p-adic period domains and the Fargues-Rapoport conjecture

Xu Shen

Morningside Center of Mathematics, AMSS, Chinese Academy of Sciences

▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.

- ▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.
- ▶ $X \leadsto \{\mu\}, \mu : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}, \leadsto \text{flag variety } \mathcal{F}(G,\mu) \text{ over } \mathbb{C}.$

- ▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.
- ▶ $X \leadsto \{\mu\}, \mu : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}, \leadsto \text{flag variety } \mathcal{F}(G,\mu) \text{ over } \mathbb{C}.$
- ▶ Borel embedding : $X \hookrightarrow \mathcal{F}(G, \mu) = X^{\vee}$.

- ▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.
- ▶ $X \leadsto \{\mu\}, \mu : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}, \leadsto \text{flag variety } \mathcal{F}(G,\mu) \text{ over } \mathbb{C}.$
- ▶ Borel embedding : $X \hookrightarrow \mathcal{F}(G, \mu) = X^{\vee}$. **Deligne** : X moduli of Hodge structures, i.e. a Griffiths period domain.

- ▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.
- ▶ $X \leadsto \{\mu\}, \mu : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}, \leadsto \text{flag variety } \mathcal{F}(G,\mu) \text{ over } \mathbb{C}.$
- ▶ Borel embedding : $X \hookrightarrow \mathcal{F}(G, \mu) = X^{\vee}$. **Deligne** : X moduli of Hodge structures, i.e. a Griffiths period domain. Borel embedding : $Hodge \ structure \mapsto Hodge \ filtration$.

- ▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.
- ▶ $X \leadsto \{\mu\}, \mu : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}, \leadsto \text{flag variety } \mathcal{F}(G,\mu) \text{ over } \mathbb{C}.$
- ▶ Borel embedding : $X \hookrightarrow \mathcal{F}(G, \mu) = X^{\vee}$. **Deligne** : X moduli of Hodge structures, i.e. a Griffiths period domain. Borel embedding : $Hodge \ structure \mapsto Hodge \ filtration$.
- ▶ $K \subset G(\mathbb{A}_f)$, $\operatorname{Sh}_K(\mathbb{C}) = \coprod_{finite} \Gamma \setminus X^+$, on each connected component : $X^+ \to \Gamma \setminus X^+$ local isomorphism.

- ▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.
- ▶ $X \leadsto \{\mu\}, \mu : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}, \leadsto \text{flag variety } \mathcal{F}(G,\mu) \text{ over } \mathbb{C}.$
- ▶ Borel embedding : $X \hookrightarrow \mathcal{F}(G, \mu) = X^{\vee}$. **Deligne** : X moduli of Hodge structures, i.e. a Griffiths period domain. Borel embedding : $Hodge \ structure \mapsto Hodge \ filtration$.
- ▶ $K \subset G(\mathbb{A}_f)$, $\operatorname{Sh}_K(\mathbb{C}) = \coprod_{finite} \Gamma \setminus X^+$, on each connected component : $X^+ \to \Gamma \setminus X^+$ local isomorphism.
- ▶ (GSp_{2g}, S^{\pm}) , S^{\pm} : complex period space of g-dim. abelian varieties, $\mathcal{A}_{g,K}$: moduli space of principally polarized g-dim. abelian varieties.

- ▶ (G, X) Shimura datum, $\leadsto G$ reductive group over \mathbb{Q} , X = finite copies of X^+ : Hermitian symmetric domain.
- $X \rightsquigarrow \{\mu\}, \mu : \mathbb{G}_{m,\mathbb{C}} \to G_{\mathbb{C}}, \rightsquigarrow \text{flag variety } \mathcal{F}(G,\mu) \text{ over } \mathbb{C}.$
- ▶ Borel embedding : $X \hookrightarrow \mathcal{F}(G, \mu) = X^{\vee}$. **Deligne** : X moduli of Hodge structures, i.e. a Griffiths period domain. Borel embedding : $Hodge\ structure \mapsto Hodge\ filtration$.
- ▶ $K \subset G(\mathbb{A}_f)$, $\operatorname{Sh}_K(\mathbb{C}) = \coprod_{finite} \Gamma \setminus X^+$, on each connected component : $X^+ \to \Gamma \setminus X^+$ local isomorphism.
- ▶ (GSp_{2g}, S^{\pm}) , S^{\pm} : complex period space of g-dim. abelian varieties, $\mathcal{A}_{g,K}$: moduli space of principally polarized g-dim. abelian varieties.
- ► Non-archimedean counterparts/analogues?

Fix a prime p. We will consider field extensions of $\mathbb{F}_p, \mathbb{Q}_p...$

Fix a prime p. We will consider field extensions of $\mathbb{F}_p, \mathbb{Q}_p...$ $\mathbb{H}/\overline{\mathbb{F}}_p$, p-divisible group, height = h, dimension = d.

Fix a prime p. We will consider field extensions of $\mathbb{F}_p, \mathbb{Q}_p$...

