng(x) := dimCVC(−→p ;
−→
λ ).

Ng(x) =
∑

λ∈ΛNg−1(x+ λ+ λ∗)

N0(0) = 1

N0(x) = N0(x∗) (∀ x ∈ N(Λ))

N0(x+ y) =
∑

λ∈ΛN0(x+ λ)N0(y + λ∗) ( ∀ x, y ∈ N(Λ)).
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The fusion ring F

Let F = Z(Λ) be the free abelian group generated by Λ, define

λ · µ =
∑
ν∈Λ

N0(λ+ µ+ ν∗) · ν.

a bilinear form (·, ·) : F × F → Z such that

(x · z, y) = (x, z∗ · y)

Λ is an orthonormal basis;

F is called the fusion ring associated to the RCFT,

FC := F ⊗Z C.
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Formulation of Verlinde formula

Let Σ = {χ : F → C } be the set of characters of F . Then

dimVC(−→p ;
−→
λ ) =

∑
χ∈Σ

χ(λ1) · · ·χ(λn)

(∑
λ∈Λ

|χ(λ)|2
)g−1

{mx : FC → FC | ∀x ∈ FC } ⊂ End(FC) is a commutative
subalgebra, let Mx be the matrix of linear operator mx under the
orthonormal basis Λ of FC;

There exists a unitary matrix S = (Sλµ)λ,µ∈Λ such that

S ·Mx · S−1

is diagonal for all x ∈ FC. Then

dimVC(−→p ;
−→
λ ) =

∑
ν∈Λ

Sνλ1 · · ·Sνλn
S2g−2+n
ν1

.
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Verlinde conjecture

Let Eτ = C/{1, τ} (τ ∈ H), γ ∈ SL2(Z). Then

Eτ ∼= Eγ·τ .

The axiom A3 and axiom A4 give a unitary action of SL2(Z) on

VE(∅) ∼=
⊕
λ∈Λ

VP1(p1, p2, λ, λ
∗) ∼= FC

The unitary action of SL2(Z) on FC can usually written explicitly;

Verlinde conjecture (Nuclear Physics B300 (1988), 360–376): Let
S = (Sλµ)λ,µ∈Λ be the matrix of modular transformation τ 7→ −1/τ
(under orthonormal basis Λ of FC). Then

S ·Mx · S−1

is diagonal for all x ∈ FC.
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Tsuchiya-Ueno-Yamada (1989): WZW model

Wess-Zumino-Witten (WZW) model is associated to a simple
complex Lie algebra g and integer k > 0.

Given a simple Lie algebra g and integer k > 0, let Pk be the set of
dominant weight of level ≤ k, V−→

λ
:= Vλ1 ⊗ · · · ⊗ Vλn (λi ∈ Pk) and

VC(−→p ;
−→
λ ) := Homg⊗AC (Hk, V−→λ ), AC = OC(C − {q})

where Hk is the basic representation of level k of affine Lie algebra ĝ,
and g⊗AC ↪→ g⊗ C((z)) ⊂ ĝ is a Lie subalgebra of ĝ.

Tsuchiya-Ueno-Yamada (1989): Functor: (C,−→p ;
−→
λ ) 7→ VC(−→p ;

−→
λ )

satisfies the axioms A0 to A4.

The dimension Ng(
−→
λ ) = dimVC(−→p ;

−→
λ ) of the ”spaces of conformal

blocks” is computable.
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WZW model and generalized theta functions

Beauville- Laszlo (1994): For g = slr(C), we have

VC(∅) ∼= H0(SUC(r),Θk
UC )

Faltings (1994): It is true for arbitrary simple Lie algebra g, if
SUC(r) is replaced by ”moduli spaces of G-bundles on C”, where G
is the algebraic group with Lie algebra g.

Pauly (1996): For g = slr(C), VC(−→p ;
−→
λ ) ∼= H0(UC(r),Θk

UC ), where
UC(r) is the moduli spaces of parabolic bundles on C.

Beauville: As soon as the Verlinde formula became known to
mathematicians, it became a challenge for them to give a rigorous
proof, so a wealth of proofs have appeared.
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Finite-dimensional proofs

Beauville: The basic distinction between the proofs using standard
algebraic geometry, which up to now work only in the case r = 2,
and proofs that use infinite-dimensional algebraic geometry to mimic
the heuristic approach of the physicists-these work for all r.

Compute χ(Θk
UC ): Bertram-Szenes, Zagier, Donaldson-Witten.

Thaddeus (1994): Stable pairs, linear systems and Verlinde formula
(Invent. Math. 117, 317-353).

Narasimhan-Ramadas (1993): Factorization of generalized theta
functions (Invent. Math. 114, 565-623).

Beauville: ...which up to now work only in the case r = 2 and an
extension to higher rank seems out of reach.
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Degeneration method

Degenerate Ct  C0 = X to a curve X with one node x0 ∈ X.

Need to prove: dimH0(UCt,ωt ,ΘUCt,ωt ) = dimH0(UX,ω,ΘUX,ω).

Let π : X̃ → X be the normalization, π−1(x0) = {x1, x2}.