 $\mathbb{H}/\overline{\mathbb{F}}_p$, p-divisible group, height =h, dimension =d. Eg. $\mathbb{H}=A[p^\infty]$,

 $A/\overline{\mathbb{F}}_p$ abelian variety of dim g, h=2g, d=g.

Fix a prime p. We will consider field extensions of $\mathbb{F}_p, \mathbb{Q}_p...$

 $\mathbb{H}/\overline{\mathbb{F}}_p$, p-divisible group, height =h, dimension =d. Eg. $\mathbb{H}=A[p^\infty]$,

 $A/\overline{\mathbb{F}}_p$ abelian variety of dim g, h=2g, d=g.

 $\leadsto D = \mathbb{D}(\mathbb{H})_{\mathbb{Q}}$, rational Dieudonné module of \mathbb{H} , $\leadsto h$ -dim. vect. space over $\check{\mathbb{Q}}_p := W(\overline{\mathbb{F}}_p)_{\mathbb{Q}} = \widehat{\mathbb{Q}_p^{ur}}$, + Frobenius

Fix a prime p. We will consider field extensions of $\mathbb{F}_p, \mathbb{Q}_p$...

 $\mathbb{H}/\overline{\mathbb{F}}_p$, p-divisible group, height =h, dimension =d. Eg. $\mathbb{H}=A[p^\infty]$,

 $A/\overline{\mathbb{F}}_p$ abelian variety of dim g, h=2g, d=g. $\leadsto D=\mathbb{D}(\mathbb{H})_{\mathbb{O}}$, rational Dieudonné module of \mathbb{H} , $\leadsto h$ -dim. vect. space

 $V = \mathbb{D}(\mathbb{H})_{\mathbb{Q}}$, rational Dieudonne module of \mathbb{H} , $V \mapsto h$ —dim. vect. space over $\check{\mathbb{Q}}_p := W(\overline{\mathbb{F}}_p)_{\mathbb{Q}} = \widehat{\mathbb{Q}_p^{ur}}$, $V \mapsto h$ —dim. vect. space

 $ightharpoonup F | \breve{\mathbb{Q}}_p$, consider

$$\mathcal{M}_{\mathbb{H}}(F) := \{ (H/O_F, \rho : H(modp) \rightarrow \mathbb{H} \ quasi - isogeny) \} / \simeq, \rightsquigarrow$$
 deformation space (by quasi-isogenies).

Fix a prime p. We will consider field extensions of \mathbb{F}_p , \mathbb{Q}_p ...

 $\mathbb{H}/\overline{\mathbb{F}}_p$, *p*-divisible group, height =h, dimension =d. Eg. $\mathbb{H}=A[p^\infty]$,

 $A/\overline{\mathbb{F}}_p$ abelian variety of dim g, h=2g, d=g.

 $\leadsto D = \mathbb{D}(\mathbb{H})_{\mathbb{Q}}$, rational Dieudonné module of \mathbb{H} , $\leadsto h$ -dim. vect. space over $\check{\mathbb{Q}}_p := W(\overline{\mathbb{F}}_p)_{\mathbb{Q}} = \widehat{\mathbb{Q}_p^{ur}}$, + Frobenius

 $ightharpoonup F | \tilde{\mathbb{Q}}_p$, consider

 $\mathcal{M}_{\mathbb{H}}(F) := \{(H/O_F, \rho : H(modp) \to \mathbb{H} \ quasi-isogeny)\}/ \simeq, \leadsto$ deformation space (by quasi-isogenies).

▶ $(H, \rho) \in \mathcal{M}_{\mathbb{H}}(F)$, \leadsto Hodge-de Rham exact sequence :

$$0 \to (\mathrm{Lie} H^{\vee})_{F}^{\vee} \to \mathbb{D}(\overline{H})_{F} \to (\mathrm{Lie} H)_{F} \to 0,$$

and $\rho: \mathbb{D}(\overline{H})_F \simeq D \otimes_{\check{\mathbb{Q}}_p} F$, $\dim(\mathrm{Lie} H)_F = d$,

Fix a prime p. We will consider field extensions of $\mathbb{F}_p, \mathbb{Q}_p$...

 $\mathbb{H}/\overline{\mathbb{F}}_p$, p-divisible group, height =h, dimension =d. Eg. $\mathbb{H}=A[p^\infty]$,

 $A/\overline{\mathbb{F}}_p$ abelian variety of dim g, h=2g, d=g.

 $\leadsto D = \mathbb{D}(\mathbb{H})_{\mathbb{Q}}$, rational Dieudonné module of \mathbb{H} , $\leadsto h-$ dim. vect. space over $\check{\mathbb{Q}}_p := W(\overline{\mathbb{F}}_p)_{\mathbb{Q}} = \widehat{\mathbb{Q}_p^{ur}}$, + Frobenius

- ▶ $F|\check{\mathbb{Q}}_p$, consider $\mathcal{M}_{\mathbb{H}}(F) := \{(H/O_F, \rho : H(modp) \to \mathbb{H} \ quasi isogeny)\}/ \simeq, \leadsto$ deformation space (by quasi-isogenies).
- ▶ $(H, \rho) \in \mathcal{M}_{\mathbb{H}}(F)$, \rightsquigarrow Hodge-de Rham exact sequence :

$$0 \to (\operatorname{Lie} H^{\vee})_{F}^{\vee} \to \mathbb{D}(\overline{H})_{F} \to (\operatorname{Lie} H)_{F} \to 0,$$

and $\rho: \mathbb{D}(\overline{H})_F \simeq D \otimes_{\check{\mathbb{D}}_0} F$, $\dim(\mathrm{Lie}H)_F = d$, $\leadsto p$ -adic period map:

$$\pi_{dR}: \mathcal{M}_{\mathbb{H}}(F) \to Gr(d,h).$$

▶ Grothendieck (ICM 1970) : describe the image $\mathcal{F}^a := \operatorname{Im} \pi_{dR} \subset \operatorname{Gr}(d,h)$ as a subspace?

 $(\mathit{G},[b],\{\mu\}) \text{ local Shimura datum} : \mathit{G}/\mathbb{Q}_{p} \text{ reductive gp, } \{\mu\} \text{ conjugacy class of minuscule } \mu : \mathbb{G}_{m,\overline{\mathbb{Q}}_{p}} \to \mathit{G}_{\overline{\mathbb{Q}}_{p}}, \ b \in \mathit{G}(\widecheck{\mathbb{Q}}_{p})$

 $(G,[b],\{\mu\})$ local Shimura datum : G/\mathbb{Q}_p reductive gp, $\{\mu\}$ conjugacy class of minuscule $\mu:\mathbb{G}_{m,\overline{\mathbb{Q}}_p}\to G_{\overline{\mathbb{Q}}_p}$, $b\in G(\breve{\mathbb{Q}}_p)$

 \leadsto E reflex field = field of def. of $\mathcal{F}(G,\mu)$. Consider the associated adic space (Huber's version of p-adic spaces) $\mathcal{F}:=\mathcal{F}(G,\mu)^{ad}$.

 $(G,[b],\{\mu\})$ local Shimura datum : G/\mathbb{Q}_p reductive gp, $\{\mu\}$ conjugacy class of minuscule $\mu:\mathbb{G}_{m,\overline{\mathbb{Q}}_p}\to G_{\overline{\mathbb{Q}}_p}$, $b\in G(\widecheck{\mathbb{Q}}_p)$

 \leadsto E reflex field = field of def. of $\mathcal{F}(G,\mu)$. Consider the associated adic space (Huber's version of p-adic spaces) $\mathcal{F} := \mathcal{F}(G,\mu)^{ad}$.

Rapoport-Zink period domain: $\mathcal{F}(G, \mu, b)^{wa}$, open sub adic space of \mathcal{F} over $\check{E} := \widehat{E^{ur}}$, parametrizes certain p-adic Hodge structures:

 $(G, [b], \{\mu\})$ local Shimura datum : G/\mathbb{Q}_p reductive gp, $\{\mu\}$ conjugacy class of minuscule $\mu: \mathbb{G}_{m,\overline{\mathbb{Q}}_p} \to G_{\overline{\mathbb{Q}}_p}, \ b \in G(\check{\mathbb{Q}}_p)$

 \rightarrow E reflex field = field of def. of $\mathcal{F}(G,\mu)$. Consider the associated adic space (Huber's version of p-adic spaces) $\mathcal{F} := \mathcal{F}(G, \mu)^{ad}$.

Rapoport-Zink period domain : $\mathcal{F}(G, \mu, b)^{wa}$, open sub adic space of \mathcal{F} over $\check{E} := \widehat{E^{ur}}$, parametrizes certain *p*-adic Hodge structures : \forall finite $K|\check{E}$, $\mathcal{F}(G,\mu,b)^{wa}(K) = \{ weakly \ admissible \ filtered \ isocrystals \ with \ G - \}$

str. \longleftrightarrow $G - crystalline Galois reps. of <math>Gal(\overline{K}/K)$.

 $(G,[b],\{\mu\})$ local Shimura datum : G/\mathbb{Q}_p reductive gp, $\{\mu\}$ conjugacy class of minuscule $\mu:\mathbb{G}_{m,\overline{\mathbb{Q}}_p}\to G_{\overline{\mathbb{Q}}_p}$, $b\in G(\widecheck{\mathbb{Q}}_p)$

 \leadsto E reflex field = field of def. of $\mathcal{F}(G, \mu)$. Consider the associated adic space (Huber's version of p-adic spaces) $\mathcal{F} := \mathcal{F}(G, \mu)^{ad}$.