Theorem 1 (Sun, 2000-2003)

H0(UX,ω,ΘUX,ω) ∼=
⊕
µ

H0(U
X̃,ωµ

,ΘU
X̃,ωµ

)

H0(UX1∪X2,ω1∪ω2 ,ΘUX1∪X2,ω1∪ω2
)

∼=
⊕
µ

H0(UX1,ω
µ
1
,ΘU

X1,ω
µ
1

)⊗H0(UX2,ω
µ
2
,ΘU

X2,ω
µ
2

)

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 < k.
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Vanishing Theorem

Theorem 2 (Sun, 2000)

If g(Ct) ≥ 2, then H1(UCt,ωt ,ΘUCt,ωt ) = 0.

If g(X) ≥ 3, then H1(UX,ω,ΘUX,ω) = 0.

UC,ω = Rssω //G, Rssω ⊂ R is the set of GIT semistable points.

H1(UC,ω,ΘUC,ω) = H1(Rssω ,Θω)inv. = H1(R,Θω)inv.

Θω = ωR ⊗Θω′ , H1(R,Θω)inv. = H1(Rssω′ , ωR ⊗Θω′)inv..

H1(UC,ω,ΘUC,ω) = H1(UC,ω′ ,ΘUC,ω′ ⊗ (ϕ∗ωRss
ω′

)inv.) where

ϕ : Rssω′ → UC,ω′
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Where is the condition g ≥ 2 needed ?

Proposition 1 (Sun, 2000)

For any ω = (r, d, I, {~n(x),~a(x)}x∈I , k), we have

(1) codim(Rssω \ Rsω) ≥ (r − 1)(g − 1) + |I|
k ,

(2) codim(R \Rssω ) > (r − 1)(g − 1) + |I|
k .

H1(Rssω ,Θω)inv. = H1(R,Θω)inv. (It may hold unconditionally if R
is projective with only rational singularity by C. Teleman).

H1(R, ωR ⊗Θω′)inv. = H1(Rssω′ , ωR ⊗Θω′)inv. if

codim(R \Rssω′) > 2.

(F. Knop): ωUC,ω′ = (ϕ∗ωRss
ω′

)inv. if codim(Rssω′ \ Rsω′) ≥ 2.
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Recurrence relations of Dg(r, d, ω)

Theorem 3 (Sun–Zhou, 2016)

For any positive integers c1, c2 and partitions I = I1 ∪ I2, g = g1 + g2

such that `j =
cj`

c1+c2
(j =, 2) are integers, we have

Dg(r, d, ω) =
∑
µ

Dg−1(r, d, ωµ)

Dg(r, d, ω) =
∑
µ

Dg1(r, dµ1 , ω
µ
1 ) ·Dg2(r, dµ2 , ω

µ
2 )

where µ = (µ1, · · · , µr) runs through 0 ≤ µr ≤ · · · ≤ µ1 < k and

ωµ = (k, {~n(x), ~a(x)}x∈I∪{x1, x2}), ω
µ
j = (k, {~n(x), ~a(x)}x∈Ij∪{xj})

with ~n(xj), ~a(xj) and dµj (j = 1, 2) determined by µ.
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Globally F-regular varieties

Let M be a variety over a perfect field k of char(k) = p > 0,

F : M →M

be the (absolute) Frobenius map and F e : M →M be the e-th
iterate of Frobenius map.

When M is normal, for any (weil) divisor D ∈ Div(M),

OM (D)(V ) = { f ∈ K(M) | divV (f) +D|V ≥ 0 }, ∀ V ⊂M

is a reflexive subsheaf of constant sheaf K = k(M)

Definition 1

A normal variety M over a perfect field is called stably Frobenius D-split if

OM → F e∗OM (D)

is split for some e > 0.
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Globally F-regular varieties: Projective case

Definition 2

A normal variety M over a perfect field is called globally F-regular if M is
stably Frobenius D-split for any effective divisor D.

Proposition 2

Let M be a projective variety over a perfect field. Then the following
statements are equivalent.

(1) M is normal and is stably Frobenius D-split for any effective D;

(2) M is stably Frobenius D-split for any effective Cartier D;

(3) For any ample line bundle L, the section ring of M

R(M,L) =

∞⊕
n=0

H0(M,Ln)

is strongly F-regular.
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Globally F-regular varieties: Theory of Characteristic 0

Definition 3

A variety M over a field of characteristic zero is said to be of globally
F-regular type if its ”modulo p reduction of M” are globally F-regular
for a dense set of p.

Proposition 3 (K. E. Smith)

Let M be a projective variety over a field of characteristic zero. If M is of
globally F-regular type, then we have

(1) M is normal, Cohen-Macaulay with rational singularities. If M is
Q-Gorenstein, then M has log terminal singularities.

(2) For any nef line bundle L on M , we have H i(M,L) = 0 when i > 0.
In particular, H i(M,OM ) = 0 whenever i > 0.
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Moduli spaces: globally F-regular type

Definition 4

Let C be a smooth projective curve, ω = (k, {~n(x),~a(x)}x∈I) and

det : UC,ω → JdC , E 7→ det(E).