Rapoport-Zink period domain : $\mathcal{F}(G, \mu, b)^{wa}$, open sub adic space of \mathcal{F} over $\check{E} := \widehat{E^{ur}}$, parametrizes certain p-adic Hodge structures : \forall finite $K|\check{E}$,

 $\mathcal{F}(G, \mu, b)^{wa}(K) = \{weakly \ admissible \ filtered \ isocrystals \ with \ G-$

$$str.$$
 $\stackrel{Colmez-Fontaine}{\longleftrightarrow} \{G-crystalline Galois reps. of $Gal(\overline{K}/K)\}.$$

Rapoport-Zink : $\mathcal{F}(G, \mu, b)^{wa} \neq \emptyset$, $\mathcal{F}(G, \mu, b)^{wa} = \mathcal{F} \setminus \bigcup_{i \in I} J_b(\mathbb{Q}_p)Z_i$, where I is finite, $\forall i \in I, Z_i$ is some closed Schubert variety.

 $(G,[b],\{\mu\})$ local Shimura datum : G/\mathbb{Q}_p reductive gp, $\{\mu\}$ conjugacy class of minuscule $\mu:\mathbb{G}_{m,\overline{\mathbb{Q}}_p}\to G_{\overline{\mathbb{Q}}_p}$, $b\in G(\widecheck{\mathbb{Q}}_p)$

 \leadsto E reflex field = field of def. of $\mathcal{F}(G,\mu)$. Consider the associated adic space (Huber's version of p-adic spaces) $\mathcal{F} := \mathcal{F}(G,\mu)^{ad}$.

Rapoport-Zink period domain : $\mathcal{F}(G,\mu,b)^{wa}$, open sub adic space of \mathcal{F} over $\widecheck{E}:=\widehat{E^{ur}}$, parametrizes certain p-adic Hodge structures : \forall finite $K|\widecheck{E}$, $\mathcal{F}(G,\mu,b)^{wa}(K)=\{weakly\ admissible\ filtered\ isocrystals\ with\ G-str.\} <math>\stackrel{Colmez-Fontaine}{\longleftrightarrow} \{G-crystalline\ Galois\ reps.\ of\ Gal(\overline{K}/K)\}.$

Rapoport-Zink: $\mathcal{F}(G, \mu, b)^{wa} \neq \emptyset$, $\mathcal{F}(G, \mu, b)^{wa} = \mathcal{F} \setminus \bigcup_{i \in I} J_b(\mathbb{Q}_p)Z_i$, where I is finite, $\forall i \in I, Z_i$ is some closed Schubert variety.

Example

- 1. $(D_{\frac{1}{n}}^{\times}, [b], \{\mu\})$, [b] basic, $\{\mu\} \longleftrightarrow (1, 0, \cdots, 0)$, $\mathcal{F}^{wa} = \Omega_{\mathbb{Q}_p}^n$, $\Omega^n = \mathbb{P}_{\mathbb{Q}_p}^{n-1} \setminus \bigcup_{H \text{ rational hyperlane}} H$.
- $\text{2. }(\mathrm{GL}_{\textit{n}},[\textit{b}],\{\mu\})\text{, }[\textit{b}]\text{ basic, }\{\mu\}\longleftrightarrow(1,0,\cdots,0)\text{, }\mathcal{F}^{\textit{wa}}=\mathbb{P}^{\textit{n}-1,\textit{ad}}_{\check{\mathbb{O}}_{-}}.$
- 3. $(GL_2, [b], {\mu}), [b]$ ordinary, ${\mu} \longleftrightarrow (1,0), \mathcal{F}^{wa} = \mathbb{A}^{1,ad}_{\mathbb{Q}_p}$.

Conjecture (Rapoport-Zink)

Conjecture (Rapoport-Zink)

 \exists open dense subspace $\mathcal{F}(G,\mu,b)^a \subset \mathcal{F}(G,\mu,b)^{wa}$, and a G- \mathbb{Q}_p -local system \mathcal{L} over $\mathcal{F}(G,\mu,b)^a$, such that on all classical points $x \in \mathcal{F}(G,\mu,b)^a$, \mathcal{L}_x gives the p-adic Galois rep. of K(x) as above.

▶ Joint with Miaofen Chen and Laurent Fargues, we construct such $\mathcal{F}(G,\mu,b)^a$ satisfying the Rapoport-Zink conjecture for any G. (Scholze also knows how to do this.)

Conjecture (Rapoport-Zink)

- ▶ Joint with Miaofen Chen and Laurent Fargues, we construct such $\mathcal{F}(G, \mu, b)^a$ satisfying the Rapoport-Zink conjecture for any G. (Scholze also knows how to do this.)
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$ parametrizes some **finer** *p*-adic Hodge structures :

Conjecture (Rapoport-Zink)

- ▶ Joint with Miaofen Chen and Laurent Fargues, we construct such $\mathcal{F}(G, \mu, b)^a$ satisfying the Rapoport-Zink conjecture for any G. (Scholze also knows how to do this.)
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$ parametrizes some **finer** *p*-adic Hodge structures :
 - ▶ $\forall C | \check{E}$ alg. closed **perfectoid** field, \leadsto **Fargues-Fontaine** curve $X := X_{C^{\flat}} / \mathbb{Q}_p$, together with a canonical point $\infty \in X$ s.t. $K(\infty) = C$, $\widehat{\mathcal{O}}_{X,\infty} = B_{dR}^+(C)$.

Conjecture (Rapoport-Zink)

- ▶ Joint with Miaofen Chen and Laurent Fargues, we construct such $\mathcal{F}(G,\mu,b)^a$ satisfying the Rapoport-Zink conjecture for any G. (Scholze also knows how to do this.)
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$ parametrizes some **finer** *p*-adic Hodge structures :
 - ▶ $\forall C | \check{E}$ alg. closed **perfectoid** field, \rightsquigarrow **Fargues-Fontaine** curve $X := X_{C^{\flat}} / \mathbb{Q}_p$, together with a canonical point $\infty \in X$ s.t. $K(\infty) = C$, $\widehat{\mathcal{O}}_{X,\infty} = B_{dR}^+(C)$.
 - ▶ Fargues : $[b] \leadsto \mathcal{E}_b$ a *G*-bundle on *X*.
 - ▶ $x \in \mathcal{F}(C)$, \rightsquigarrow a modification $\mathcal{E}_{b,x}$ of \mathcal{E}_b at $\infty : \mathcal{E}_{b,x}|_{X\setminus\infty} \simeq \mathcal{E}_b|_{X\setminus\infty}$.

Conjecture (Rapoport-Zink)

- ▶ Joint with Miaofen Chen and Laurent Fargues, we construct such $\mathcal{F}(G,\mu,b)^a$ satisfying the Rapoport-Zink conjecture for any G. (Scholze also knows how to do this.)
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$ parametrizes some **finer** *p*-adic Hodge structures :
 - ▶ $\forall C | \check{E}$ alg. closed **perfectoid** field, \rightsquigarrow **Fargues-Fontaine** curve $X := X_{C^{\flat}} / \mathbb{Q}_p$, together with a canonical point $\infty \in X$ s.t. $K(\infty) = C$, $\widehat{\mathcal{O}}_{X,\infty} = B_{dR}^+(C)$.
 - ▶ Fargues : $[b] \leadsto \mathcal{E}_b$ a G-bundle on X.
 - ▶ $x \in \mathcal{F}(C)$, \rightsquigarrow a modification $\mathcal{E}_{b,x}$ of \mathcal{E}_b at $\infty : \mathcal{E}_{b,x}|_{X \setminus \infty} \simeq \mathcal{E}_b|_{X \setminus \infty}$.
 - $\mathcal{F}^{a}(C) = \{x \in \mathcal{F}(C) \mid \mathcal{E}_{b,x} \simeq \mathcal{E}_{1}\}.$

Conjecture (Rapoport-Zink)

- ▶ Joint with Miaofen Chen and Laurent Fargues, we construct such $\mathcal{F}(G,\mu,b)^a$ satisfying the Rapoport-Zink conjecture for any G. (Scholze also knows how to do this.)
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$ parametrizes some **finer** *p*-adic Hodge structures :
 - ▶ $\forall C | \check{E}$ alg. closed **perfectoid** field, \leadsto **Fargues-Fontaine** curve $X := X_{C^{\flat}} / \mathbb{Q}_p$, together with a canonical point $\infty \in X$ s.t. $K(\infty) = C$, $\widehat{\mathcal{O}}_{X,\infty} = B_{dR}^+(C)$.
 - ▶ Fargues : $[b] \leadsto \mathcal{E}_b$ a G-bundle on X.
 - ▶ $x \in \mathcal{F}(C)$, \leadsto a modification $\mathcal{E}_{b,x}$ of \mathcal{E}_b at $\infty : \mathcal{E}_{b,x}|_{X \setminus \infty} \simeq \mathcal{E}_b|_{X \setminus \infty}$.
- ▶ non-archimedean \Rightarrow archimedean : similar characterization can be applied to the Borel embedding $X \subset \mathcal{F}(G, \mu)$, \leadsto Simpson's theory of twistor structures...

• $\mathcal{F}(G,\mu,b)^a$: true *p*-adic analogues of Griffiths period domains.

▶ $\mathcal{F}(G, \mu, b)^a$: true *p*-adic analogues of Griffiths period domains. $G = GL_h$, $\mathcal{F}(G, \mu, b)^a$ gives an answer of the question of Grothendieck.