For any L ∈ JdC , the fiber ULC, ω := det−1(L) is called moduli spaces of
semi-stable parabolic bundles with fixed determinant, which is normal
with at most rational singularities.

Theorem 4 (Sun-Zhou, 2016)

For any data ω, the moduli spaces ULC, ω is of globally F-regular type.

Corollary 1

For any ample line bundle L on UC,ω, we have H i(UC,ω,L) = 0, ∀ i > 0.
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Vanishing Theorem for node curve X

Definition 5

Let π : X̃ → X be the normalization of X, π−1(x0) = {x1, x2}. A
generalized parabolic sheaf (GPS) (E,Q) consist:

A parabolic sheaf E determined by ω = (r, d, {~n(x),~a(x)}x∈I , k),

A r-dimensional quotient Ex1 ⊕ Ex2
q−→ Q→ 0.

(E,Q) is semi-stable if ∀E′ ⊂ E, E/E′ torsion free outside {x1, x2}

pardeg(E′)− dim(QE
′
) ≤ rk(E′)

pardeg(E)− dim(Q)

r
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Normalization of UX,ω: The moduli space P

P = { semi-stable GPS (E,Q) = (E,Ex1 ⊕ Ex2 → Q→ 0) }, which
is called moduli space of GPS (generalized parabolic sheaf).

φ : P → UX,ω is defined by φ(E,Q) = F , where F is given by

0→ F → π∗E →x0 Q→ 0

φ : P → UX,ω is the normalization of UX,ω such that

φ∗ : H1(UX ,ΘUX ) ↪→ H1(P,ΘP).

There exist a flat morphism Det : P → Jd
X̃

, let

PL = Det−1(L).
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Globally F -regular type of PL

Theorem 5 (Sun-Zhou, 2016)

The moduli space PL of semi-stable generalized parabolic sheaves with
fixed determinant L is of globally F -regular type.

Corollary 2

H i(PL,L) = 0 for any i > 0 and nef line bundles L on PL and

H i(P,ΘP) = 0 ∀ i > 0.

Corollary 3

Let X be a projective curve with at most one node and UX,ω be the
moduli space of parabolic sheaves on X with any given data ω. Then

H1(UX,ω,ΘUX,ω) = 0.
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Sketch of Proof: When |I| is large enough

Recall R̃′I := R̃′ = Grassr(F̃x1 ⊕ F̃x2)→ R̃I = ×x∈IFlag~n(x)(F̃x),

PL = R̃ssI,ω//SL(V ) is determined by ω = (r, d, {~n(x),~a(x)}x∈I , k).

Proposition 4 (Sun, 2000)

There is ωc such that PLωc = R̃ssI,ωc//SL(V ) is a Fano variety with only

rational singularities (thus F-split type) if (r − 1)(g − 1) + |I|
2r ≥ 2.

Proposition 5 (Sun, 2000)

For any ω = (r, d, I, {~n(x),~a(x)}x∈I , k), we have

(1) codim(R̃′I \ R̃′ssI,ω) > (r − 1)(g − 1) + |I|
k ,

(2) codim(R̃′ssI,ω \ {D
f
1 ∪ D

f
2}R̃′sI,ω) ≥ (r − 1)(g − 1) + |I|

k .

Let Ũ = R′ssI,ω ∩ R̃′ssI,ωc , then codim(R̃′ssI,ω \ Ũ) ≥ 2.
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Sketch of Proof: Increase the number |I|

Add extra parabolic points x ∈ J ⊂ X̃, the projection

pI : R̃′I∪J → R̃′I

is SL(V )-invariant. Choose |J | such that (r − 1)(g − 1) + |I∪J |
k+2r ≥ 2.

Choose the canonical weight ωc on R̃′I∪J , consider

p−1
I (R̃′ssI, ω) ⊃ Ũ = p−1

I (R̃′ssI,ω) ∩ R̃′ssI∪J, ωc → P
L
ωc .

Then p−1
I (R̃′ssI, ω) \ Ũ = p−1

I (R̃′ssI, ω) ∩ (R̃′I∪J, ωc \ R̃
′ss
I∪J, ωc) has

codimension at least (r − 1)(g − 1) + |I∪J |
2r ≥ 2.

Let U ⊂ PLωc be the image of Ũ , then pI induces a morphism
f : U → PL such that f∗(OU ) = OPL .
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Problem and discussions

Definition 6

Let X be a scheme and Y ⊂ X a closed sub-scheme. The pair (X,Y )) is
called of compatible Frobenius split type if

X is of Frobenius split type

For almost p, there is a F-split ϕ : F∗OXp → OXp such that

ϕ(F∗IYp) ⊂ IYp .

Problem 1

Are the pairs (P,Dj(a)) (j = 1, 2), (D1(a),D1(a) ∩ D2 ∪ D1(a− 1)) of
compatible Frobenius split type ?

If the answer of above problem is Yes, then, for any ample line bundle
L on UX ,

H i(UX ,L) = 0 ∀ i > 0.
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Thanks �
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