- $\mathcal{F}(G,\mu,b)^a$: true p-adic analogues of Griffiths period domains. $G=\mathrm{GL}_h,\ \mathcal{F}(G,\mu,b)^a$ gives an answer of the question of Grothendieck.
- ▶ $G = \operatorname{GL}_h$, \leadsto formal Rapoport-Zink space $\check{\mathcal{M}} \leadsto p$ -adic generic fiber $\mathcal{M} = \mathcal{M}_{\operatorname{GL}_h(\mathbb{Z}_p)}$ of $\check{\mathcal{M}}$, and a tower $(\mathcal{M}_K)_{K\subset\operatorname{GL}_h(\mathbb{Z}_p)}$ which is the geometric realization (= étale coverings) of \mathcal{E} over $\mathcal{F}(G, \mu, b)^a$:

$$\cdots \longrightarrow \mathcal{M}_K \longrightarrow \mathcal{M} \twoheadrightarrow \mathcal{F}(G, \mu, b)^a.$$

- $\mathcal{F}(G,\mu,b)^a$: true p-adic analogues of Griffiths period domains. $G=\mathrm{GL}_h,\ \mathcal{F}(G,\mu,b)^a$ gives an answer of the question of Grothendieck.
- ▶ $G = \operatorname{GL}_h$, \leadsto formal Rapoport-Zink space $\check{\mathcal{M}} \leadsto p$ -adic generic fiber $\mathcal{M} = \mathcal{M}_{\operatorname{GL}_h(\mathbb{Z}_p)}$ of $\check{\mathcal{M}}$, and a tower $(\mathcal{M}_K)_{K \subset \operatorname{GL}_h(\mathbb{Z}_p)}$ which is the geometric realization (= étale coverings) of \mathcal{E} over $\mathcal{F}(G, \mu, b)^a$:

$$\cdots \longrightarrow \mathcal{M}_K \longrightarrow \mathcal{M} \twoheadrightarrow \mathcal{F}(G, \mu, b)^a.$$

Recall the complex setting : $X^+ \twoheadrightarrow \Gamma \setminus X^+$, archimedean \leftrightarrow non-archimedean!

- $\mathcal{F}(G,\mu,b)^a$: true p-adic analogues of Griffiths period domains. $G=\mathrm{GL}_h,\ \mathcal{F}(G,\mu,b)^a$ gives an answer of the question of Grothendieck.
- ▶ $G = \operatorname{GL}_h$, \leadsto formal Rapoport-Zink space $\check{\mathcal{M}} \leadsto p$ -adic generic fiber $\mathcal{M} = \mathcal{M}_{\operatorname{GL}_h(\mathbb{Z}_p)}$ of $\check{\mathcal{M}}$, and a tower $(\mathcal{M}_K)_{K \subset \operatorname{GL}_h(\mathbb{Z}_p)}$ which is the geometric realization (= étale coverings) of \mathcal{E} over $\mathcal{F}(G, \mu, b)^a$:

$$\cdots \longrightarrow \mathcal{M}_K \longrightarrow \mathcal{M} \twoheadrightarrow \mathcal{F}(G, \mu, b)^a$$
.

Recall the complex setting : $X^+ \rightarrow \Gamma \setminus X^+$, archimedean \leftrightarrow non-archimedean!

▶ In general, $\mathcal{E} \leadsto \text{local Shimura varieties } (\mathcal{M}_K)_{K \subset G(\mathbb{Q}_p)}$ in the sense of Rapoport-Viehmann.

- ▶ $\mathcal{F}(G, \mu, b)^a$: true p-adic analogues of Griffiths period domains. $G = GL_h$, $\mathcal{F}(G, \mu, b)^a$ gives an answer of the question of Grothendieck.
- ▶ $G = \operatorname{GL}_h$, \leadsto formal Rapoport-Zink space $\check{\mathcal{M}} \leadsto p$ -adic generic fiber $\mathcal{M} = \mathcal{M}_{\operatorname{GL}_h(\mathbb{Z}_p)}$ of $\check{\mathcal{M}}$, and a tower $(\mathcal{M}_K)_{K \subset \operatorname{GL}_h(\mathbb{Z}_p)}$ which is the geometric realization (= étale coverings) of \mathcal{E} over $\mathcal{F}(G, \mu, b)^a$:

$$\cdots \longrightarrow \mathcal{M}_K \longrightarrow \mathcal{M} \twoheadrightarrow \mathcal{F}(G, \mu, b)^a$$
.

Recall the complex setting : $X^+ \twoheadrightarrow \Gamma \setminus X^+$, archimedean \leftrightarrow non-archimedean!

- ▶ In general, $\mathcal{E} \leadsto \text{local Shimura varieties } (\mathcal{M}_K)_{K \subset G(\mathbb{Q}_p)}$ in the sense of Rapoport-Viehmann.
- ▶ For [b] basic, Kottwitz conjecture : the supercuspidal part of $\varinjlim_{K} H_c^*(\mathcal{M}_{K,\mathbb{C}_p}, \overline{\mathbb{Q}}_{\ell})$ realizes the local Langlands/Jacquet-Langlands correspondences for $G(\mathbb{Q}_p)$ and $J_b(\mathbb{Q}_p)$.

p-adic period domains : $\mathcal{F}(G, \mu, b)^a$ vs. $\mathcal{F}(G, \mu, b)^{wa}$

$$(G,[b],\{\mu\}), \rightsquigarrow \mathcal{F}(G,\mu,b)^a \subset \mathcal{F}(G,\mu,b)^{wa} \subset \mathcal{F}(G,\mu)^{ad}.$$

- $ightharpoonup \mathcal{F}(G,\mu,b)^{wa}$: easier to describe, but usually larger than what we need.
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$: exactly what we want, but usually hard to explicitly describe.

p-adic period domains : $\mathcal{F}(G,\mu,b)^a$ vs. $\mathcal{F}(G,\mu,b)^{wa}$

$$(G,[b],\{\mu\}), \rightsquigarrow \mathcal{F}(G,\mu,b)^a \subset \mathcal{F}(G,\mu,b)^{wa} \subset \mathcal{F}(G,\mu)^{ad}.$$

- $ightharpoonup \mathcal{F}(G,\mu,b)^{wa}$: easier to describe, but usually larger than what we need.
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$: exactly what we want, but usually hard to explicitly describe.
- ▶ In general, $\mathcal{F}(G, \mu, b)^a \subsetneq \mathcal{F}(G, \mu, b)^{wa}$.

p-adic period domains : $\mathcal{F}(G,\mu,b)^a$ vs. $\mathcal{F}(G,\mu,b)^{wa}$

$$(G,[b],\{\mu\}), \rightsquigarrow \mathcal{F}(G,\mu,b)^a \subset \mathcal{F}(G,\mu,b)^{wa} \subset \mathcal{F}(G,\mu)^{ad}.$$

- $\triangleright \mathcal{F}(G,\mu,b)^{wa}$: easier to describe, but usually larger than what we need.
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$: exactly what we want, but usually hard to explicitly describe.
- ▶ In general, $\mathcal{F}(G, \mu, b)^a \subsetneq \mathcal{F}(G, \mu, b)^{wa}$.
- ▶ Example (Hartl) : $(GL_5, [b], {\mu}), {\mu} \longleftrightarrow (1, 1, 1, 0, 0), [b]$ basic, then $\mathcal{F}(G, \mu, b)^a \subseteq \mathcal{F}(G, \mu, b)^{wa} = \mathcal{F}(G, \mu)^{ad} = Gr(3, 5)^{ad}$.

p-adic period domains : $\mathcal{F}(G,\mu,b)^a$ vs. $\mathcal{F}(G,\mu,b)^{wa}$

$$(G,[b],\{\mu\}), \rightsquigarrow \mathcal{F}(G,\mu,b)^a \subset \mathcal{F}(G,\mu,b)^{wa} \subset \mathcal{F}(G,\mu)^{ad}.$$

- $ightharpoonup \mathcal{F}(G,\mu,b)^{wa}$: easier to describe, but usually larger than what we need.
- $ightharpoonup \mathcal{F}(G,\mu,b)^a$: exactly what we want, but usually hard to explicitly describe.
- ▶ In general, $\mathcal{F}(G, \mu, b)^a \subsetneq \mathcal{F}(G, \mu, b)^{wa}$.
- ▶ Example (Hartl) : $(GL_5, [b], {\mu}), {\mu} \longleftrightarrow (1, 1, 1, 0, 0), [b]$ basic, then $\mathcal{F}(G, \mu, b)^a \subseteq \mathcal{F}(G, \mu, b)^{wa} = \mathcal{F}(G, \mu)^{ad} = Gr(3, 5)^{ad}$.
- ▶ However, $\mathcal{F}(G, \mu, b)^a = \mathcal{F}(G, \mu, b)^{wa}$ in the previous examples :
 - 1. Drinfeld : $\mathcal{M}_{Dr} \twoheadrightarrow \Omega^n_{\check{\mathbb{Q}}_n}$
 - 2. Lubin-Tate, Gross-Hopkins : $\mathcal{M}_{E[p^{\infty}]} woheadrightarrow \mathbb{P}^{1,ad}_{\mathbb{Q}_p}$, $E/\overline{\mathbb{F}}_p$ supersingular elliptic curve
 - 3. Katz, Serre-Tate : $\mathcal{M}_{E[p^{\infty}]} \twoheadrightarrow \mathbb{A}^{1,ad}_{\check{\mathbb{D}}_p}$, $E/\overline{\mathbb{F}}_p$ ordinary elliptic curve

 $(G, \{\mu\}) \rightsquigarrow$ a finite set $B(G, \mu)$ of classes [b], with a unique distinguished element $[b_0]$, called **basic**.

 $(G, \{\mu\}) \leadsto$ a finite set $B(G, \mu)$ of classes [b], with a unique distinguished element $[b_0]$, called **basic**.

Conjecture (Fargues-Rapoport)

Assume $[b] = [b_0]$ basic. Then $\mathcal{F}(G, \mu, b)^a = \mathcal{F}(G, \mu, b)^{wa}$ if and only if $(G, \{\mu\})$ is fully Hodge-Newton decomposable.

 $(G, \{\mu\}) \rightsquigarrow$ a finite set $B(G, \mu)$ of classes [b], with a unique distinguished element $[b_0]$, called **basic**.

Conjecture (Fargues-Rapoport)

Assume $[b] = [b_0]$ basic. Then $\mathcal{F}(G, \mu, b)^a = \mathcal{F}(G, \mu, b)^{wa}$ if and only if $(G, \{\mu\})$ is fully Hodge-Newton decomposable.

Very roughly, fully H.-N. decomposable means that $\forall [b'] \in B(G, \mu)$ non basic, $([b'], \{\mu\})$ satisfies the H.-N. condition :

 $(G, \{\mu\}) \rightsquigarrow$ a finite set $B(G, \mu)$ of classes [b], with a unique distinguished element $[b_0]$, called **basic**.

Conjecture (Fargues-Rapoport)

Assume $[b] = [b_0]$ basic. Then $\mathcal{F}(G, \mu, b)^a = \mathcal{F}(G, \mu, b)^{wa}$ if and only if $(G, \{\mu\})$ is fully Hodge-Newton decomposable.

Very roughly, fully H.-N. decomposable means that $\forall [b'] \in B(G, \mu)$ non basic, $([b'], \{\mu\})$ satisfies the H.-N. condition :

the Newton polygon $\mathcal{P}_{b'}$ has a non-trivial contact point with the Hodge polygon \mathcal{P}_{μ} , which is a break point of $\mathcal{P}_{b'}$.

 $(G, \{\mu\}) \rightsquigarrow$ a finite set $B(G, \mu)$ of classes [b], with a unique distinguished element $[b_0]$, called **basic**.

Conjecture (Fargues-Rapoport)

Assume $[b] = [b_0]$ basic. Then $\mathcal{F}(G, \mu, b)^a = \mathcal{F}(G, \mu, b)^{wa}$ if and only if $(G, \{\mu\})$ is fully Hodge-Newton decomposable.

Very roughly, fully H.-N. decomposable means that $\forall [b'] \in B(G, \mu)$ non basic, $([b'], \{\mu\})$ satisfies the H.-N. condition :

the Newton polygon $\mathcal{P}_{b'}$ has a non-trivial contact point with the Hodge polygon \mathcal{P}_{μ} , which is a break point of $\mathcal{P}_{b'}$. \leadsto reduction the datum to a proper Levi subgroup.

We prove

Theorem (M.Chen-Fargues-S.)

The Fargues-Rapoport conjecture holds true for any G!

We prove

Theorem (M.Chen-Fargues-S.)

The Fargues-Rapoport conjecture holds true for any G!

→ Fargues's and Xuhua He's 2018 ICM reports respectively.

We prove

Theorem (M.Chen-Fargues-S.)

The Fargues-Rapoport conjecture holds true for any G!

 \rightsquigarrow Fargues's and Xuhua He's 2018 ICM reports respectively.

Example

The following pairs are fully Hodge-Newton decomposable :

- 1. GL_h , $\{\mu\} \longleftrightarrow (1,0,\ldots,0)$
- 2. $GU(V,\langle,\rangle),\{\mu\}\longleftrightarrow((1,\cdots,1,0),0)$
- 3. $GSp_4, \{\mu\} \longleftrightarrow (1, 1, 0, 0)$
- 4. $SO(V, Q), \{\mu\} \longleftrightarrow (1, 0, \cdots, 0, -1)$

We prove

Theorem (M.Chen-Fargues-S.)

The Fargues-Rapoport conjecture holds true for any G!

→ Fargues's and Xuhua He's 2018 ICM reports respectively.

Example

The following pairs are fully Hodge-Newton decomposable :

- 1. GL_h , $\{\mu\} \longleftrightarrow (1,0,\ldots,0)$
- 2. $GU(V,\langle,\rangle),\{\mu\}\longleftrightarrow((1,\cdots,1,0),0)$
- 3. $GSp_4, \{\mu\} \longleftrightarrow (1, 1, 0, 0)$
- 4. $SO(V,Q), \{\mu\} \longleftrightarrow (1,0,\cdots,0,-1)$

In fact, **Görtz-He-Nie** give a complete classification of such fully Hodge-Newton decomposable $(G, \{\mu\})$. $(\Rightarrow G$ classical group)

Some key ideas in the proof

- ▶ Weakly admissibility in terms of the Fargues-Fontaine curve.
- ► Harder-Narasimhan stratification of the *p*-adic flag variety $\mathcal{F} = \prod_{b' \in \mathcal{B}(G,0,y,y^{-1})} \mathcal{F}^{b'}.$
- ▶ Explicit description of the generalized Kottwitz set $B(G, 0, \nu_b \mu^{-1})$.
- Explicit description of each stratum $\mathcal{F}^{b'}$ using "dual" local Shimura varieties and the Hodge-Tate period map π_{HT} .

Thank you!